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Dimensionality Reduction for Data
Visualization

Left: Visualizing data points as rectangles. Right: A magnifying lens
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Dimensionality Reduction Algorithms

e Supervised:
— Linear discriminant analysis (LDA)
— Canonical correlation analysis (CCA)
— Partial least squares (PLS)
« Unsupervised:
— Principal component analysis (PCA)
— Manifold learning (Isomap, LLE, Laplacian Eigenmap)
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Clustering and Dimensionality Reduction (1)

* Finding groups of objects such that the objects in a group
will be similar (or related) to one another and different
from (or unrelated to) the objects in other groups

Inter-cluster

Intra-cluster distances are

distances are maximized
minimized
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Clustering and Dimensionality Reduction (2)

Standard PCA fails to detect these two natural clusters, whereas the proposed
cluster sensitive dimensionality reduction (CSDR) does a much better job of
separating the data.

How can we combine clustering and dimensionality
reduction to improve visual analytics tasks?




Multi-source Data Transformations

* Processing heterogenous data is a significant
challenge in visual analytics.

— For example, an analyst may want to analyze data
from multiple sources like images, text (emails), and
telephone conversations.

* We propose to investigate technigques to
transform entities that come from different

Sources.




Multiple Kernel Learning for Data Fusion

Image Text Conversation
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Research Aims

* Clustering and dimensionality reduction
— Single source data transformation

* Clustering and dimensionality reduction
— Multi-source data transformation

« MSVA a novel Visual Analytics Framework
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The Proposed MSVA framework

Single-Source Data Transformation
Multi-Source Data Transformation

Input
Data

Preprocess

Other Transformation Tools

p

User Guided Data Manipulation Tools

User Interaction
Select Tool
Control Parameters

Navigate

Visualization, Exploration, and Analysis Tools

A user can draw from a number of data transformation and visual analysis tools.
A typical sequence of data processing is shown by the arrows.
The user can interactively provide feedback and update the transformation.
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Preliminary Work: Problem Setup

Given {x,,X,,+, X, j€ R”

Let X = [xl, Xoyttt, xn] be the data matrix

: : : x1 ~ /
Linear projection W eR™ :x. e R" = x. =W'x. eR
Clustering Cl,Cz,-- -,Ck

* It has been shown that for most high-dimensional
data sets, almost all low dimensional projections
are nearly normal.

— Diaconis and Freedman. Annals of Statistics, 1984.
— Hall and Li. Annals of Statistics, 1993.




Mahalanobis Distance
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Sum of Squared Error

Under this new distance measure, K-means clustering
assigns the data into k disjoint clusters, which minimizes
the Sum of Squared Error (SSE):

st (C,}.)= 3 X dy ()

Jj=1 x,eC,
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Sum of Squared Inter-Cluster Error

As the summation of all pair-wise distances is a constant
for a fixed W, the minimization of SSE is equivalent to the
maximization of Sum of Squared Inter-Cluster Error (SSIE):

k
ssiE(c. }’;1)= Z;n dy i1, 2f.
=
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Compact Matrix Formulation

Sum of Squared Intra-Cluster Error (SSIE) can be expressed
In a compact matrix form as follows:

SSIE ({CJ }:1 ) = trace(LTXTWT (Wrsw)' WXL)

L is the weighted cluster indicator matrix, whose i-th row is

Joint dimensionality reduction and clustering formulation:

max trace(LTXTWT (WTSW)'1WXL)
W.L
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Preliminary Study

Proposed PCA LLE
GCM 0.583 0.568 0.569 0.571
- 0 0 0
Soybean 0.725 0.671 0.668 0.705
- 0 0 0.002
Segment 0.644 0.552 0.551 0.533
- 0 0 0
Letter (a-d) |0.662 0.606 0.606 0.647
- 0 0 0.003
USPS 0.726 0.708 0.709 0.655
- 0 0.001 0
YaleFaceB |0.771 0.733 0.733 0.746
- 0 0 0.002
Average 0.685 0.64 0.639 0.643
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Semi-supervised Setting

USPS data
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Proposed research

Single source data transformation

Multi-source data transformation

Sparse data transformation

Applications
— Visual document analysis
— Geo-spatial analysis
— Health information analysis
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Application I: Visual Document Analysis

« The capabillity to quickly process, tag/annotate,
triage and classify volumes of information is key to
enabling effective and useful information analysis.

Handwritten
Text

Border

Signature

—

_.v,v
%
ran

Caa—— e N
L /

e P

L3l S |
Hl < >
Eenllils N

4

-v«
e

v'-
SN
—a

OE

o

20E

o

Hz. Lines

Printed Text

Background




BIODESIGN
INSTITUTE

Application I1: Geo-spatial Analysis

The hyperspectral image is shown on the left, and a
thematic map of land cover classes is on the right.
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Application I11: Health Information Analysis
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Questions!




