Multiple Kernel Learning, Sparsity and Heterogeneous Data Fusion

Vladimir Koltchinskii
vlad@math.gatech.edu
Collaborators:
Ming Yuan, Pedro Rangel
Georgia Institute of Technology
School of Mathematics

Fodava Lead:
Dimension Reduction and Data Reduction
December 2009

A framework for heterogeneous data fusion

- Lanckriet et al (2004), Bousquet and Herrmann (2003).
- Crammer et al (2003).
- Micchelli and Pontil (2005).
- Srebro and Ben-David (2006).
-
- Koltchinskii and Yuan $(2008,2009)$ of Technology

Applications of MKL

- Heterogeneous data fusion in bioinformatics: protein function prediction Lanckriet et al (2004), ...
- Text classification: classification of Reuter newswire stories Lanckriet et al (2004), ...
- Image annotation: Harchaoui and Bach (2007), Siddiquie et al (2008), ...
- Classification of activation patterns in fMRI: Koltchinskii, Martinez-Ramon et al $(2006,2008)$

Combining multiple-source data using MKL

Multi-source Data

Kernel Machines Aggregation

- Final hypothesis is given by $f(\cdot)=\sum_{j=1}^{n} \sum_{k=1}^{N} \alpha_{j}^{(k)} K_{k}\left(x_{j}, \cdot\right)$.

Prediction Problem

- (X, Y) a random couple.
- $X \in S$ a high dimensional "instance".
- $Y \in \mathbb{R}$ a "label" (to be predicted based on X).
- $f: S \mapsto \mathbb{R}$ a prediction rule.
- The risk of f :

$$
L(f):=\mathbb{E} \ell(Y ; f(X))
$$

where ℓ is a loss function. of Tech ologyy

Target Function: Optimal Prediction Rule

Georgialnstifute of Technology

Target Function: Optimal Prediction Rule

$f_{*}:=\operatorname{argmin}_{f: S \mapsto \mathbb{R}} L(f)$

- Regression.
- Large margin classification: boosting, kernel machines

Georgialnstiture of Tech ology

Kernel Trick

- S input data space.
- H feature space (a Hilbert space);
- $\phi: S \mapsto H$ a (nonlinear) embedding of S into H.
- $K(x, y):=\langle\phi(x), \phi(y)\rangle$ kernel;

Target Function: Optimal Prediction Rule

- Nonlinear separation in classification problem.

Classification Problem

Georgialnstiture of Tech ologyy

Target Function: Optimal Prediction Rule

- Nonlinear separation in classification problem.
- In an adequate feature space will become a linearly separable classification problem

Learning in Feature Space

Georgialnstitute of Technologyy

Kernel Machines: A Single Kernel

- $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ training data.
- $\varepsilon>0$ a regularization parameter.
- ℓ a convex loss function.
- $L_{n}(f):=\frac{1}{n} \sum_{j=1}^{n} \ell\left(Y_{j}, f\left(X_{j}\right)\right)$ empirical risk.
- K a symmetric nonnegatively definite function on $S \times S$ (a kernel).
- \mathcal{H}_{K} the reproducing kernel Hilbert space (RKHS) generated by K.

Penalized Empirical Risk Minimization (ERM)

- Let us define

$$
\hat{f}:=\operatorname{argmin}_{f \in \mathcal{H}_{K}}\left[L_{n}(f)+\varepsilon\|f\|_{\mathcal{H}_{K}}^{\alpha}\right]
$$

- Usually, $\alpha=2$ or $\alpha=1$.
- $\varepsilon>0$ is a regularization parameter. of Tech

Multiple Kernel Learning (MKL): Aggregation of Kernel Machines

- K_{1}, \ldots, K_{N} kernels (for instance, representing different data sources).
- $\mathcal{H}_{1}, \ldots, \mathcal{H}_{N}$ the corresponding RKHS.
- Boosting.
- penalized ERM with special penalties (often, based on convex optimization, in particular, semidefinite programming)
- Sparse Problems: the number of kernels N is very large, but only a small number of them is needed to represent the target function.

Two Approaches for sparse recovery in MKL: Infinite Dimensional LASSO

- Koltchinskii and Yuan (2008)

$$
\begin{gathered}
\left(\hat{f}_{1}, \ldots, \hat{f}_{N}\right):= \\
\operatorname{argmin}_{f_{j} \in \mathcal{H}_{j}, j=1, \ldots, N}\left[L_{n}\left(f_{1}+\cdots+f_{N}\right)+\varepsilon \sum_{j=1}^{N}\left\|f_{j}\right\|_{\mathcal{H}_{j}}\right]
\end{gathered}
$$

- Equivalent to (see, e.g., Micchelli and Pontil (2005))

$$
(\hat{f}, \hat{K}):=\arg \min _{f \in \mathcal{H}_{K}, K \in \mathcal{K}}\left[L_{n}(f)+\varepsilon\|f\|_{\mathcal{H}_{K}}\right]
$$

- where

$$
\mathcal{K}:=\left\{\sum_{j=1}^{N} w_{j} K_{j}: w_{j} \geq 0, \sum_{j=1}^{N} w_{j}=1\right\}
$$

- The optimal kernel: $\hat{K}:=\sum_{j=1}^{N} \hat{w}_{j} K_{j}$
- where the vector $\hat{w}_{j} \quad(j=1, \ldots, N)$ represents "relative significance" of kernels (data sources).

Double Penalization

- Koltchinskii and Yuan (2009). Related to Sparse Additive Models: Ravikumar et al (2007), Meier et al (2008).

$$
\begin{gathered}
\left(\hat{f}_{1}, \ldots, \hat{f}_{N}\right):=\arg \min _{f_{j} \in \mathcal{H}_{j}, j=1, \ldots, N}\left[L_{n}\left(f_{1}+\cdots+f_{N}\right)+\right. \\
\left.\sum_{j=1}^{N}\left(\hat{\varepsilon}_{j}\left\|f_{j}\right\|_{L_{2}\left(\Pi_{n}\right)}+\hat{\varepsilon}_{j}^{2}\left\|f_{j}\right\|_{\mathcal{H}_{j}}\right)\right]
\end{gathered}
$$

- where $\hat{\varepsilon}_{j}$ are data dependent regularization parameters defined in terms of spectra of kernel matrices $\hat{K}_{j}:=\left(n^{-1} K_{j}\left(X_{k}, X_{l}\right)\right)_{k, l=1, n}$

Spectra and smoothness

- Additive Representation: $f=f_{1}+\cdots+f_{N}, f_{j} \in \mathcal{H}_{j}$.
- Π the design distribution $=$ the unknown distribution of X
- $T_{K_{j}}: L_{2}(\Pi) \mapsto L_{2}(\Pi)$ the integral operator with kernel K_{j}.
- $\left\{\lambda_{k}^{(j)}\right\}$ distribution dependent eigenvalues of the operator $T_{K_{j}}$.
- The smoothness of the components $f_{j} \in \mathcal{H}_{j}$ is related to the rate of decay of $\lambda_{k}^{(j)}, k \rightarrow \infty$.
- The spectrum of \hat{K}_{j} is a statistical estimate of $\left\{\lambda_{k}^{(j)}: k \geq 1\right\}$.

Adaptive Regularization

- If, for all j,

$$
\lambda_{k}^{(j)} \asymp k^{-2 \beta_{j}}, \beta_{j}>1 / 2,
$$

then the optimal choice of regularization parameter $\hat{\varepsilon}_{j}$ would be $\asymp n^{-\beta_{j} /\left(2 \beta_{j}+1\right)}$

- Koltchinskii and Yuan (2009): a data driven method of choosing $\hat{\varepsilon}_{j}$ that provides an adaptation to unknown smoothness of the components.

Mathematical Results

- Sparsity Oracle Inequalities:
- Show that, with a high probability, the empirical solution \hat{f} provides the same approximation of the target function f_{*} as optimal "sparse oracles" up to an error term that depends on the degree of sparsity of the problem.
- Show that in "sparse" problems the empirical solution \hat{f} is "approximately sparse" and its "sparsity pattern" mimics the sparsity pattern of "sparse oracles."
- Koltchinskii and Yuan (2009)
- Suppose

$$
\lambda_{k}^{(j)} \asymp k^{-2 \beta_{j}}, \beta_{j}>1 / 2
$$

and denote

$$
\varepsilon_{j}:=n^{-\beta_{j} /\left(2 \beta_{j}+1\right)}
$$

Support of $f: J_{f}:=\left\{j: f_{j} \neq 0\right\}$.

- For all "oracles" $f=\left(f_{1}, \ldots, f_{N}\right)$, with a high probability,

$$
\begin{gathered}
L(\hat{f})-L\left(f_{*}\right)+c_{1} \sum_{j=1}^{N}\left(\varepsilon_{j}\left\|\hat{f}_{j}-f_{j}\right\|_{L_{2}(\Pi)}+\varepsilon_{j}^{2}\left\|\hat{f}_{j}\right\|_{\mathcal{H}_{j}}\right) \leq \\
2\left(L(f)-L\left(f_{*}\right)\right)+c_{2} \sum_{j \in J_{f}} \varepsilon_{j}^{2}\left(\gamma^{2}\left(J_{f}\right)+\left\|f_{j}\right\|_{\mathcal{H}_{j}}\right)
\end{gathered}
$$

where $\gamma^{2}\left(J_{f}\right)$ is a geometric parameter of the dictionary that characterizes the degree of "independence" of spaces \mathcal{H}_{j}.

- Roughly, if the spaces $\mathcal{H}_{j}, j=1, \ldots, N$ are "weakly dependent" and all the components are of the same smoothness $\beta_{j}=\beta$, then the error is controlled by $\operatorname{card}\left(J_{f}\right) n^{-\beta /(2 \beta+1)}$, i.e., by the "sparsity" of the problem and by the "smoothness" of the components.
- Note that this learning algorithm relies on neither the knowledge of "sparsity"nor the knowledge of "smoothness". However, it is adaptive to both of them.

Experiments

- Let $K_{G\left(\sigma^{2}\right)}$ be a Gaussian kernel with variance σ^{2} (i.e. $\left.K_{G\left(\sigma^{2}\right)}\left(x_{1}, x_{2}\right)=\exp \left(-|x 1-x 2|^{2} / \sigma^{2}\right)\right)$.
- Let $K_{P(d)}$ be a polynomial kernel of degree d (i.e. $\left.K_{P(d)}=(x 1, x 2)=\langle x 1, x 2\rangle^{d}\right)$.
- Let $K_{T(r)}$ be a tangent sigmoid kernel with parameter r (i.e. $\left.K_{T(r)}(x 1, x 2)=\tanh (r\langle x 1, x 2\rangle)\right)$.
- Let $f: \mathbb{R}^{5} \rightarrow \mathbb{R}$ be an unknown function of form $f=f_{G}+f_{P}+f_{T}$, where $f_{G} \in \mathcal{H}_{K_{G(1)}}, f_{G} \in \mathcal{H}_{K_{P(10)}}$ and $f_{G} \in \mathcal{H}_{K_{T(2)}}$.
- Consider the problem of find f given a data set $\left\{\left\langle x_{i}, f\left(x_{i}\right)+N_{i}\right\rangle\right\}_{i=1}^{1000}$, where N_{i} is noise.
- Since f is unknown, we optimize over the linear combination \mathcal{K} of the reproducing kernel Hilbert space of $K_{G\left(\sigma^{2}\right)}, K_{P(d)}$ and $K_{T(r)}$ for $\sigma^{2}=1, \ldots 10, d=1, \ldots, 10, r=1, \ldots 10$.
- So, we optimize over 30 different kernels, in such a way that f is a sparse model of \mathcal{K}.
- Each kernel represents a possible source of information. With a sparse additive model we are able to identify different sources.

Identification of kernels

- Multiple Kernel

Machine (no regularization)

Relevance of each Kernel

Georgialnstifute of Tech

Identification of kernels

- Multiple Kernel

Machine (no regularization)

- Sparse Multiple Kernel Machine ($\varepsilon=0.05$)

Georgialnstiture〇fTech

Identification of kernels

- Multiple Kernel

Machine (no regularization)

- Sparse Multiple Kernel Machine ($\varepsilon=0.05$)
- Sparse Multiple Kernel Machine ($\varepsilon=0.1$)

Relevance of each kernel

Georgialnstiture〇fTech

Identification of kernels

- Multiple Kernel

Machine (no regularization)

- Sparse Multiple Kernel Machine ($\varepsilon=0.05$)
- Sparse Multiple Kernel Machine ($\varepsilon=0.1$)
- Sparse Multiple Kernel Machine ($\varepsilon=0.325$)

Relevance of each Kernel

Wisconsin Diagnostic Breast Cancer (WDBC)

- a) radius (mean of distances from center to points on the perimeter).
- b) texture (standard deviation of gray-scale values)
- c) perimeter
- d) area
- e) smoothness (local variation in radius lengths)
- f) compactness (perimeter ${ }^{2} /$ area -1.0)
- g) concavity (severity of concave portions of the contour)
- h) concave points (number of concave portions of the contour)
- i) symmetry
- j) fractal dimension ("coastline approximation" - 1)
- Let $K_{i, j}\left(x_{1}, x_{2}\right)$ be the dot product of the data points x_{1} and x_{2} restricted to the coordinates i and j.
- The main idea of choosing this set of kernels is to identify couple of features that characterize the learning problem.
- Using this approach, we identify: Perimeter vs. Smoothness, and Radius vs. Concave points.

Identification of correlated features

- Multiple Kernel

Machine (no
regularization)

Georgialnstiture of Tech

Identification of correlated features

- Multiple Kernel

Machine (no
regularization)

- Sparse Multiple Kernel Machine ($\varepsilon=0.2$).

Georgialnstiture〇fTech ologyy

Identification of correlated features

- Multiple Kernel

Machine (no
regularization)

- Sparse Multiple Kernel Machine ($\varepsilon=0.2$).
- Sparse Multiple Kernel Machine ($\varepsilon=0.4$).

Georgialnstitute of Tech

Identification of correlated features

- Multiple Kernel

Machine (no regularization)

- Sparse Multiple Kernel Machine ($\varepsilon=0.2$).
- Sparse Multiple Kernel Machine ($\varepsilon=0.4$).
- Sparse Multiple Kernel Machine ($\varepsilon=0.6$).

Georgialnstiture of Technologjy

Future Goals

- Computational aspects: convex optimization methods, backfitting, etc; jointly with Haesun Park, Pedro Rangel
- Statistical aspects: adaptation methods, feature selection, simulation studies, etc; jointly with Pedro Rangel, Ming Yuan
- Visualization: methods of visualizing large ensembles of prediction rules, aggregation maps and other approaches to visualizing relative significance of features

