Convex Optimization Methods for
Dimension Reduction and Coefficient Estimation in
Multivariate Linear Regression

Renato D.C. Monteiro
Georgia Tech

FODAVA REVIEW MEETING

Atlanta, USA
Dec. 3, 2009

Motivation

Compressed sensing: Candes et al. (2006) have shown that a sparse signal can be recovered by solving a non-smooth optimization problem of the form

$$
\min \left\{\|\mathbf{x}\|_{\mathbf{o}}: \mathbf{A} \mathbf{x}=\mathbf{b}\right\} \quad(*)
$$

where A is $l \times p$-matrix, $x \in \Re^{p}$ and $b \in \Re^{1}$. Here $\|x\|_{0}$ denotes the number of nonzero components of x.

Under some conditions on A, they have shown that $(*)$ is also equivalent to the convex program

$$
\min \left\{\|\mathbf{x}\|_{\mathbf{1}}: \mathbf{A} \mathbf{x}=\mathbf{b}\right\} \quad(* *)
$$

where $\|\mathrm{x}\|_{1}:=\sum_{\mathrm{i}=1}^{\mathrm{p}}\left|\mathrm{x}_{\mathrm{i}}\right|$ is the 1-norm of x .
There has been a lot of research in the optimization community to develop methods that can solve ($* *$) efficiently.

We are interested in the extensions of these problems, where the variable is now a $p \times q$ matrix.

Consider the problem

$$
\min _{\mathbf{X} \in \Re \mathbf{p} \times \mathbf{q}}\{\operatorname{rank}(\mathbf{X}): \mathcal{A}(\mathbf{X})=\mathbf{b}\}
$$

where $\mathcal{A}: \Re^{\mathbf{p} \times \mathbf{q}} \rightarrow \Re^{1}$ is a linear map and $\mathrm{b} \in \Re^{1}$.
This problem (and its variations) has many applications (e.g., matrix completion problems, netflix problem, dimension reduction in statistics and etc.)

When X is restricted to a diagonal (square) matrix, i.e., $\mathrm{X}=\operatorname{Diag}(\mathrm{x}), \mathrm{x} \in \Re^{\mathrm{p}}$, then $(*)$ reduces to

$$
\min \left\{\|\mathbf{x}\|_{\mathbf{0}}: \mathbf{A} \mathbf{x}=\mathbf{b}\right\}
$$

A convex approximation of $(*)$ is

$$
\min _{\mathbf{X} \in \Re \mathbf{p} \times \mathbf{q}}\left\{\|\mathbf{X}\|_{*}: \mathcal{A}(\mathbf{X})=\mathbf{b}\right\} \quad(* *)
$$

where $\|\mathrm{X}\|_{*}$ denotes the nuclear norm of X :

$$
\|\mathbf{X}\|_{*}:=\operatorname{Trace}\left[\left(\mathbf{X X}^{\mathbf{T}}\right)^{\mathbf{1} / \mathbf{2}}\right]=\sum_{\mathbf{i}=\mathbf{1}}^{\min \{\mathbf{p}, \mathbf{q}\}} \sigma_{\mathbf{i}}(\mathbf{X})
$$

Under suitable conditions on \mathcal{A}, Recht et al. (2007) have shown that ($*$) and ($* *$) are equivalent.

A relaxation of $(* *)$ is the problem

$$
\min _{\mathbf{X} \in \Re \mathrm{p} \times \mathbf{q}} \frac{1}{2}\|\mathcal{A}(\mathbf{X})-\mathbf{b}\|_{\mathbf{F}}^{2}+\lambda\|\mathbf{X}\|_{*}
$$

where $\|X\|_{F}^{2}:=\sum_{i, j} X_{i j}^{2}$.
Our problem of interest is the following special case of the above problem:

$$
\min _{\mathbf{x} \in \Re>\times \mathbf{q}} \frac{1}{2}\|\mathbf{A X}-\mathbf{B}\|_{\mathbf{F}}^{2}+\lambda\|\mathbf{X}\|_{*}
$$

where $A \in \Re^{\mathrm{n} \times \mathrm{p}}, \mathrm{B} \in \Re^{\mathrm{n} \times \mathrm{q}}$ and A has 1.i. columns ($\mathrm{n} \gg \mathrm{p}$).

This problem arises in statistics in the context of dimension reduction and coefficient estimate in multivariate linear regression.

Dimension Reduction in Statistics

Assume that $\mathbf{A} \in \Re^{\mathbf{n} \times \mathbf{p}}$ consists of \mathbf{n} observations on \mathbf{p} explanatory variables $\mathbf{a}=\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{\mathbf{p}}\right)^{\prime}$ and $B \in \Re^{\mathbf{n} \times q}$ collects the corresponding n observations on \mathbf{q} responses $\mathbf{b}=\left(b_{1}, \ldots, b_{q}\right)^{\prime}$. Consider the multivariate linear model

$$
\mathbf{B}=\mathbf{A} \mathbf{X}+\mathbf{E}
$$

where $X \in \Re^{p \times q}$ is a coefficient matrix, $E=$ $\left(e^{1}, \ldots, e^{n}\right)^{\prime}$ is the regression noise, and all $e^{i} s$ are independent samples of $\mathcal{N}(0, \boldsymbol{\Sigma})$.

To estimate X and accomplish dimension reduction, Yuan et al. proposed to solve

$$
\begin{equation*}
\min _{\mathbf{X}} \frac{\mathbf{1}}{\mathbf{2}}\|\mathbf{A X}-\mathbf{B}\|_{\mathbf{F}}^{\mathbf{2}}+\lambda\|\mathbf{X}\|_{*} \tag{1}
\end{equation*}
$$

for different $\lambda>0$ values. The larger the scalar $\lambda>0$, the more dimension reduction is accomplished.

Reformulations:

- cone program (includes LP, SDP)
- saddle point (min-max convex-concave) problems

Cone program (CP): Given a closed convex cone $\mathcal{K} \subseteq \Re^{n}$, the $C P$ problem is:

$$
\min \{\langle\mathbf{c}, \mathbf{x}\rangle: \mathcal{A}(\mathbf{x})=\mathbf{b}, \mathbf{x} \in \mathcal{K}\}
$$

where $\mathbf{c} \in \Re^{\mathrm{n}}, \mathbf{b} \in \Re^{\mathrm{m}}$ and $\mathcal{A}: \Re^{\mathrm{n}} \rightarrow \Re^{\mathrm{m}}$ is a linear map. Its dual is

$$
\max \left\{\langle\mathbf{b}, \mathbf{y}\rangle: \mathbf{c}-\mathcal{A}^{*}(\mathbf{y}) \in \mathcal{K}^{*}\right\}
$$

where $\mathcal{K}^{*}:=\left\{\mathbf{s} \in \Re^{\mathbf{n}}:\langle\mathbf{s}, \mathbf{x}\rangle \geq \mathbf{0}, \forall \mathbf{x} \in \mathcal{K}\right\}$.
Remark: Can be solved by interior-point (second-order) methods or by first-order methods.

SADDLE POINT OR MIN-MAX PROBLEMS

Their general form is

$$
\min _{\mathbf{x} \in \mathbf{X}}\left(\mathbf{f}(\mathbf{x}):=\max _{\mathbf{y} \in \mathbf{Y}} \phi(\mathbf{x}, \mathbf{y})\right)
$$

where X, Y are simple closed convex sets, ϕ is convex in x and concave in y.

Under the assumption that $\nabla \phi$ is Lipschitz continuous, first-order methods with known iteration-complexity bounds have been developed to solve these problems:

- Nesterov's smooth or non-smooth methods and their variants;
- Korpelevich algorithm or Nemirovski's prox-mirror method

CONE PROGRAMMING REFORMULATION

Problem (1) can be reformulated as a CP problem as follows. Clearly, (1) is equivalent to

$$
\min _{\mathbf{X}, \mathbf{t}}\left\{\frac{1}{2}\|\mathbf{A X}-\mathbf{B}\|^{2}+\lambda \mathbf{t}:\|\mathbf{X}\|_{*} \leq \mathbf{t}\right\}
$$

Write $\mathrm{V} \succeq 0$ if V is symmetric and positive semidefinite. Also, let \mathcal{S}^{1} denote the space of 1×1 symm. matrices.

Proposition: Let $\mathbf{X} \in \Re^{\mathbf{p} \times \mathbf{q}}$ and set $\mathbf{k}:=\min \{\mathbf{p}, \mathbf{q}\}$ and $\mathrm{l}:=\mathrm{p}+\mathrm{q}$. For $\mathrm{t} \in \Re$, we have

$$
\|\mathbf{X}\|_{*} \leq \mathbf{t} \Leftrightarrow \begin{cases}\mathbf{t}-\mathbf{k s}-\operatorname{Trace}(\mathbf{V}) & \geq \mathbf{0} \\ \mathbf{V}-\mathcal{G}(\mathbf{X})+\mathbf{s I} & \succeq \mathbf{0} \\ \mathbf{V} & \succeq \mathbf{0}\end{cases}
$$

for some $\mathbf{V} \in \mathcal{S}^{1}$ and $s \in \Re$, where $\mathcal{G}: \Re^{\mathbf{p} \times \mathbf{q}} \rightarrow \Re^{1 \times 1}$ is defined as

$$
\mathcal{G}(\mathbf{X}):=\left(\begin{array}{ll}
\mathbf{0} & \mathbf{X}^{\mathbf{T}} \\
\mathbf{X} & \mathbf{0}
\end{array}\right)
$$

SADDLE-POINT REFORMULATIONS

Using the identity

$$
\|\mathbf{X}\|_{*}=\mathbf{k} \max _{\mathbf{W} \in \Omega}\langle\mathcal{G}(\mathbf{X}), \mathbf{W}\rangle
$$

where $\mathbf{k}:=\min \{\mathbf{p}, \mathbf{q}\}$ and

$$
\boldsymbol{\Omega}:=\left\{\mathbf{W} \in \mathcal{S}^{\mathbf{p}+\mathbf{q}}: \mathbf{0} \preceq \mathbf{W} \preceq \mathbf{I} / \mathbf{k}, \operatorname{Trace}(\mathbf{W})=\mathbf{1}\right\}
$$

problem (1) can be reformulated as
$\min _{\|\mathbf{X}\|_{\mathbf{F}} \leq \mathbf{r}} \mathbf{f}_{\mathbf{p}}(\mathbf{X}):=\max _{\mathbf{W} \in \boldsymbol{\Omega}}\left\{\frac{1}{\mathbf{2}}\|\mathbf{A X}-\mathbf{B}\|_{\mathbf{F}}^{\mathbf{2}}+\lambda \mathbf{k}\langle\mathcal{G}(\mathbf{X}), \mathbf{W}\rangle\right\}$,
where r is an appropriate scalar. (Disadvantage: $f_{p}(\cdot)$ is non-smooth)
Instead, we consider the dual of the above problem, namely:
$\max _{\mathbf{W} \in \boldsymbol{\Omega}} \mathbf{f}_{\mathbf{d}}(\mathbf{W}):=\min _{\|\mathbf{X}\|_{\mathbf{F}} \leq \mathbf{r}}\left\{\frac{\mathbf{1}}{\mathbf{2}}\|\mathbf{A X}-\mathbf{B}\|_{\mathbf{F}}^{\mathbf{2}}+\lambda \mathbf{k}\langle\mathcal{G}(\mathbf{X}), \mathbf{W}\rangle\right\}$,
(Advantage: $\mathrm{f}_{\mathrm{d}}(\mathrm{W})$ has Lipschitz continuous gradient.)

We then apply a variant of Nesterov's smooth method to solve the latter MAX-MIN reformulation of (1).

Proposition: Given $\epsilon>0$, Nesterov's smooth method finds an ϵ-optimal solution of the MAX-MIN formulation in a number of iterations which does not exceed

$$
\frac{\mathbf{2} \lambda\left\|\left(\mathbf{A}^{\mathbf{T}} \mathbf{A}\right)^{-\mathbf{1 / 2}}\right\|}{\sqrt{\epsilon}} \sqrt{\mathbf{k} \log \left(\frac{\mathbf{p}+\mathbf{q}}{\mathbf{k}}\right)},
$$

where $\mathrm{k}:=\min \{\mathbf{p}, \mathbf{q}\}$.

Note: The complexity of solving the corresponding dual MIN-MAX reformulation of (1) is $\mathcal{O}(1 / \epsilon)$ instead of $\mathcal{O}(1 / \sqrt{\epsilon})$ as above.

Computational Results

The entries of $A \in \Re^{n \times p}$ and $B \in \Re^{\mathbf{n \times q}}$, with $\mathrm{p}=2 \mathrm{q}$ and $\mathrm{n}=10 \mathrm{q}$, were uniformly generated in $[0,1]$. The accuracy in the table below is $\epsilon=10^{-1}$.

Problem	\# of Iterations		CPU Time	
(p, q)	MIN-MAX	MAX-MIN	MIN-MAX	MAX-MIN
$(200,100)$	610	1	29.60	0.91
$(400,200)$	1310	1	432.92	8.36
$(600,300)$	2061	1	2155.76	31.23
$(800,400)$	2848	1	7831.09	76.75
$(1000,500)$	3628	1	21128.70	156.68
$(1200,600)$	4436	1	47356.32	276.64
$(1400,700)$	5280	1	98573.73	456.61
$(1600,800)$	6108	1	176557.49	699.47

COMPUTATIONAL RESULTS

The tables below compare the MAX-MIN formulation with the cone programming reformulation. The accuracy is $\epsilon=10^{-8}$.

Problem	\# of Iterations		CPU Time	
(p, q)	MAX-MIN	CONE	MAX-MIN	CONE
$(20,10)$	3455	17	3.61	5.86
$(40,20)$	1696	15	6.90	77.25
$(60,30)$	1279	15	13.33	506.14
$(80,40)$	1183	15	25.34	2205.13
$(100,50)$	1073	19	40.66	8907.12
$(120,60)$	1017	N /A	62.90	N/A

Problem	Memory	
(p, q)	MAX-MIN	CONE
$(20,10)$	2.67	279
$(40,20)$	2.93	483
$(60,30)$	3.23	1338
$(80,40)$	3.63	4456
$(100,50)$	4.23	10445
$(120,60)$	4.98	>16109

SUMMARY

We have shown that a (smooth) first-order method applied to a MAX-MIN reformulation of (1) substantially outperforms a first-order method applied to the corresponding dual MIN-MAX reformulation.

We have also shown that it substantially outperforms an interior-point method applied to a CP reformulation of (1).

