NSF-FODAVA: Efficient Data Reduction and Summarization

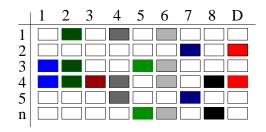
PI: Ping Li, Cornell University, 09/01/2008 - 08/31/2011

Deliverables: The following papers have acknowledged this support (the PI's only NSF grant).

- 1. P. Li, C. König, W. Gui, b-Bit Minwise Hashing for Estimating Three-Way Similarities, NIPS 2010
- 2. P. Li, Robust LogitBoost and Adaptive Base Class (ABC) LogitBoost, UAI 2010
- 3. P. Li, M. Mahoney, Y. She, Approximating Higher-Order Distances Using Random Projections, UAI 2010
- 4. P. Li, C. König, b-Bit Minwise Hashing, WWW 2010
- 5. F. Wang, P. Li, Efficient Nonnegative Matrix Factorization with Random Projections, SDM 2010
- 6. F. Wang, P. Li, Compressed Non-negative Sparse Coding, ICDM 2010
- 7. F. Wang, P. Li, C. König, Learning a Bi-Stochastic Data Similarity Matrix, ICDM 2010
- 8. P. Li, ABC-Boost: Adaptive Base Class Boost for Multi-Class Classification, ICML, 2009
- 9. P. Li, Compressed Counting, SODA 2009
- 10. P. Li, Improving Compressed Counting, UAI 2009
- 11. P. Li, Computationally Efficient Estimators for Dimension Reductions Using Stable Random Projections, ICDM 2008
- 12. P. Li, K Church, T. Hastie, One Sketch for All: Theory and Application of Conditional Random Sampling, NIPS 2008

Objective: "Shrinking" Massive Data

Data Matrix $\mathbf{A} \in \mathbb{R}^{n \times D}$: n rows and D columns, e.g., term-doc, image-pixel.



Characteristics of Modern Massive Data Sets (MMDS)

- Massive, e.g., $n, D \approx 10^{10}$, or even 2^{64} .
- Often Dynamic, e.g., data streams, $\mathbf{A}_t[i_t] = \mathbf{A}_{t-1}[i_t] + fun(i_t, I_t)$
- Often Sparse, e.g., text data, or some representations of image data
- Many applications only need summary statistics. For example, clustering uses distances, linear regression $(\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{Y}$ uses inner products.
- Challenges: store and transmit data; compute & maintain summary statistics

Computing Summary Statistics in Massive Data

Take first two rows of \mathbf{A} : $u_1, u_2 \in \mathbb{R}^D$. Many applications, e.g., machine learning and visualization, requires computing various summary statistics:

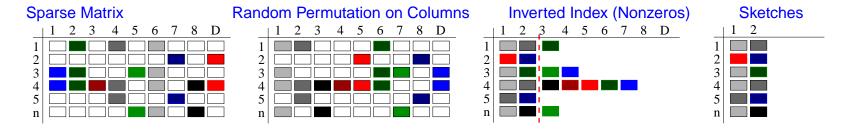
- **Distances**: Eucliean $d_2 = \sum_{i=1}^D |u_{1,i} u_{2,i}|^2$; Manhattan $d_1 = \sum_{i=1}^D |u_{1,i} u_{2,i}|$. L_p distance $d_p = \sum_{i=1}^D |u_{1,i} u_{2,i}|^p$;
- Inner product: $a=\sum_{i=1}^D u_{1,i}u_{2,i}$; Correlation: $\rho=\frac{a}{\sqrt{\sum_{i=1}^D u_{1,i}^2\sum_{i=1}^D u_{2,i}^2}}$.
- Chi-Square: $d_{\chi^2} = \sum_{i=1}^D \frac{|u_{1,i} u_{2,i}|^2}{u_{1,i} + u_{2,i}}$.; General $d_g = \sum_{i=1}^D g(u_{1,i}, u_{2,i})$.
- Multi-way association: $\sum_{i=1}^{D} u_{1,i}u_{2,i}u_{3,i}$.

Challenges: Computationally expensive; massive storage; dynamic data.

Data Reduction Methods (PI has worked on)

- Normal random projection for efficiently computing the l_2 distances and inner products, applicable to dynamic data. Recently, we extend it to computing the l_p distances, for p=4,6,8...
- Cachy random projection for computing the l_1 distances.
- Stable random projection for computing the l_p distances, 0 .
- Compressed Counting, a breakthrough in data stream computations, for computing the p-th frequency moments and Shannon entropy.
- **b-Bit Minwise Hashing**, for improving the conventional minwise hashing often by > 20-fold. Since minwise hashing is the standard tool in the context of search industry, this work has attracted good attention.
- Conditional Random Sampling (CRS), a new technique for general sampling. Not in the poster presentation.

Conditional Random Sampling (CRS): One Sketch for All



Estimating procedure: Basically a trick (although finding it was a long process)

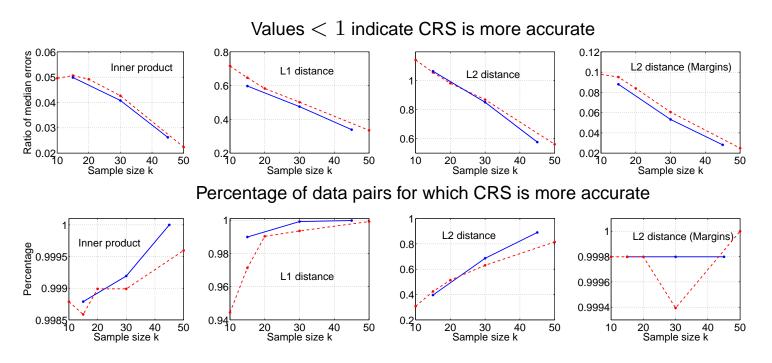
Excluding 11(3) from sketches, two schemes are equivalent (for u_1 and u_2) conditioning on $D_s = \min(10, 11) = 10$. (Rigorous theory says $D_s = 10 - 1$)

For another pair, e.g., u_1 and u_3 , the (retrospective) sample D_s may be different. Also, this scheme works for more than two rows, and for dynamic streaming data.

Once there is a random sample, estimating any summary statistics is trivial, based on the same sketches. Thus, CRS is one-sketch-for-all.

Comparisons with Random Projections

- CRS is much more versatile. Random projection is not one-sketch-for-all and only applicable to limited summary statistics.
- CRS is more efficient, since only one permutation is needed.
- CRS can be less accurate when the data are dense and/or heavy-tailed.
- CRS is more accurate if the data are sparse, binary, or nearly independent.



References for CRS

- 1. Ping Li, Kenneth Church, and Trevor Hastie, *One Sketch for All: Theory and Application of Conditional Random Sampling*, NIPS 2008
- 2. Ping Li, Kenneth Church, and Trevor Hastie, Conditional Random Sampling: A Sketch-Based Sampling Technique for Spare Data, NIPS 2006
- 3. Ping Li and Kenneth Church, A Sketch Algorithm for Estimating Two-Way and Multi-Way Associations, Computational Linguistics 2007
- 4. Ping Li and Kenneth Church, Using Sketches to Estimate Associations, EMNLP/HLT 2005

Efficient Matrix Factorization and Sparse Coding Using Random Projections

Fei Wang, Ping Li, Cornell University

Non-Negative Matrix Factorization (NMF) has many applications in machine learning and data mining including Vision, information retrieval and bioinformatics.

$$X$$
 \approx F

Approximate a non-negative data matrix $\mathbf{X} \in \mathbb{R}^{d \times n}$ by $\mathbf{X} \approx \mathbf{F}\mathbf{G}^{\mathsf{T}}$,

 $\mathbf{F} \in \mathbb{R}^{d \times r}$, $\mathbf{G} \in \mathbb{R}^{n \times r}$, by minimizing the loss in the matrix Frobenius norm:

$$J(\mathbf{F}, \mathbf{G}) = \left\| \mathbf{X} - \mathbf{F} \mathbf{G}^T \right\|_F^2,$$

subject to the non-negativity constraint: $F_{ij} \geq 0$, $G_{ij} \geq 0$.

Traditional Solutions to NMF and the Challenges

Lee and Seung's multiplicative updating rule: Starting with some (random) initialization of \mathbf{F} and \mathbf{G} , repeat the following steps:

$$\mathbf{G}_{ij} \longleftarrow \mathbf{G}_{ij} rac{\left(\mathbf{X}^T \mathbf{F}\right)_{ij}}{\left(\mathbf{G} \mathbf{F}^T \mathbf{F}\right)_{ij}}, \qquad \qquad \mathbf{F}_{ij} \longleftarrow \mathbf{F}_{ij} rac{\left(\mathbf{X} \mathbf{G}\right)_{ij}}{\left(\mathbf{F} \mathbf{G}^T \mathbf{G}\right)_{ij}}.$$

Since then, many algorithms have been developed (e.g., in H. Park's group).

Fundamental challenges: Computationally intensive when \mathbf{X} is too large. Infeasible to store the data matrix \mathbf{X} in the memory in large applications.

Will random projections (RP) work?: Replacing ${\bf X}$ by ${\bf R}{\bf X}$, where entries of ${\bf R}$ are sampled from N(0,1), violates the non-negativity of ${\bf X}$. What can we do?

Dual RP via semi-NMF: Alternatingly solve two semi-NMF problems on $\widetilde{\mathbf{X}}_d = \widetilde{\mathbf{R}}_d \mathbf{X}$ and $\widetilde{\mathbf{X}}_n = \mathbf{X} \widetilde{\mathbf{R}}_n^T$. Semi-NMF only imposes non-negativity on one of \mathbf{F} and \mathbf{G} .

Dual Random Projections Via Semi-NMF

Semi-NMF multiplicative update rule: Generate two random matrices, $\widetilde{\mathbf{R}}_d \in \mathbb{R}^{k_1 \times d}$ and $\widetilde{\mathbf{R}}_n \in \mathbb{R}^{k_2 \times d}$, whose entries are i.i.d. N(0,1). Repeat:

$$\mathbf{G}_{ij} \longleftarrow \mathbf{G}_{ij} \sqrt{\frac{(\widetilde{\mathbf{X}}_d^T \widetilde{\mathbf{F}})_{ij}^+ + [\mathbf{G}(\widetilde{\mathbf{F}}^T \widetilde{\mathbf{F}})^-]_{ij}}{(\widetilde{\mathbf{X}}_d^T \widetilde{\mathbf{F}})_{ij}^- + [\mathbf{G}(\widetilde{\mathbf{F}}^T \widetilde{\mathbf{F}})^+]_{ij}}}, \qquad \mathbf{F}_{ij} \longleftarrow \mathbf{F}_{ij} \sqrt{\frac{(\widetilde{\mathbf{X}}_n \widetilde{\mathbf{G}})_{ij}^+ + [\mathbf{F}(\widetilde{\mathbf{G}}^T \widetilde{\mathbf{G}})^-]_{ij}}{(\widetilde{\mathbf{X}}_n \widetilde{\mathbf{G}})_{ij}^- + [\mathbf{F}(\widetilde{\mathbf{G}}^T \widetilde{\mathbf{G}})^+]_{ij}}}$$

where
$$\widetilde{\mathbf{X}}_d = \widetilde{\mathbf{R}}_d \mathbf{X}, \ \widetilde{\mathbf{X}}_n = \mathbf{X} \widetilde{\mathbf{R}}_n^T, \ \widetilde{\mathbf{F}} = \widetilde{\mathbf{R}}_d \mathbf{F}, \ \widetilde{\mathbf{G}} = \widetilde{\mathbf{R}}_n \mathbf{G}.$$

(Note that when the data are non-negative, using the square-root update slows down convergence.)

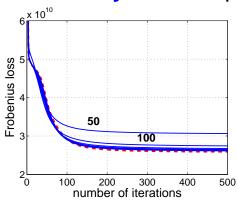
We have also implemented dual RP semi-NMF using other methods such as active set and projected gradient.

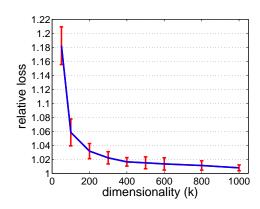
Table 1: Data set information for NMF experiments

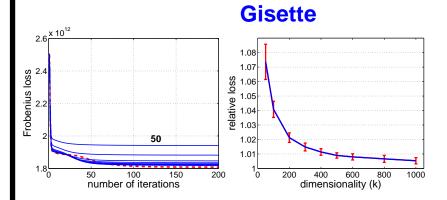
Name	Dimension (d)	Size (n)	# Class
Microarray	12600	203	5
Gisette	5000	6000	2
COIL	16384	16384 7200	

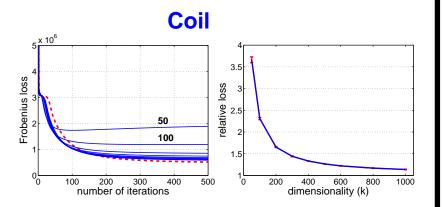
NMF with Random Projections Experiments

Microarray: Loss for projection size k = 50 to k = 1000.









Observations: with projection dimension $k \geq 500$, the accuracy is satisfactory (often within 1% errors), essentially independent of the original data matrix size.

Non-Negative Sparse Coding (NSC)

$$\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n] \in \mathbb{R}^{d imes n}$$
, Basis matrix: $\mathbf{F} = [\mathbf{f}_1, \mathbf{f}_2, \cdots, \mathbf{f}_r] \in \mathbb{R}^{d imes r}$

Combination coefficient matrix: $\mathbf{G} = [\mathbf{g}_1, \mathbf{g}_2, \cdots, \mathbf{g}_n] \in \mathbb{R}^{r \times n}$

Approximate $\mathbf{X} pprox \mathbf{FG}$ by solving an optimization problem:

$$\min_{\mathbf{F},\mathbf{G}} \sum_{i=1}^{n} \|\mathbf{x}_{i} - \mathbf{F}\mathbf{g}_{i}\|^{2} + \lambda |\mathbf{g}_{i}|_{1}, \qquad s.t. \mathbf{F} \geqslant 0, \mathbf{G} \geqslant 0$$

Alternating optimization

1. Fix ${\bf F}$. Solve n independent ℓ_1 constrained (Lasso) optimization problems:

$$\min_{\mathbf{g}_i} \|\mathbf{x}_i - \mathbf{F}\mathbf{g}_i\|^2 + \lambda |\mathbf{g}_i|_1, \quad s.t.\mathbf{g}_i \geqslant 0, \quad i = 1, 2, \dots, n$$

2. Fix G. Solve the following problem

$$\min_{\mathbf{F}} \quad \sum_{i}^{n} \|\mathbf{x}_{i} - \mathbf{F}\mathbf{g}_{i}\|^{2} = \|\mathbf{X} - \mathbf{F}\mathbf{G}\|_{F}^{2}, \quad s.t. \mathbf{F} \geqslant 0$$

Solve NSC via Random Projections (Compressed NSC)

Solving G with F Fixed

$$\min_{\mathbf{g}_i} \|\mathbf{R}_d \mathbf{x}_i - \mathbf{R}_d \mathbf{F} \mathbf{g}_i\|^2 + \lambda |\mathbf{g}_i|_1, \quad s.t. \, \mathbf{g}_i \geqslant 0$$

where $\mathbf{R}_d \in \mathbb{R}^{k_d \times d}$ is a random matrix whose entries are sampled from i.i.d. N(0.1). This is still a standard (non-negative) Lasso problem.

Solving F with G Fixed

$$\min_{\mathbf{F}} \|\mathbf{X}\mathbf{R}_n - \mathbf{F}\mathbf{G}\mathbf{R}_n\|_F^2, \quad s.t. \, \mathbf{F} \geqslant 0$$

which is solved by a semi-NMF-like updating rule:

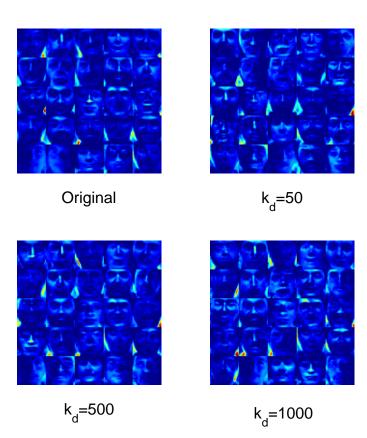
$$\mathbf{F} \longleftarrow \mathbf{F} \odot \sqrt{\frac{\mathbf{\Gamma}_{+} + \mathbf{F} \mathbf{\Theta}_{-} + \mathbf{F} \text{diag} \left[\mathbf{1}^{\text{T}} ((\mathbf{\Gamma}_{-} + \mathbf{F} \mathbf{\Theta}_{+}) \odot \mathbf{F})\right]}{\mathbf{\Gamma}_{-} + \mathbf{F} \mathbf{\Theta}_{+} + \mathbf{F} \text{diag} \left[\mathbf{1}^{\text{T}} ((\mathbf{\Gamma}_{+} + \mathbf{F} \mathbf{\Theta}_{-}) \odot \mathbf{F})\right]}}$$

where

$$oldsymbol{\Gamma} = oldsymbol{\mathbf{X}} \mathbf{R}_n \mathbf{R}_n^\intercal \mathbf{G}^\intercal, \qquad oldsymbol{\Theta} = oldsymbol{\mathbf{G}} \mathbf{R}_n \mathbf{R}_n^\intercal \mathbf{G}^\intercal$$

Experiments of Compressed NSC (CNSC)

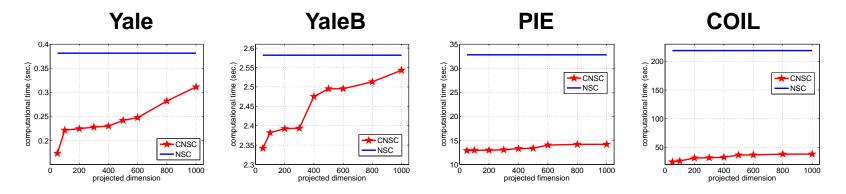
The learned dictionary (base matrix) on Yale face data.



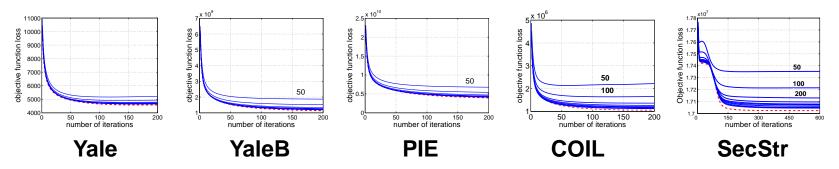
	Data sets	Dimensionality (d)	Size (n)
	Yale	1024	165
	YaleB	1024	2,124
	COIL	16384	7,200
	PIE	1024	11,554
-	SecStr	315	1,273,151

Experiments of Compressed NSC (CNSC)

Computational time comparisons: The larger the data set, the more saving.



Accuracy comparisons: Normally $k \geq 500$ can provide accurate solutions.



References for NMF and Sparse Coding

- 1. Fei Wang and Ping Li, Efficient Non-Negative Matrix Factorization with Random Projections, SDM 2010
- 2. Fei Wang and Ping Li, Compressed Non-Negative Sparse Coding, ICDM 2010