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Objective: “Shrinking” Massive Data

Data Matrix A € R™ L n rows and D columns, e.g., term-doc, image-pixel.

OO ]

Characteristics of Modern Massive Data Sets (MMDS)
e Massive, e.g., n, D ~ 100, or even 264,

e Often Dynamic, e.g., data streams, A;li:] = Ai—_1[it] + fun(is, It)

Often Sparse, e.g., text data, or some representations of image data

Many applications only need summary statistics . For example, clustering

; ; ; —1 ;
uses distances, linear regression (ATA) = ATY uses inner products.

Challenges : store and transmit data; compute & maintain summary statistics
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Computing Summary Statistics in Massive Data

Take first two rows of A: uq, uy € RP. Many applications, e.g., machine

learning and visualization, requires computing various summary statistics:

. . D
e Distances : Euclieands = > .7, |u1,i — u2,:|?;

Manhattan d1 = >0, |u1,i — uz2;|. Ly distance dp = 372 |u1,; — u2,i|P;

D .
e Inner product : a = )7, u1,;uz24; Correlation : p =

D 2
\/Zz—l ul , Zz—l u2 , T

e |2
e Chi-Square: d,2 = . uiizu2il’ . General dg =37 g(ui,i,uz).

=1 wuq ;+usg ;

. - D
e Multi-way association :» -~ ; U1 U2 ;U3 ;.

Challenges : Computationally expensive; massive storage; dynamic data.
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Data Reduction Methods (Pl has worked on)

Normal random projection  for efficiently computing the /5 distances and

inner products, applicable to dynamic data. Recently, we extend it to

computing the [, distances, for p = 4, 6, 8...

Cachy random projection  for computing the [ distances.
Stable random projection  for computing the lp distances, 0 < p < 2.

Compressed Counting , a breakthrough in data stream computations, for

computing the p-th frequency moments and Shannon entropy.

b-Bit Minwise Hashing , for improving the conventional minwise hashing
often by > 20-fold. Since minwise hashing is the standard tool in the context

of search industry, this work has attracted good attention.

Conditional Random Sampling (CRS) , a new technique for general

sampling. Not in the poster presentation.
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Conditional Random Sampling (CRS): One Sketch for All

Sparse Matrix Random Permutation on Columns Inverted Index (Nonzeros) Sketches
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Estimating procedure : Basically a trick (although finding it was a long process)

Random sample of size 10 Sketches of size 5
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Excluding 11(3) from sketches, two schemes are equivalent (for w1 and u2)
conditioning on Dy, = min(10, 11) = 10. (Rigorous theory says D5 = 10 — 1)

For another pair, e.g., w1 and us, the (retrospective) sample LD, may be different.
Also, this scheme works for more than two rows, and for dynamic streaming data.

Once there is a random sample, estimating any summary statistics is trivial,
based on the same sketches. Thus, CRS is one-sketch-for-all.
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Comparisons with Random Projections

applicable to limited summary statistics.

CRS is more efficient , since only one permutation is needed.

. Random projection is not one-sketch-for-all and only

CRS can be less accurate when the data are dense and/or heavy-tailed.

CRS is more accurate
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References for CRS

. Ping Li, Kenneth Church, and Trevor Hastie, One Sketch for All: Theory and Application of
Conditional Random Sampling, NIPS 2008

. Ping Li, Kenneth Church, and Trevor Hastie, Conditional Random Sampling: A Sketch-Based
Sampling Technique for Spare Data, NIPS 2006

. Ping Li and Kenneth Church, A Sketch Algorithm for Estimating Two-Way and Multi-Way

Associations, Computational Linguistics 2007

. Ping Li and Kenneth Church, Using Sketches to Estimate Associations, EMNLP/HLT 2005
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Efficient Matrix Factorization and Sparse Coding Using Rand om Projections '

Fei Wang, Ping Li, Cornell University

Non-Negative Matrix Factorization (NMF)  has many applications in machine

learning and data mining including Vision, information retrieval and bioinformatics.

GT

Approximate a non-negative data matrix X € R¥*™ py X ~ FGT,

F € R¥" G € R™*", by minimizing the loss in the matrix Frobenius norm:

2
J(F,G) = HX—FGTHF,

subject to the non-negativity constraint: I5; > 0, G;; > 0.
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Traditional Solutions to NMF and the Challenges

Lee and Seung’s multiplicative updating rule  : Starting with some (random)

initialization of F' and G, repeat the following steps:

(XTF)

(¥

(GFTF)ij

(XG)ij
(FGTG)@'.

Gij —— Gy

Fij e Fij

Since then, many algorithms have been developed (e.g., in H. Park’s group).
Fundamental challenges : Computationally intensive when X is too large.

Infeasible to store the data matrix X in the memory in large applications.

Will random projections (RP) work? : Replacing X by RX, where entries of R

are sampled from N (0, 1), violates the non-negativity of X. What can we do?

Dual RP via semi-NMF : Alternatingly solve two semi-NMF problems on )Aid = f{dX
and )Ain = XIN{Z Semi-NMF only imposes non-negativity on one of F' and G.
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Dual Random Projections Via Semi-NMF

Semi-NMF multiplicative update rule  : Generate two random matrices,
R, € RF1 %4 and R,, € R*2%? whose entries are i.i.d. N (0, 1). Repeat:

G G (XTF); + [G(FTF) "] o (XnG)} + [F(GTG)~ ]y
%) 1] ~ = =~ ; ij j == R
(X3F); + [GEFTF)T]y; (XnG);; + [F(GTG)T]y;

where X, = RyX, X,, = XR!, F = R,F, G = R,,G.

(Note that when the data are non-negative, using the square-root update slows down convergence.)

We have also implemented dual RP semi-NMF using other methods such as

active set and projected gradient.

Table 1: Data set information for NMF experiments

Name Dimension (d) Size (n) # Class

Microarray 12600 203

Gisette 5000 6000

COIL 16384 7200

10
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NMF with Random Projections Experiments

Microarray : Loss for projection size £ = 50 to £ = 1000.
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with projection dimension k& > 500, the accuracy is satisfactory

(often within 1% errors), essentially independent of the original data matrix size.
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Non-Negative Sparse Coding (NSC)

X = [x1,X2, -+ ,Xp] € R¥*" Basis matrix: F = [f},f5, -+, f,] € R&X"
Combination coefficient matrix: G = [g1, &2, - ,8n| € R™*"

Approximate X ~ F'G by solving an optimization problem:
mn
: 2
ming g ZHXz’_ng” + A gily st.F>0, G=>0
i

Alternating optimization

1. Fix F'. Solve n independent £ constrained (Lasso) optimization problems:

ming, Hxi—ng||2—|—)\\g7;\1, s.t.g; = 0, i=1,2,---,n

2. Fix (3. Solve the following problem

minp Y |x; — Fgi|* = X -FG[z, st.F>0



Ping Li

Efficient Data Reduction and Summarization NSF-FODA VA December, 2010

Solve NSC via Random Projections (Compressed NSC)

Solving ( with F' Fixed
ming, ||[Rgx; — R.Fg.|”° + \ gil,, st.g =0

where R € R¥4*4 js a random matrix whose entries are sampled from i.i.d.

N(O.l). This is still a standard (non-negative) Lasso problem.

Solving F with (& Fixed

ming  |XR, — FGR,||7, stF>0

which is solved by a semi-NMF-like updating rule:

I'i+FO_+ Fdiag[1((T-+ FO.4) © F)]
F—FO© ,
I'_ +FO,+ Fdiag[1((T++ FO_) © F)]

= XR,R'G", ©= GR,R'G’

13
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Experiments of Compressed NSC (CNSC)

The learned dictionary (base matrix) on Yale face data.

Data sets Dimensionality (d) Size (n)

Yale 1024 165

YaleB 1024 2,124

COIL 16384 7,200

PIE 1024 11,554

SecStr 315 1,273,151
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Experiments of Compressed NSC (CNSC)

Computational time comparisons : The larger the data set, the more saving.
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w
o

n
o
=]

N
ul
o

w

=]

N

o
N
a

n

o
=
o
=]

computational time (sec.)
INg !
N » " r
S o
computational time (sec.)

computational time (sec.)

=
3

computational time (sec.)

N
w
o

o

=]

—k-CNSC . ~H-CNSC ek ——H——k ,
i — | gt A —————
200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000
projected dimension projected dimension projected fimension projected dimension

N
o®
N
o

o
o

Accuracy comparisons : Normally £ > 500 can provide accurate solutions.
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References for NMF and Sparse Coding
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1. Fei Wang and Ping Li, Efficient Non-Negative Matrix Factorization with Random Projections, SDM 2010

2. Fei Wang and Ping Li, Compressed Non-Negative Sparse Coding, ICDM 2010



