Modern GPUs (Graphics Processing Units)

- Powerful data-parallel computation platform.
- High computation density, high memory bandwidth.
- Relatively low-cost.

NVIDIA GTX 580 512 cores 1.6 Tera FLOPs 1.5 GB memory 200GB/s bandwidth \$499

GPU for Scientific Computing

GPU-based QUIC-SVD Algorithm

Department of Computer Science

Introduction

- Singular Value Decomposition (SVD) of large matrices.
- Low-Rank Approximation.
- QUIC-SVD: Fast SVD using cosine trees, by Michael Holmes, Alexander Gray and Charles Isbell, <u>NIPS 2008</u>.

QUIC-SVD: Fast SVD using Cosine Trees

QUIC-SVD: Fast SVD using Cosine Trees

Start from a root node that owns the entire matrix.

QUIC-SVD: Fast SVD using Cosine Trees

Select pivot row based on length square distribution; Compute inner product of every row with the pivot row;

QUIC-SVD: Fast SVD using Cosine Trees

The inner product results determine how the rows are partitioned to 2 subsets, each represented by a child node.

QUIC-SVD: Fast SVD using Cosine Trees

Compute the row mean (centroid) of each subset; add it to the current basis set (keep orthogonalized).

QUIC-SVD: Fast SVD using Cosine Trees

Repeat, until the estimated error is below a threshold. The final basis set then provides a good low-rank approximation.

GPU-based Implementation of QUIC-SVD

- Most computation time is spent on splitting nodes.
- Computationally expensive steps:
 - Computing vector inner products
 - Computing row means (centroids)
 - Basis orthogonalization
- Key:

find enough computation to keep the GPU busy!

Parallelize Vector Inner Products and Row Means

- Compute all inner products and row means in parallel.
- There are enough row vectors to keep the GPU busy.

Parallelize Gram Schmidt Orthogonalization

Classical Gram Schmidt:

Assume vectors $u_1, u_2, u_3 \dots u_n$ are already orthgonalized, to orthogonalize a new vector v with respect to them:

$$u_{k+1} = v - \frac{\langle v, u_1 \rangle}{\langle u_1, u_1 \rangle} u_1 - \frac{\langle v, u_2 \rangle}{\langle u_2, u_2 \rangle} u_2 - \dots - \frac{\langle v, u_n \rangle}{\langle u_n, u_n \rangle} u_n$$

This is easy to parallelize (as each projection is independently calculated), but it has poor numerical stability due to rounding errors.

Parallelize Gram Schmidt Orthogonalization

Modified Gram Schmidt:

$$v^{(1)} = v - \frac{\langle v, u_1 \rangle}{\langle u_1, u_1 \rangle} u_1, \quad v^{(2)} = v^{(1)} - \frac{\langle v^{(1)}, u_2 \rangle}{\langle u_2, u_2 \rangle} u_2, \quad v^{(3)} = v^{(2)} - \frac{\langle v^{(2)}, u_3 \rangle}{\langle u_3, u_3 \rangle} u_3, \quad \dots$$

... $u_{k+1} = v^{(k-1)} - \frac{\langle v^{(k-1)}, u_k \rangle}{\langle u_k, u_k \rangle} u_k$

 This has good numerical stability, but is hard to parallelize, as the <u>computation is sequential</u>!

Parallelize Gram Schmidt Orthogonalization

Our approach: Blocked Gram Schmidt

 $v^{(1)} = v - \frac{\langle v, u_1 \rangle}{\langle u_1, u_1 \rangle} u_1 - \frac{\langle v, u_2 \rangle}{\langle u_2, u_2 \rangle} u_2 - \dots - \frac{\langle v, u_m \rangle}{\langle u_m, u_m \rangle} u_m$ $v^{(2)} = v^{(1)} - \frac{\langle v^{(1)}, u_{m+1} \rangle}{\langle u_{m+1}, u_{m+1} \rangle} u_{m+1} - \frac{\langle v^{(1)}, u_{m+2} \rangle}{\langle u_{m+2}, u_{m+2} \rangle} u_{m+2} - \dots - \frac{\langle v^{(1)}, u_{2m} \rangle}{\langle u_{2m}, u_{2m} \rangle} u_{2m}$ $u_{k+1} = v^{(2)} - \frac{\langle v^{(2)}, u_{2m+1} \rangle}{\langle u_{2m+1}, u_{2m+1} \rangle} u_{2m+1} - \frac{\langle v^{(2)}, u_{2m+2} \rangle}{\langle u_{2m+2}, u_{2m+2} \rangle} u_{m+2} - \dots - \frac{\langle v^{(2)}, u_k \rangle}{\langle u_k, u_k \rangle} u_k$

 This hybrid approach proves to be both <u>numerically stable</u>, and <u>GPU-friendly</u>.

Partitioned QUIC-SVD

- As the advantage of exploiting the GPU is only obvious for large-scale problems, we need to test our algorithm on large matrices (>10,000x10,000).
- For dense matrices, this will soon become an out-of-core problem.
- We modified our algorithm to use a matrix partitioning scheme, so that each partition can fit in GPU memory.

Partitioned QUIC-SVD

Performance

- We generate test data by multiplying two randomly generated left and right matrices, resulting in a low-rank matrix.
- We set the termination error in QUIC-SVD to 10⁻⁶. This forces the algorithm to produce accurate results.
- We compare 1) Matlab's svds; 2) CPU-implementation of QUIC-SVD; 3) GPU-implementation of QUIC-SVD.
 - CPU version considerably optimized using Intel MKL and tested on an Intel Core i7
 - GPU version is tested on an NVIDIA 480 GTX

Performance

Performance

Performance

Performance

Integration with Manifold Alignment Framework

Conclusion and Future Work

- Our initial effort has shown that a GPU-based implementation of QUIC-SVD can achieve reasonable speedup.
- With additional optimizations, 10X speedup foreseeable.
- Handle sparse matrices.
- Components from this project can become fundamental building blocks for other algorithms: random projection trees, diffusion wavelets etc.
- Design new algorithms that are suitable for data-parallel computation.

Programming on the GPU

- General-Purpose GPU Programming Language
 - CUDA, OpenCL, DirectCompute, BrookGPU ...

