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ChallengesChallenges
High dimension: ~ 10 million dimensions High dimension: ~ 10 million dimensions 
Massive data sets: ~ 10Massive data sets: ~ 101818 data pointsdata points
No viable physical/Mathematical modelsNo viable physical/Mathematical models

•Understand molecular mechanism of virus life circles 
•Develop visual-analytic methods for virus infection prevention
•Extract biological functions and properties from dynamic data  

Differential geometry, topological  invariant Differential geometry, topological  invariant 
and machine learning approaches toand machine learning approaches to



Dimension reduction by Dimension reduction by multiscalemultiscale analysisanalysis


 
Solvent is described by continuum modelsSolvent is described by continuum models



 
Viruses are described by discrete modelsViruses are described by discrete models

The interface between the discrete and the continuum The interface between the discrete and the continuum 
is described  by differential geometry theory of surfacesis described  by differential geometry theory of surfaces

(Reduce the dimension by about one order)(Reduce the dimension by about one order)



CoarseCoarse--grained dynamic modelgrained dynamic model based on based on persistently persistently 
stable manifoldsstable manifolds characterized by the time series of characterized by the time series of 
FrenetFrenet –– SerretSerret frames, torsion angles  and curvaturesframes, torsion angles  and curvatures

Machine learning approach to further reduce the dimension Machine learning approach to further reduce the dimension 
by 1 to 3 orders  by 1 to 3 orders  (Tong, Wang, Wei, Zhou, 2010)(Tong, Wang, Wei, Zhou, 2010)
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Differential geometry based Differential geometry based multiscalemultiscale free energy functionalfree energy functional
for excessively large data size reduction of virus systemsfor excessively large data size reduction of virus systems

(Wei, J Math (Wei, J Math BiolBiol 2010)2010)
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Generalized Newton equation for molecular dynamics

Generalized Navier-Stokes Equation for fluid flow
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Generalized Poisson-Boltzmann Equation for electrostatics

Generalized Laplace-Beltrami Equation for  surface dynamics





Virus morphology and virus ion channelVirus morphology and virus ion channel

1CGM1CGM 1NOV1NOV 1EI71EI72BK12BK1



Proton transport of Gramicidin AProton transport of Gramicidin A (Expl: Eisenman et al., 1980)

(Chen & Wei, 2010)(Chen & Wei, 2010)



Time evolution of Time evolution of genus numbergenus number 
(Euler characteristic) indicates (Euler characteristic) indicates 
biological function (biological function (e.g.,e.g., virus virus 

infectivityinfectivity))

Dynamic data         virus functionDynamic data         virus function

((FengFeng, , ZhengZheng, Tong , Tong 
Wang, & Wei, 2010)Wang, & Wei, 2010)
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

 
Differential geometry based Differential geometry based multiscalemultiscale

 
models models for viruses for viruses 



 
Topological invariants Topological invariants for virus function characterization for virus function characterization 



 
Stable manifoldsStable manifolds

 
for identifying coarsefor identifying coarse--grain clustersgrain clusters



 
Machine learning methods Machine learning methods for dimension reductionfor dimension reduction



 
Theoretical  prediction agrees Theoretical  prediction agrees with experimental datawith experimental data

Summary
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