Modeling Uncertainty due to Data/Visual Transformations using Sensitivity Analysis

Kwan-Liu Ma University of California, Davis

Uncertainty Aware Visual Analysis

Let know confidence level of reasoning, and Input sensitivity of data & visual transformations

- 1. Uncertainty Analysis
 - Determining the uncertainty on estimates of the output given the input data
 - Adapting data transformations to account for uncertainty
 - Process view of visual analysis
 - The focus of our first FODAVA project
- 2. Sensitivity Analysis
 - Determining the relationship between the uncertainty of the output and the uncertainty of the input for a number of transformations
 - Estimates of the transformation sensitivity to input data
 - Variational view of visual analysis
 - The focus of our second FODAVA project

Objectives

- Study sensitivity analysis to guide the evaluation of uncertainty of data and insights in the visual analysis process
- Create variational views of the visual analytics process
- Discover the factors that mostly contribute to output variability
- Find stable/unstable regions of the different transformations within the data space
- Understand interaction between variables, transformations, and output
- Focus on network data

Proposed Research Tasks

- 1. Semi-automatic extraction of sensitivity information
 - Develop sampling based methods for the types of data that differentiation cannot be used
 - Estimate importance of region in the parameter space
 - Benchmark the accuracy of the results produced by common transformations
- 2. Differential and sampling-based sensitivities of graph-based metrics and transformations
- 3. Sensitivity-guided visual representations and interaction

Centrality-based Network Analysis

- Centralities (degree, between-ness, closeness, eigenvector, Markov, ...) indicate how important a node is in a network.
- We can understand implicit relationships in a network by studying its sensitivity and stability in terms of different metrics for centrality
- The study allows us to determine competitiveness & collaborativeness between nodes or clusters, the robustness of a metric, ...

A protein interaction network with lighter color nodes more central

Centrality Sensitivity

- Compute sensitivity as the derivative of the centrality function
- Approximate derivatives of centrality using finite difference (before and after small changes are made stochastically)
- Validate by computing the mean square error of the linear fit between the approximated and analytical values (for the Eigenvector and Markov centralities)

Sensitivity Guided Visualization of Multidimensional Data

- Multi-dimensional sensitivity visualization
- Encoding sensitivity in summary visual representations
- Sensitivity-guided navigation of complex multidimensional data

Flow-Based Scatterplots

- Augment scatterplots for visualizing multidimensional data by using sensitivity coefficients to highlight local variation of one variable with respective to another.
- The resulting visualization resembles a flow field when treating sensitivity as velocity.

Other Considerations

- Scalability
 - Scalable sensitivity analysis of large graphs
- Discontinuities
 - We have assumed that variables have an underlying continuous distribution, but some data not.
- Generalization
 - We want to generalize our process towards a more theoretical view of visual analytics
- NetZen