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Motivation

Compressed sensing: Candes et al. (2006) have

shown that a sparse signal can be recovered by

solving a non-smooth optimization problem of

the form

min{‖x‖0 : Ax = b} (∗)

where A is l × p-matrix, x ∈ ℜp and b ∈ ℜl.

Here ‖x‖0 denotes the number of nonzero

components of x.

Under some conditions on A, they have shown

that (∗) is also equivalent to the convex program

min{‖x‖1 : Ax = b} (∗∗)

where ‖x‖1 :=
Pp

i=1
|xi| is the 1-norm of x.

There has been a lot of research in the opti-

mization community to develop methods that

can solve (∗∗) efficiently.

We are interested in the extensions of these

problems, where the variable is now a p × q

matrix.



Consider the problem

min
X∈ℜp×q

{rank(X) : A(X) = b} , (∗)

where A : ℜp×q → ℜl is a linear map and b ∈ ℜl.

This problem (and its variations) has many

applications (e.g., matrix completion prob-

lems, netflix problem, dimension reduction in

statistics and etc.)

When X is restricted to a diagonal (square)

matrix, i.e., X = Diag(x), x ∈ ℜp, then (∗)

reduces to

min{‖x‖0 : Ax = b}

A convex approximation of (∗) is

min
X∈ℜp×q

{‖X‖∗ : A(X) = b} (∗∗)

where ‖X‖∗ denotes the nuclear norm of X:

‖X‖∗ := Trace[(XXT)1/2] =

min{p,q}
X

i=1

σi(X)

Under suitable conditions on A, Recht et

al. (2007) have shown that (∗) and (∗∗) are

equivalent.



A relaxation of (∗∗) is the problem

min
X∈ℜp×q

1

2
‖A(X) − b‖2

F + λ‖X‖∗

where ‖X‖2
F :=

P

i,j X
2
ij.

Our problem of interest is the following special

case of the above problem:

min
X∈ℜp×q

1

2
‖AX − B‖2

F + λ‖X‖∗

where A ∈ ℜn×p, B ∈ ℜn×q and A has l.i.

columns (n >> p).

This problem arises in statistics in the context

of dimension reduction and coefficient estimate

in multivariate linear regression.



Dimension Reduction in Statistics

Assume that A ∈ ℜn×p consists of n observations

on p explanatory variables a = (a1, . . . ,ap)′

and B ∈ ℜn×q collects the corresponding n

observations on q responses b = (b1, . . . ,bq)′.

Consider the multivariate linear model

B = AX + E,

where X ∈ ℜp×q is a coefficient matrix, E =

(e1, . . . , en)′ is the regression noise, and all eis

are independent samples of N (0,Σ).

To estimate X and accomplish dimension

reduction, Yuan et al. proposed to solve

min
X

1

2
‖AX − B‖2

F + λ‖X‖∗ (1)

for different λ > 0 values. The larger the

scalar λ > 0, the more dimension reduction is

accomplished.



Reformulations:

• cone program (includes LP, SDP)

• saddle point (min-max convex-concave)

problems

Cone program (CP): Given a closed convex

cone K ⊆ ℜn, the CP problem is:

min{〈c,x〉 : A(x) = b, x ∈ K}

where c ∈ ℜn, b ∈ ℜm and A : ℜn → ℜm is a

linear map. Its dual is

max{〈b,y〉 : c −A∗(y) ∈ K∗}

where K∗ := {s ∈ ℜn : 〈s,x〉 ≥ 0, ∀x ∈ K}.
Remark: Can be solved by interior-point

(second-order) methods or by first-order

methods.



Saddle point or min-max problems

Their general form is

min
x∈X

(

f(x) := max
y∈Y

φ(x,y)

)

where X,Y are simple closed convex sets, φ

is convex in x and concave in y.

Under the assumption that ∇φ is Lipschitz

continuous, first-order methods with known

iteration-complexity bounds have been

developed to solve these problems:

• Nesterov’s smooth or non-smooth meth-

ods and their variants;

• Korpelevich algorithm or Nemirovski’s

prox-mirror method



Cone programming reformulation

Problem (1) can be reformulated as a CP

problem as follows. Clearly, (1) is equivalent to

min
X,t



1

2
‖AX − B‖2 + λt : ‖X‖∗ ≤ t

ff

Write V � 0 if V is symmetric and positive

semidefinite. Also, let Sl denote the space of

l × l symm. matrices.

Proposition: Let X ∈ ℜp×q and set k := min{p,q}

and l := p + q. For t ∈ ℜ, we have

‖X‖∗ ≤ t ⇔

8

>

>

<

>

>

:

t − ks − Trace(V) ≥ 0,

V − G(X) + sI � 0,

V � 0,

for some V ∈ Sl and s ∈ ℜ, where G : ℜp×q → ℜl×l

is defined as

G(X) :=

0

@

0 XT

X 0

1

A



saddle-point reformulations

Using the identity

‖X‖∗ = k max
W∈Ω

〈G(X),W〉

where k := min{p,q} and

Ω := {W ∈ Sp+q : 0 � W � I/k, Trace(W) = 1}

problem (1) can be reformulated as

min
‖X‖F≤r

fp(X) := max
W∈Ω



1

2
‖AX − B‖2

F + λk 〈G(X),W〉

ff

,

where r is an appropriate scalar. (Disadvantage:

fp(·) is non-smooth)

Instead, we consider the dual of the above

problem, namely:

max
W∈Ω

fd(W) := min
‖X‖F≤r



1

2
‖AX − B‖2

F + λk 〈G(X),W〉

ff

,

(Advantage: fd(W) has Lipschitz continuous

gradient.)

We then apply a variant of Nesterov’s smooth

method to solve the latter MAX-MIN reformu-

lation of (1).



Proposition: Given ǫ > 0, Nesterov’s smooth

method finds an ǫ-optimal solution of the

MAX-MIN formulation in a number of

iterations which does not exceed

2λ‖(ATA)−1/2‖√
ǫ

√

k log

(

p + q

k

)

,

where k := min{p,q}.

Note: The complexity of solving the corre-

sponding dual MIN-MAX reformulation of

(1) is O(1/ǫ) instead of O(1/
√

ǫ) as above.



Computational Results

The entries of A ∈ ℜn×p and B ∈ ℜn×q, with

p = 2q and n = 10q, were uniformly generated

in [0,1]. The accuracy in the table below is

ǫ = 10−1.

Problem # of Iterations CPU Time

(p, q) MIN-MAX MAX-MIN MIN-MAX MAX-MIN

(200, 100) 610 1 29.60 0.91

(400, 200) 1310 1 432.92 8.36

(600, 300) 2061 1 2155.76 31.23

(800, 400) 2848 1 7831.09 76.75

(1000, 500) 3628 1 21128.70 156.68

(1200, 600) 4436 1 47356.32 276.64

(1400, 700) 5280 1 98573.73 456.61

(1600, 800) 6108 1 176557.49 699.47



Computational Results

The tables below compare the MAX-MIN

formulation with the cone programming refor-

mulation. The accuracy is ǫ = 10−8.

Problem # of Iterations CPU Time

(p, q) MAX-MIN CONE MAX-MIN CONE

(20,10) 3455 17 3.61 5.86

(40,20) 1696 15 6.90 77.25

(60,30) 1279 15 13.33 506.14

(80,40) 1183 15 25.34 2205.13

(100,50) 1073 19 40.66 8907.12

(120,60) 1017 N/A 62.90 N/A

Problem Memory

(p, q) MAX-MIN CONE

(20,10) 2.67 279

(40,20) 2.93 483

(60,30) 3.23 1338

(80,40) 3.63 4456

(100,50) 4.23 10445

(120,60) 4.98 > 16109



Summary

We have shown that a (smooth) first-order

method applied to a MAX-MIN reformu-

lation of (1) substantially outperforms a

first-order method applied to the corre-

sponding dual MIN-MAX reformulation.

We have also shown that it substantially

outperforms an interior-point method ap-

plied to a CP reformulation of (1).


