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Modern GPUs (Graphics Processing Units)

= Powerful data-parallel computation platform.
= High computation density, high memory bandwidth.
= Relatively low-cost.

NVIDIA GTX 580
512 cores

1.6 Tera FLOPs

1.5 GB memory
200GB/s bandwidth
5499
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GPU for Scientific Computing

Interactive
visualization of
volumetric white
matter connectivity

Financial simulation
of LIBOR model with

swaptions

lonic placement for
molecular dynamics
simulation on GPU

47X

GLAME@lab: an M-
script AP| for GPU
linear algebra

17X

Fluid mechanics in
Matlab using .meXx file
CUDA Function

Transcoding HD video
stream to H.264

Ultrasound medical
imaging for cancer
diagnostics

Highly optimized
object oriented
molecular dynamics

Astrophysics N-body
simulation

30X

Cmatch exact string
matching to find
similar proteins and
gene sequences

[NVIDIA]
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Introduction

= Singular Value Decomposition (SVD) of large matrices.
= Low-Rank Approximation.

= QUIC-SVD: Fast SVD using cosine trees, by Michael
Holmes, Alexander Gray and Charles Isbell, NIPS 2008.
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QUIC-SVD: Fast SVD using Cosine Trees

[Holmes et al. 2008] Cosine Tree

Matrix

Projection
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QUIC-SVD: Fast SVD using Cosine Trees

[Holmes et al. 2008] Cosine Tree

Matrix

Start from a root node that owns the entire matrix.
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QUIC-SVD: Fast SVD using Cosine Trees

[Holmes et al. 2008] Cosine Tree

Matrix

Select pivot row based on length square distribution;
Compute inner product of every row with the pivot row;

v
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QUIC-SVD: Fast SVD using Cosine Trees

[Holmes et al. 2008] Cosine Tree

Matrix

The inner product results determine how the rows are
partitioned to 2 subsets, each represented by a child node.
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QUIC-SVD: Fast SVD using Cosine Trees

[Holmes et al. 2008] Cosine Tree

Matrix @ @

Compute the row mean (centroid) of each subset;
add it to the current basis set (keep orthogonalized).
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QUIC-SVD: Fast SVD using Cosine Trees

[Holmes et al. 2008] Cosine Tree

Matrix

Basis

-

-+

Repeat, until the estimated error is below a threshold. The
final basis set then provides a good low-rank approximation.
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GPU-based Implementation of QUIC-SVD

= Most computation time is spent on splitting nodes.
= Computationally expensive steps:

e Computing vector inner products
e Computing row means (centroids)
e Basis orthogonalization

" Key:
find enough computation to keep the GPU busy!
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Parallelize Vector Inner Products and Row Means

= Compute all inner products and row means in parallel.
= There are enough row vectors to keep the GPU busy.

12



JMassAmbhe

Parallelize Gram Schmidt Orthogonalization

= Classical Gram Schmidt:
Assume vectors u,, U,, U,... U, are already orthgonalized, to
orthogonalize a new vector v with respect to them:

(v,u,) } (v,u,) —...—<V’—u”>u

T R (T R TR

= This is easy to parallelize (as each projection is independently
calculated), but it has poor numerical stability due to
rounding errors.

uk+1 =V-
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Parallelize Gram Schmidt Orthogonalization

= Modified Gram Schmidt:

Y u, v =y _ (v.u,) U, VO =y _ v.u)
(U, Uy) Uz Up) (U, Us)

)
_ (kD) _
uk+1

<uk,uk>

@ _
V¥V =V -— Us,

Uy

= This has good numerical stability, but is hard to parallelize, as
the computation is sequential!
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Parallelize Gram Schmidt Orthogonalization

= Qur approach: Blocked Gram Schmidt
(v,u,) (v,u,) (v,uy)

Q) _y\y_ _ _
B TR R (AT R AT
oy V) ) o ()
<um+1 um+1> " <um+2 um+2> e <u2m’u2m> o
o VO U) (VP Uy, (v®u,)
Ui =V mi2 e T Uk

<u2m+1’u2m+1> o <u2m+2’u2m+2> <uk’uk>

= This hybrid approach proves to be both numerically stable,
and GPU-friendly.
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Partitioned QUIC-SVD

= As the advantage of exploiting the GPU is only obvious for
large-scale problems, we need to test our algorithm on large
matrices (>10,000x10,000).

= For dense matrices, this will soon become an out-of-core
problem.

= We modified our algorithm to use a matrix partitioning
scheme, so that each partition can fit in GPU memory.

16
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Partitioned QUIC-SVD

Cosine Trees

Matrix
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Performance

= \We generate test data by multiplying two randomly generated
left and right matrices, resulting in a low-rank matrix.

= We set the termination error in QUIC-SVD to 10°. This forces
the algorithm to produce accurate results.

= We compare 1) Matlab’s svds; 2) CPU-implementation of
QUIC-SVD; 3) GPU-implementation of QUIC-SVD.

* CPU version considerably optimized using Intel MKL and tested on
an Intel Core i7

e GPU version is tested on an NVIDIA 480 GTX

18
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Performance
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Performance

svds time

800
T B0 i)
§ 400 é
ki) k)
£ 200 £

0
1000

7500

550 4250

rank 100 1000 size

QUIC GPU speedup over QUIC CPU

Fises
5 5 150
g 27 N
- =
A [
g 1 g g
w ]
0.l
1000

100

rank 1000 size

w
o

204

e
o

1000

QUIC CPU time

‘ 7500
4250

rank 100 1000 size

speedup factor

550

rank 100 1000 size

QUIC GPU time

7500
65 4250

rank 100 1000 size

QUIC CPU speedup over svds

200

150 (g

7500

60 4250

rank 100 1000 size

20



111)€¢

Performance
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Performance

QUIC CPU time QUIC GPU time QUIC GPU speedup over QUIC CPU
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Integration with Manifold Alignment Framework

Features: 259 Instances: 715, Correspondences: 52, kNN: 7, LatentDim: 19 Training: 52
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Conclusion and Future Work

= Qur initial effort has shown that a GPU-based implementation
of QUIC-SVD can achieve reasonable speedup.

= With additional optimizations, 10X speedup foreseeable.

= Handle sparse matrices.

= Components from this project can become fundamental
building blocks for other algorithms: random projection trees,
diffusion wavelets etc.

= Design new algorithms that are suitable for data-parallel
computation.
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Programming on the GPU

= @General-Purpose GPU Programming Language
e CUDA, OpenCL, DirectCompute, BrookGPU ...

~ [NVIDIA]
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