
Fast Display of Massive, High-Dimensional Data

Alexander Gray

Georgia Institute of Technology

www.fast-lab.org



The FASTlab

2 / 33



Goal: Seeing the Unseeable

Given a collection of data objects, can we show their relationships
in a 2-d plot?

Figure: Recovered locations of USPS handwritten digits “3” and “5” given by

RankMap. The original data are in 16 × 16 = 256 dimensions.

3 / 33



Basic Approach

1 Choose a notion of distance that defines the relationships
between the objects (defines a graph or kernel matrix, and
choose something you want to preserve about those
relationships

2 Perform a computation (graph construction + convex

optimization) that defines the relationship-preserving mapping
to 2-d points

4 / 33



Nonlinear Dimension Reduction: Key Bottlenecks

• Isomap: all-pairs shortest paths, all-nearest-neighbors, SVD

• Locally linear embedding: all-nearest-neighbors, SVD

• Maximum variance unfolding: all-nearest-neighbors, SDP

• Rankmap (Ouyang and Gray 2008, ICML):
(all-nearest-neighbors), SDP/QP

• Isometric non-neg matrix fac (Vasiloglou, Gray, and
Anderson 2009, SDM): all-nearest-neighbors, SDP

• Isometric separation maps (Vasiloglou, Gray, and
Anderson 2009, MLSP): all-nearest-neighbors, SDP

• Density-preserving maps (Ozakin and Gray, in prep):
kernel summation, SDP

What about “supervised dimension reduction”?

• Sparse support vector machines: LP/QP/DC/MINLP,
kernel summation

5 / 33



Sidebar: Forget about Preserving Distances?

A theorem that goes back to Gauss and Riemann implies that it is
impossible to preserve the intrinsic distances between points in an
intrinsically curved d-dimensional space by representing the points
in d-dimensional Euclidean space. A familiar instance of this
theorem is the fact that it is impossible to preserve all the distances
between the points on the surface of the Earth by representing
them on a flat map. Although seemingly (or “extrinsically”)
curved, surfaces such as the Swiss roll are intrinsically flat;
however, a sphere is intrinsically curved. Various manifold learning
methods, when faced with data on such a curved space, distort the
data upon performing the dimensional reduction in various ways. In
other words: Are distances the right things to preserve at all?

6 / 33



How About Preserving Densities?

Ozakin, Vasiloglou and Gray, in prep: You can’t always preserve
distances, but you can always preserve densities:

Theorem
Let (M, gM) and (N, gN) be two closed, connected, d-dimensional Riemannian
manifolds, diffeomorphic to each other, with the same total Riemannian
volume. Let X be a random variable on M, i.e., a measurable map X : Ω → M
from a probability space (Ω,F , P) to M. Assume that X∗(P), the pushforward
measure of P by X, is absolutely continuous with respect to the Riemannian
volume measure µM on M, with a continuous density f on M. Then there
exists a diffeomorphism φ : M → N such that the pushforward measure
PN := φ∗(X∗(P)) is absolutely continuous with respect to the Riemannian
volume measure µN on N, and the density of PN is given by f ◦ φ−1.

7 / 33



Density-Preserving Maps: SDP

Density-Preserving Maps (Ozakin, Vasiloglou, and Gray, in
prep):

max
K

trace(K )

such that:

f̂i =
Ne

hd
i

∑

j∈Ii

ǫij

ǫij = (1 − d
2
ij/h

2
i )

d
2
ij = Kii + Kjj − Kij − Kji

K � 0

ǫij ≥ 0
n∑

i , j=1

Kij = 0

8 / 33



Estimating High-Dimensional Densities

Submanifold Kernel Density Estimation (Ozakin and Gray
2009, NIPS) can perform high-dimensional nonparametric density
estimation, if the data are on a manifold M.

Theorem
Let f : M → [0,∞) be a probability density function defined on M (so that the
related probability measure is fV ), and K : [0,∞) → [0,∞) be a continous
function that satisfies vanishes outside [0, 1), is differentiable with a bounded
derivative in [0, 1), and satisfies,

R

‖z‖≤1
K(‖z‖)dnz = 1. Assume f is

differentiable to second order in a neighborhood of p ∈ M, and for a sample
q1, . . . , qm of size m drawn from the density f , define an estimator f̂m(p) of

f (p) as, f̂m(p) = 1
m

Pm

j=1
1

hn
m
K

“

up (qj )

hm

”

where hm > 0. If hm satisfies

limm→∞ hm = 0 and limm→∞ mhn
m = ∞, then, there exists non-negative

numbers m∗, Cb, and CV such that for all m > m∗ we have,

MSE
h

f̂m(p)
i

= E

»

“

f̂m(p) − f (p)
”2

–

< Cbh
4
m +

CV

mhn
m

. (1)

If hm is chosen to be proportional to m−1/(n+4), this gives,

E
ˆ

(fm(p) − f (p))2
˜

= O
“

1

m4/(n+4)

”

as m → ∞.

9 / 33



Density-Preserving Maps: Example

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

0.5

1

1.5

2

DPM for punctured sphere

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure: a) A punctured sphere data set. b) The data reduced by density

preserving maps. c) The eigenvalue spectra of the inner product matrices

learned by PCA (green, ’+’), Isomap (red, ’.’), MVU (blue, ’*’), and DPM

(blue, ’o’).

10 / 33



kD-trees

11 / 33



kD-trees

12 / 33



kD-trees

13 / 33



kD-trees

14 / 33



kD-trees

15 / 33



kD-trees

16 / 33



kD-trees

17 / 33



Cover trees

18 / 33



Cover trees

19 / 33



Cover trees

20 / 33



Cover trees

21 / 33



Cover trees

22 / 33



Fast All-Nearest-Neighbors

Common graph: Use k-nearest-neighbors. Problem: This is O(N2)
naively. Often graph construction is the most expensive step of
manifold learning.

Fast solution: 1) Use space-partitioning trees, such as kd-trees or
cover-trees. This is the fastest approach for exact single-query
searches. 2) Traverse two simultaneously for the greatest speed in
all-nearest-neighbor searches via dual-tree algorithms (Gray and
Moore 2000, NIPS).

Analysis: Shown to be O(N), or linear-time, in general
bichromatic case, on cover-trees (Ram, Lee, March, and Gray
2009, NIPS).

23 / 33



Fast Nearest-Neighbor in High Dimensions

In general the original data are high-dimensional. Problem: A
curse of dimensionality (Hammersley 1950) says that distances
approach the same numerical value as dimension goes up. This
makes tree algorithms ineffective in very high dimensions.

A recent trend has been to approximate nearest-neighbor by
returning a point within (1 + ǫ) of the true nearest-neighbor
distance with high probability, e.g. LSH (Andoni and Indyk, 2006).
Problem: In high dimensions, all points could satisfy this criterion,
making the results junk.

More accurate solution: rank-approximate nearest-neighbor
(Ram, Lee, Ouyang, and Gray 2009, NIPS), which is in general
faster and more accurate than LSH.

24 / 33



Fast Nearest-Neighbor in High Dimensions

Figure: The traversal paths of the exact and the rank-approximate algorithm

in a kd-tree.

25 / 33



Fast Nearest-Neighbor in High Dimensions

bio corel covtype images mnist phy urand

10
0

10
1

10
2

10
3

10
4

sp
ee

du
p 

ov
er

 li
ne

ar
 s

ea
rc

h

ε=0%(exact),0.001%,0.01%,0.1%,1%,10%
α=0.95

Figure: Speedups (logscale on the Y-axis) over the linear search algorithm

while finding the NN in the exact case or (1 + εN)-RANN in the approximate

case with ε = 0.001%, 0.01%, 0.1%, 1.0%, 10.0% and a fixed success probability

α = 0.95 for every point in the dataset. The first(white) bar in each dataset in

the X-axis is the speedup of exact dual tree NN algorithm, and the

subsequent(dark) bars are the speedups of the approximate algorithm with

increasing approximation. 26 / 33



Fast Nearest-Neighbor in High Dimensions

Generally more accurate than LSH, automatically.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

2

2.5

3

3.5

4

Maximum Rank Error

T
im

e 
(in

 s
ec

.)

Random Sample of size 10000

RANN
LSH

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

5

6

7

8

9

10

Maximum Rank Error

T
im

e 
(in

 s
ec

.)

Random Sample of size 10000

RANN
LSH

Figure: Query times on the X-axis and the Maximum Rank Error on the

Y-axis. Left: Layout histogram data. Right: MNIST data.

27 / 33



Fast Kernel Summation

For DPM, kernel density estimation (KDE) is needed as the first
step: ∀x , f̂ (x) = 1

N

∑N
i Kh(‖x − xi‖). Problem: This is O(N2)

naively.

The fastest recent methods for this problem are physics-inspired
fast multipole-like methods Lee and Gray 2006, UAI). Problem:
These approaches require computing a number of coefficients that
explodes as dimension goes up, and thus are good only in low
dimensions.

Better solution for high dimensions: Monte Carlo multipole
methods (Lee and Gray 2008, NIPS), which has been shown to
be effective in up to 800 dimensions, at the cost of its accuracy
guarantee only holding with high probability.

28 / 33



Fast KDE Learning

To learn the optimal bandwidth for KDE, it must effectively be run
many times, one for each bandwidth in cross-validation. Problem:
This multiplies the cost significantly.

Faster solution: multi-tree Monte Carlo methods (Holmes,
Gray and Isbell 2008, UAI) make this scalar sum fast, with
accuracy holding with high probability.

29 / 33



Fast Approximate Singular Value Decomposition

For most manifold learning methods, the final computation is a
singular value decomposition (SVD). Problem: This is O(N3) for
an N × N matrix.

Recent approaches have applied Monte Carlo ideas to linear
algebra (cf. NIPS 2009 tutorial). Problem: These methods are
driven by theoretical sample complexity bounds, which are not
data-dependent, and assume the rank is known.

Faster solution: A Monte Carlo approach based on cosine trees
(Holmes, Gray and Isbell 2008, NIPS) samples more efficiently,
and stops as soon as the original matrix is well-approximated,
making it faster as well as automatic.

30 / 33



Fast Semidefinite Programming for Manifold Learning

The most recent manifold learning methods result in semidefinite
programs (SDPs). Problem: These can be O(N3) or worse.

In (Vasiloglou, Gray, and Anderson 2008, MLSP) it shown how
the Burer-Monteiro method, a relaxation to a non-convex problem
which preserves the same optimum, in conjunction with L-BFGS,
can make MVU-like methods scalable to nearly a million points.

31 / 33



Fast Support Vector Machines

Various SVM formulations lead to quite different optimization, and
hard, problems. Fastest methods to date include:

• For L2 SVMs with squared hinge loss: our stochastic
Frank-Wolfe method for this QP (online nonlinear SVM
training) (Ouyang and Gray 2010, SDM; ASA
Computational Statistics Student Paper Prize)

• For L0<q<1 SVMs: our DC programming method (Guan
and Gray 2010, under review)

• For L0 SVMs: our perspective cuts method for this MINLP
(Guan and Gray 2010, under review)

32 / 33



Software

33 / 33


