Convex Optimization Methods for Dimension Reduction and Coefficient Estimation in Multivariate Linear Regression

> Renato D.C. Monteiro Georgia Tech

FODAVA REVIEW MEETING

Atlanta, USA

Dec. 3, 2009

MOTIVATION

Compressed sensing: Candes et al. (2006) have shown that a sparse signal can be recovered by solving a non-smooth optimization problem of the form

$$\min\{\|\mathbf{x}\|_0 : \mathbf{A}\mathbf{x} = \mathbf{b}\} \quad (*)$$

where A is $l \times p$ -matrix, $x \in \Re^p$ and $b \in \Re^l$. Here $||x||_0$ denotes the number of nonzero components of x.

Under some conditions on A, they have shown that (*) is also equivalent to the convex program

 $\min\{\|\mathbf{x}\|_1 : \mathbf{A}\mathbf{x} = \mathbf{b}\} \quad (**)$

where $\|\mathbf{x}\|_1 := \sum_{i=1}^p |\mathbf{x}_i|$ is the 1-norm of x.

There has been a lot of research in the optimization community to develop methods that can solve (**) efficiently.

We are interested in the extensions of these problems, where the variable is now a $\mathbf{p} \times \mathbf{q}$ matrix.

Consider the problem

$$\min_{\mathbf{X}\in\Re^{\mathbf{p}\times\mathbf{q}}}\left\{\mathbf{rank}(\mathbf{X}):\mathcal{A}(\mathbf{X})=\mathbf{b}\right\},\quad(*)$$

where $\mathcal{A}: \Re^{\mathbf{p} \times \mathbf{q}} \to \Re^{\mathbf{l}}$ is a linear map and $\mathbf{b} \in \Re^{\mathbf{l}}$.

This problem (and its variations) has many applications (e.g., matrix completion problems, netflix problem, dimension reduction in statistics and etc.)

When X is restricted to a diagonal (square) matrix, i.e., $X = Diag(x), x \in \Re^p$, then (*) reduces to

 $\min\{\|\mathbf{x}\|_0:\mathbf{A}\mathbf{x}=\mathbf{b}\}$

A convex approximation of (*) is

$$\min_{\mathbf{X}\in\Re^{\mathbf{p}\times\mathbf{q}}}\{\|\mathbf{X}\|_*:\mathcal{A}(\mathbf{X})=\mathbf{b}\}\quad(**)$$

where $\|\mathbf{X}\|_*$ denotes the nuclear norm of X:

$$\|\mathbf{X}\|_* := \operatorname{Trace}[(\mathbf{X}\mathbf{X}^{\mathbf{T}})^{1/2}] = \sum_{i=1}^{\min\{\mathbf{p},\mathbf{q}\}} \sigma_i(\mathbf{X})$$

Under suitable conditions on \mathcal{A} , Recht et al. (2007) have shown that (*) and (**) are equivalent.

A relaxation of (**) is the problem

$$\min_{\mathbf{X}\in\Re^{\mathbf{p}\times\mathbf{q}}}\frac{1}{2}\|\mathcal{A}(\mathbf{X})-\mathbf{b}\|_{\mathbf{F}}^{2}+\lambda\|\mathbf{X}\|_{*}$$

where $\|\mathbf{X}\|_{\mathbf{F}}^2 := \sum_{i,j} \mathbf{X}_{ij}^2$.

Our problem of interest is the following special case of the above problem:

$$\min_{\mathbf{X}\in\Re^{\mathbf{p}\times\mathbf{q}}}\frac{1}{2}\|\mathbf{A}\mathbf{X}-\mathbf{B}\|_{\mathbf{F}}^{2}+\lambda\|\mathbf{X}\|_{*}$$

where $A \in \Re^{n \times p}$, $B \in \Re^{n \times q}$ and A has l.i. columns (n >> p).

This problem arises in statistics in the context of dimension reduction and coefficient estimate in multivariate linear regression. Assume that $\mathbf{A} \in \Re^{n \times p}$ consists of **n** observations on **p** explanatory variables $\mathbf{a} = (\mathbf{a_1}, \dots, \mathbf{a_p})'$ and $\mathbf{B} \in \Re^{n \times q}$ collects the corresponding **n** observations on **q** responses $\mathbf{b} = (\mathbf{b_1}, \dots, \mathbf{b_q})'$. Consider the multivariate linear model

$\mathbf{B} = \mathbf{A}\mathbf{X} + \mathbf{E},$

where $\mathbf{X} \in \Re^{\mathbf{p} \times \mathbf{q}}$ is a coefficient matrix, $\mathbf{E} = (\mathbf{e}^1, \dots, \mathbf{e}^n)'$ is the regression noise, and all \mathbf{e}^i s are independent samples of $\mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$.

To estimate \mathbf{X} and accomplish dimension reduction, Yuan et al. proposed to solve

$$\min_{\mathbf{X}} \frac{1}{2} \|\mathbf{A}\mathbf{X} - \mathbf{B}\|_{\mathbf{F}}^{2} + \lambda \|\mathbf{X}\|_{*}$$
(1)

for different $\lambda > 0$ values. The larger the scalar $\lambda > 0$, the more dimension reduction is accomplished.

Reformulations:

- cone program (includes LP, SDP)
- saddle point (min-max convex-concave) problems

Cone program (CP): Given a closed convex cone $\mathcal{K} \subseteq \Re^n$, the CP problem is:

 $\min\{\langle \mathbf{c}, \mathbf{x} \rangle : \mathcal{A}(\mathbf{x}) = \mathbf{b}, \, \mathbf{x} \in \mathcal{K}\}$

where $\mathbf{c} \in \Re^{\mathbf{n}}$, $\mathbf{b} \in \Re^{\mathbf{m}}$ and $\mathcal{A} : \Re^{\mathbf{n}} \to \Re^{\mathbf{m}}$ is a linear map. Its dual is

$$\max\{\langle \mathbf{b}, \mathbf{y} \rangle : \mathbf{c} - \mathcal{A}^*(\mathbf{y}) \in \mathcal{K}^*\}$$

where $\mathcal{K}^* := \{ \mathbf{s} \in \Re^{\mathbf{n}} : \langle \mathbf{s}, \mathbf{x} \rangle \ge \mathbf{0}, \, \forall \mathbf{x} \in \mathcal{K} \}.$

Remark: Can be solved by interior-point (second-order) methods or by first-order methods.

SADDLE POINT OR MIN-MAX PROBLEMS

Their general form is

$$\min_{\mathbf{x}\in\mathbf{X}} \left(\mathbf{f}(\mathbf{x}) := \max_{\mathbf{y}\in\mathbf{Y}} \phi(\mathbf{x},\mathbf{y}) \right)$$

where \mathbf{X}, \mathbf{Y} are simple closed convex sets, ϕ is convex in \mathbf{x} and concave in \mathbf{y} .

Under the assumption that $\nabla \phi$ is Lipschitz continuous, first-order methods with known iteration-complexity bounds have been developed to solve these problems:

- Nesterov's smooth or non-smooth methods and their variants;
- Korpelevich algorithm or Nemirovski's prox-mirror method

Problem (1) can be reformulated as a CP problem as follows. Clearly, (1) is equivalent to

$$\min_{\mathbf{X},\mathbf{t}} \left\{ \frac{1}{2} \|\mathbf{A}\mathbf{X} - \mathbf{B}\|^{2} + \lambda \mathbf{t} : \|\mathbf{X}\|_{*} \leq \mathbf{t} \right\}$$

Write $\mathbf{V} \succeq \mathbf{0}$ if \mathbf{V} is symmetric and positive semidefinite. Also, let S^1 denote the space of $l \times l$ symm. matrices.

Proposition: Let $X \in \Re^{p \times q}$ and set $k := \min\{p, q\}$ and l := p + q. For $t \in \Re$, we have

$$\|\mathbf{X}\|_* \leq \mathbf{t} \ \Leftrightarrow \ \left\{ egin{array}{ll} \mathbf{t} - \mathbf{ks} - \operatorname{Trace}(\mathbf{V}) & \geq & \mathbf{0}, \ & \mathbf{V} - \mathcal{G}(\mathbf{X}) + \mathbf{sI} & \succeq & \mathbf{0}, \ & \mathbf{V} & \geq & \mathbf{0}, \end{array}
ight.$$

for some $\mathbf{V} \in S^{\mathbf{l}}$ and $\mathbf{s} \in \Re$, where $\mathcal{G} : \Re^{\mathbf{p} \times \mathbf{q}} \to \Re^{\mathbf{l} \times \mathbf{l}}$ is defined as

$$\mathcal{G}(\mathbf{X}) := \left(egin{array}{cc} \mathbf{0} & \mathbf{X}^{\mathbf{T}} \ \mathbf{X} & \mathbf{0} \end{array}
ight)$$

Using the identity

$$\|\mathbf{X}\|_* = \mathbf{k} \max_{\mathbf{W} \in \mathbf{\Omega}} \langle \mathcal{G}(\mathbf{X}), \mathbf{W} \rangle$$

where $\mathbf{k} := \min\{\mathbf{p}, \mathbf{q}\}$ and

 $\boldsymbol{\Omega} := \{ \mathbf{W} \in \mathcal{S}^{\mathbf{p}+\mathbf{q}} : \mathbf{0} \preceq \mathbf{W} \preceq \mathbf{I}/\mathbf{k}, \, \mathrm{Trace}(\mathbf{W}) = \mathbf{1} \}$

problem (1) can be reformulated as

$$\min_{\|\mathbf{X}\|_{\mathbf{F}} \leq \mathbf{r}} \mathbf{f}_{\mathbf{p}}(\mathbf{X}) := \max_{\mathbf{W} \in \mathbf{\Omega}} \left\{ \frac{1}{2} \|\mathbf{A}\mathbf{X} - \mathbf{B}\|_{\mathbf{F}}^{2} + \lambda \mathbf{k} \left\langle \mathcal{G}(\mathbf{X}), \mathbf{W} \right\rangle \right\},$$

where **r** is an appropriate scalar. (Disadvantage: $f_p(\cdot)$ is non-smooth)

Instead, we consider the dual of the above problem, namely:

$$\max_{\mathbf{W}\in\Omega} \mathbf{f}_{\mathbf{d}}(\mathbf{W}) := \min_{\|\mathbf{X}\|_{\mathbf{F}}\leq \mathbf{r}} \left\{ \frac{1}{2} \|\mathbf{A}\mathbf{X} - \mathbf{B}\|_{\mathbf{F}}^{2} + \lambda \mathbf{k} \langle \mathcal{G}(\mathbf{X}), \mathbf{W} \rangle \right\},\$$

(Advantage: $f_d(W)$ has Lipschitz continuous gradient.)

We then apply a variant of Nesterov's smooth method to solve the latter MAX-MIN reformulation of (1). Proposition: Given $\epsilon > 0$, Nesterov's smooth method finds an ϵ -optimal solution of the MAX-MIN formulation in a number of iterations which does not exceed

$$\frac{2\lambda \| (\mathbf{A^T}\mathbf{A})^{-1/2} \|}{\sqrt{\epsilon}} \sqrt{k \log \left(\frac{\mathbf{p} + \mathbf{q}}{\mathbf{k}}\right)}$$

where $\mathbf{k} := \min\{\mathbf{p}, \mathbf{q}\}$.

Note: The complexity of solving the corresponding dual MIN-MAX reformulation of (1) is $\mathcal{O}(1/\epsilon)$ instead of $\mathcal{O}(1/\sqrt{\epsilon})$ as above.

COMPUTATIONAL RESULTS

The entries of $\mathbf{A} \in \Re^{\mathbf{n} \times \mathbf{p}}$ and $\mathbf{B} \in \Re^{\mathbf{n} \times \mathbf{q}}$, with $\mathbf{p} = 2\mathbf{q}$ and $\mathbf{n} = 10\mathbf{q}$, were uniformly generated in [0, 1]. The accuracy in the table below is $\epsilon = 10^{-1}$.

Problem	# of Iterations		CPU Time	
(p, q)	MIN-MAX	MAX-MIN	MIN-MAX	MAX-MIN
(200, 100)	610	1	29.60	0.91
(400, 200)	1310	1	432.92	8.36
(600, 300)	2061	1	2155.76	31.23
(800, 400)	2848	1	7831.09	76.75
(1000,500)	3628	1	21128.70	156.68
(1200,600)	4436	1	47356.32	276.64
(1400, 700)	5280	1	98573.73	456.61
(1600, 800)	6108	1	176557.49	699.47

COMPUTATIONAL RESULTS

The tables below compare the MAX-MIN formulation with the cone programming reformulation. The accuracy is $\epsilon = 10^{-8}$.

Problem	# of Iterations		CPU Time	
(p, q)	MAX-MIN	CONE	MAX-MIN	CONE
$(20,\!10)$	3455	17	3.61	5.86
(40, 20)	1696	15	6.90	77.25
(60, 30)	1279	15	13.33	506.14
$(80,\!40)$	1183	15	25.34	2205.13
(100, 50)	1073	19	40.66	8907.12
$(120,\!60)$	1017	N/A	62.90	N/A

Problem	Memory		
(\mathbf{p}, \mathbf{q})	MAX-MIN	CONE	
(20,10)	2.67	$\boldsymbol{279}$	
(40, 20)	2.93	$\boldsymbol{483}$	
(60, 30)	3.23	1338	
$(80,\!40)$	3.63	4456	
(100, 50)	4.23	10445	
$(120,\!60)$	4.98	> 16109	

SUMMARY

We have shown that a (smooth) first-order method applied to a MAX-MIN reformulation of (1) substantially outperforms a first-order method applied to the corresponding dual MIN-MAX reformulation.

We have also shown that it substantially outperforms an interior-point method applied to a CP reformulation of (1).