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Ongoing efforts in several directions

• Using diffusion processes on graphs for (inter)active learning.

• Perform multiscale analysis on graphs: construction of graph-adaptive
multiscale analysis, for graph visualization and exploration, and (inter)active
learning.

• Sparse learning w.r.t. multiscale dictionaries on graphs.

• Construct data-adaptive dictionaries for data-modeling and exploration.
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Random walks on data & graphs

• One may connect data points to form a graph, with edges weighted

by the similarity of data points.

• One can then construct a random on the data points, which may be

used for a variety of tasks:

– construct local and global embeddings of the data in low dimen-

sions,

– perform learning tasks such as clustering, classification, regres-

sion, etc..

– diffuse information (e.g. labels) on data

– study geometric properties of data
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Active Learning
With E. Monson and R. 

Brady [C.S.]

Given: full data set (e.g. a body of text documents).

Goal: learn a categorization of the data (e.g. topics of the text documents).
Cost for every label we obtain from an expert. Large scale here means: “labels
are very expensive compared to very large amount of data available”.

Find points whose labels maximize the gain in prediction accuracy. Natural
candidates: points with highly uncertain predictions + well-distributed on the
data (standard idea) (our contribution) Points actually proceed in a multiscale
fashion.
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X is N × D, N documents in RD, compute multiscale dictionary Φ (D ×M)
on the D words. If f maps documents to their topic, write f = XΦβ + η and
find β by

argminβ ||f −XΦβ||22 + λ||{2−jγβj,k}||1 ,

which is a form of sparse regression. (λ, γ) are determined by cross-validation.

Example: text documents
With S. Mukherjee 

and J. Guinney
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Source of data: Nakagawa T, Kollmeyer T, Morlan B, Anderson, S, Bergstralh E, et al, (2008) 
A tissue biomarker panel predicting systemic progression after PSA recurrence post-definitive prostate cancer therapy, Plos One 3:e2318.

X is N ×D, N patients with D genes (here N ∼ 400 and D ∼ 1000).

With S. Mukherjee 
and J. Guinney

Example: gene microarray data
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Source of data: Nakagawa T, Kollmeyer T, Morlan B, Anderson, S, Bergstralh E, et al, (2008) 
A tissue biomarker panel predicting systemic progression after PSA recurrence post-definitive prostate cancer therapy, Plos One 3:e2318.

Added advantage: the multiscale genes we construct are much interpretable than 
eigengenes, several of them match important pathways, and moreover both small 
scale and large scale genelets seem relevant.

X is N ×D, N patients with D genes (here N ∼ 400 and D ∼ 1000).
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Geometric Wavelets: 
Multiscale Data-Adaptive Dictionaries
• Many constructions of “general-purpose” dictionaries [Fourier, wavelets,

curvelets, ...], especially for low-dimensional signals (sounds, images,...).

Motivation: pretend we have rather good tractable models (e.g. function
spaces), construct good dictionaries by hand.

Goals: compression, signal processing tasks (e.g. denoising), etc...

• Recently, many constructions of data-adaptive dictionaries [K-SVD, K-
planes, ...].

Motivation: we do not have tractable good models, need to adapt to data.

Goals: as before, albeit hopes for more general types of high-dimensional
data.

• Important role of sparsity in statistics, learning, design of measurements,
...: seek dictionaries that yield sparse representations of the data.
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UI for Geometric Wavelets
With E. Monson and R. 

Brady [C.S.]
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Open problems & future dir.’s

• Geometric wavelets meet interactive learning.
• Multiscale analysis on graphs meets interactive learning.
• Better visualization of multiscale analysis of graphs [E. Monson, R. Brady]

• Towards a toolbox of highly robust geometric analysis tools for data sets [A. 
Little, G. Chen].

• Dynamic graphs [J. Lee].
• Wrap up toolboxes; scale part of the code.

Collaborators: E. Monson, R. Brady (Duke C.S.); A. V. Little, K. Balachandrian (Math 
grad, Duke), J. Lee (Math undergrad, Duke); L. Rosasco (CS, MIT and Universita’ di 
Genova).
Funding: NSF, ONR, Sloan Foundation, Duke.
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