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MOTIVATION

Compressed sensing: Candes et al. (2006) have
shown that a sparse signal can be recovered by
solving a non-smooth optimization problem of

the form
min{||x|[o : Ax = b} (%)

where A is | x p-matrix, x € ®° and b € R
Here ||x|/0 denotes the number of nonzero

components of x.

Under some conditions on A, they have shown
that () is also equivalent to the convex program

min{||x|[1 : Ax =b} (k%)
where ||x|[1 := >, |xi| is the 1-norm of x.

There has been a lot of research in the opti-
mization community to develop methods that
can solve (xx) efficiently.

We are interested in the extensions of these
problems, where the variable is now a p X q

matrix.



Consider the problem

min {rank(X): A(X)=b}, (%)

X EeRPXa
where A : RP*? — R! is a linear map and b € R'.

This problem (and its variations) has many
applications (e.g., matrix completion prob-
lems, netflix problem, dimension reduction in

statistics and etc.)
When X is restricted to a diagonal (square)
matrix, i.e., X = Diag(x), x € 1P, then (x)
reduces to

min{||x|[o : Ax = b}

A convex approximation of (x) is

min {|| X[« : AX) =b} (xx)

XERPXd
where || X||. denotes the nuclear norm of X:

min{p,q}
IX||. := Trace[(XXT)Y?] = >~ 03(X)
i=1
Under suitable conditions on A, Recht et
al. (2007) have shown that (x) and (xx) are

equivalent.



A relaxation of (xx) is the problem

: 1
min ~[JA(X) - b|[Z + A|X]|.

XeRPXa

where ||X||3 := D i XZ.

Our problem of interest is the following special

case of the above problem:

) 1
min EHAX — BH%‘ + A\ || X]|«

XeRrPXa

where A ¢ R"*P, B € R"*Y and A has l.i.

columns (n >> p).

This problem arises in statistics in the context
of dimension reduction and coefficient estimate

in multivariate linear regression.



DIMENSION REDUCTION IN STATISTICS

Assume that A € R™*P consists of n observations
on p explanatory variables a = (a1,...,ap)’
and B € R"*9 collects the corresponding n

/

observations on q responses b = (by,...,bg)’.

Consider the multivariate linear model
B=AX+E,

where X € RP*9 is a coefficient matrix, E =
(e',...,e") is the regression noise, and all e's

are independent samples of N (0, X).
To estimate X and accomplish dimension
reduction, Yuan et al. proposed to solve

| 2
min || AX — B|Z + A|X].. (1)

for different A > 0 values. The larger the
scalar A > 0, the more dimension reduction is

accomplished.



Reformulations:
e cone program (includes LP, SDP)

e saddle point (min-max convex-concave)

problems

Cone program (CP): Given a closed convex
cone [C C k™, the CP problem is:

min{(c,x) : A(x) = b, x € £}

where c ¢ R, be ™ and A4 : R™* — k™ is a

linear map. Its dual is
max{(b,y) :c— A*(y) € K£*}

where £* := {s € " : (s,x) > 0, Vx € K}.

Remark: Can be solved by interior-point
(second-order) methods or by first-order

methods.



SADDLE POINT OR MIN-MAX PROBLEMS

Their general form is

xeX YEY

min (f(x) ;= max @(x, Y)>

where X, Y are simple closed convex sets, ¢

is convex in x and concave in y.

Under the assumption that V¢ is Lipschitz
continuous, first-order methods with known
iteration-complexity bounds have been
developed to solve these problems:

® Nesterov’s smooth or non-smooth meth-

ods and their variants;

e Korpelevich algorithm or Nemirovski’s

prox-mirror method



CONE PROGRAMMING REFORMULATION

Problem (1) can be reformulated as a CP

problem as follows. Clearly, (1) is equivalent to

min{%HAX — B + Xt : [|X]. < t}

X,t

Write V > 0 if V is symmetric and positive
semidefinite. Also, let S' denote the space of

1 x 1 symm. matrices.

Proposition: Let X € ®#°*9 and set k := min{p, q}
and 1 := p+ q. For t € &, we have

y

t — ks — Trace(V) > 0,
X[« <t & ¢ V-G(X)+sI ~ 0,
v - 0,

for some V € S' and s ¢ R, where G : P9 — ol x1
is defined as

o X7
X 0

G(X) :=



SADDLE-POINT REFORMULATIONS

Using the identity
X[« =k max(G(X), W)

WwWeQ

where k := min{p, q} and
Q:={W e SP":0<W <I/k, Trace(W) = 1}

problem (1) can be reformulated as

. - 1 o
i, (%) = ey { 5 [AX = Bllr + Ak <Q(X),W>} ,

where r is an appropriate scalar. (Disadvantage:

fp(-) is non-smooth)
Instead, we consider the dual of the above
problem, namely:

AR £ TR
max fa(W) = min_ { L AX — B} + Ak <9<X>,W>},

(Advantage: f3(W) has Lipschitz continuous
gradient.)

We then apply a variant of Nesterov’s smooth
method to solve the latter M AX-MIN reformu-
lation of (1).



Proposition: Given ¢ > 0, Nesterov’s smooth

method finds an e-optimal solution of the
MAX-MIN formulation in a number of

iterations which does not exceed

T A\—1/2
20|(ATA) 2 [ (pta)
e K

where k := min{p, q}.

Note: The complexity of solving the corre-
sponding dual MIN-MAX reformulation of
(1) is O(1/¢) instead of O(1/,/€) as above.



COMPUTATIONAL RESULTS

The entries of A €¢ R**P and B € R**9, with

p = 2q and n = 10q, were uniformly generated

in [0,1]. The accuracy in the table below is

e=10"".
Problem # of Iterations CPU Time
(p, Q) MIN-MAX  MAX-MIN MIN-MAX MAX-MIN
(200, 100) 610 1 29.60 0.91
(400, 200) 1310 1 432.92 8.36
(600, 300) 2061 1 2155.76 31.23
(800, 400) 2848 1 7831.09 76.75
(1000, 500) 3628 1 21128.70 156.68
(1200, 600) 4436 1 47356.32 276.64
(1400, 700) 5280 1 98573.73 456.61
(1600, 800) 6108 1 176557.49 699.47




COMPUTATIONAL RESULTS

The tables below compare the MAX-MIN

formulation with the cone programming refor-

mulation. The accuracy is e = 10~ %.

Problem # of Iterations CPU Time
(p, Q) MAX-MIN CONE MAX-MIN CONE
(20,10) 3455 17 3.61 5.86
(40,20) 1696 15 6.90 77.25
(60,30) 1279 15 13.33 506.14
(80,40) 1183 15 25.34 2205.13
(100,50) 1073 19 40.66 8907.12
(120,60) 1017 N/A 62.90 N/A
Problem Memory
(p, ) MAX-MIN CONE
(20,10) 2.67 279
(40,20) 2.93 483
(60,30) 3.23 1338
(80,40) 3.63 4456
(100,50) 4.23 10445
(120,60) 4.98 > 16109




SUMMARY

We have shown that a (smooth) first-order
method applied to a MAX-MIN reformu-
lation of (1) substantially outperforms a
first-order method applied to the corre-
sponding dual MIN-MAX reformulation.

We have also shown that it substantially
outperforms an interior-point method ap-
plied to a CP reformulation of (1).



