Novel Multiscale Representations of
Data Sets for Interactive Learning

Mauro Maggioni, Eric Monson, R. Brady
Dept. of Mathematics and Computer Science
Duke University

FODAVA Annual Review 2010, Georgia Tech
12/9/2010

Joint work with: G. Chen.
Partial support: NSF/DHS, ONR

Friday, December 10, 2010



Ongoing efforts in several directions

e Using diffusion processes on graphs for (inter)active learning.

e Perform multiscale analysis on graphs: construction of graph-adaptive
multiscale analysis, for graph visualization and exploration, and (inter)active
learning.

e Sparse learning w.r.t. multiscale dictionaries on graphs.

e Construct data-adaptive dictionaries for data-modeling and exploration.
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Random walks on data & graphs

e One may connect data points to form a graph, with edges weighted
by the similarity of data points.

e One can then construct a random on the data points, which may be
used for a variety of tasks:

— construct local and global embeddings of the data in low dimen-
slons,

— perform learning tasks such as clustering, classification, regres-
sion, etc..

— diffuse information (e.g. labels) on data

— study geometric properties of data
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Active Learning

With E. Monson and R.
Brady [C.S.]

Given: full data set (e.g. a body of text documents).

Goal: learn a categorization of the data (e.g. topics of the text documents).
Cost for every label we obtain from an expert. Large scale here means: “labels
are very expensive compared to very large amount of data available”.

Find points whose labels maximize the gain in prediction accuracy. Natural
candidates: points with highly uncertain predictions + well-distributed on the
data (standard idea) (our contribution) Points actually proceed in a multiscale
fashion.
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Active Learning et
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Example: text documents

With S. Mukherjee
and J. Guinney

X is N x D, N documents in R?, compute multiscale dictionary ® (D x M)
on the D words. If f maps documents to their topic, write f = X®G + n and

find B by
argming||f — X@B||5 + A|[{27778;,x 1 ,

which is a form of sparse regression. (A,~) are determined by cross-validation.
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Example: gene microarray data

With S. Mukherjee
and J. Guinney

X is N x D, N patients with D genes (here N ~ 400 and D ~ 1000).

Source of data: Nakagawa T, Kollmeyer T, Morlan B, Anderson, S, Bergstralh E, et al, (2008)
A tissue biomarker panel predicting systemic progression after PSA recurrence post-definitive prostate cancer therapy, Plos One 3:e2318.
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Example: gene microarray data

With S. Mukherjee
and J. Guinney

X is N x D, N patients with D genes (here N ~ 400 and D ~ 1000).
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Source of data: Nakagawa T, Kollmeyer T, Morlan B, Anderson, S, Bergstralh E, et al, (2008)
A tissue biomarker panel predicting systemic progression after PSA recurrence post-definitive prostate cancer therapy, Plos One 3:e2318.
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Added advantage: the multiscale genes we construct are much interpretable than
eigengenes, several of them match important pathways, and moreover both small
scale and large scale genelets seem relevant.

Source of data: Nakagawa T, Kollmeyer T, Morlan B, Anderson, S, Bergstralh E, et al, (2008)
A tissue biomarker panel predicting systemic progression after PSA recurrence post-definitive prostate cancer therapy, Plos One 3:e2318.
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- Geometric Wavelets: .
Multiscale Data-Adaptive Dictionaries

e Many constructions of “general-purpose” dictionaries [Fourier, wavelets,
curvelets, ...|, especially for low-dimensional signals (sounds, images,...).

Motivation: pretend we have rather good tractable models (e.g. function
spaces), construct good dictionaries by hand.

Goals: compression, signal processing tasks (e.g. denoising), etc...

e Recently, many constructions of data-adaptive dictionaries |[K-SVD, K-
planes, ...|.
Motivation: we do not have tractable good models, need to adapt to data.
Goals: as before, albeit hopes for more general types of high-dimensional

data.

e Important role of sparsity in statistics, learning, design of measurements,
. seek dictionaries that yield sparse representations of the data.
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Dictionary Learning
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Ul for Geometric Wavelets

With E. Monson and R.
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Open problems & future dir.’s

* Geometric wavelets meet interactive learning.
« Multiscale analysis on graphs meets interactive learning.
* Better visualization of multiscale analysis of graphs [E. Monson, R. Brady]

» Towards a toolbox of highly robust geometric analysis tools for data sets [A.
Little, G. Chen].

* Dynamic graphs [J. Lee].
$ Wrap up toolboxes; scale part of the code.

Collaborators: E. Monson, R. Brady (Duke C.S.); A. V. Little, K. Balachandrian (Math
grad, Duke), J. Lee (Math undergrad, Duke); L. Rosasco (CS, MIT and Universita’ di

Genova).
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