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Subprojects
 Scagnostics
 Classification
 Venn/Euler Diagrams
 Treemaps
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 Scagnostics

 Wilkinson, Anand, and Grossman (2006) characterize 
a scatterplot (2D point set) with nine measures.

 We base our measures on three geometric graphs.
 Convex Hull
 Alpha Shape
 Minimum Spanning Tree
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 Each geometric graph is a subset of the Delaunay 
Triangulation
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Convex Hull
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Alpha Shape
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Minimum Spanning Tree



8

 Shape

13

Shape
2) Convex: ratio of area of alpha shape to the area of convex hull.

3) Skinny: ratio of perimeter to area of the alpha shape.

4) Stringy: ratio of diameter of MST to length of MST. Similar to skinny.

The diameter of a graph is the longest shortest path between a pair of its vertices.

Convex: area of alpha shape divided by area of convex hull

Skinny: ratio of perimeter to area of the alpha shape

Stringy: ratio of 2-degree vertices in MST to number of vertices > 1-degree
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 Trend

Monotonic: squared Spearman correlation coefficient
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Trend
5) Monotonic: Squared Spearman Correlation Coefficient

6) Straight: ratio of diameter of MST to Euclidean distance between the vertices 

on which the diameter is based.
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 Density
Skewed:  ratio of (Q90 - Q50) / (Q90 - Q10), 
where quantiles are on  MST edge lengths
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Density
7) Skewed: ratio of (Q90 - Q50) / (Q90 - Q10), where the quantiles are taken from the 

MST edge lengths.

8) Clumpy: 1 minus the ratio of the longest edge in the largest runt (blue) to the 

length of runt cutting edge (red).

The Hartigan RUNT statistic for a node of a hierarchical clustering tree is the 

smaller of the number of leaves owned by each of its two children. We derive this 

for each vertex in the MST using an edge-cutting algorithm.

largest runt

longest edge

in runt

Clumpy:  1 minus the ratio of the longest edge in the largest runt (blue) to the  
length of runt-cutting edge (red)
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Density
7) Skewed: ratio of (Q90 - Q50) / (Q90 - Q10), where the quantiles are taken from the 

MST edge lengths.

8) Clumpy: 1 minus the ratio of the longest edge in the largest runt (blue) to the 

length of runt cutting edge (red).

The Hartigan RUNT statistic for a node of a hierarchical clustering tree is the 

smaller of the number of leaves owned by each of its two children. We derive this 

for each vertex in the MST using an edge-cutting algorithm.

largest runt

longest edge

in runt

Outlying: proportion of total MST length due to edges adjacent to outliers
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 Density

Sparse:  90th percentile of distribution of edge lengths in MST

Striated:  proportion of all vertices in the MST that are degree-2 and have a 
cosine between adjacent edges less than -.75
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 Software (Wilkinson and Anand)



Fishing Expeditions in Visual Analytics 
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 We have used the empirical distribution of Scagnostics (Wilkinson 
and Wills, JCGS, 2008), the False Discovery Rate (FDR) statistic, 
and automated statistical modeling to develop algorithms for reducing 
false discoveries when people use visual-analytic software (Wilkinson 
and Wills, IVS, 2009).   
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These data are fake. They are a random 
walk produced by a random number 

generator.

These data are real. They are 
temperature measurements of a cow 
over 80-days. The data are periodic.



Distribution of Scagnostics
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False Discovery Rate (FDR)
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Benjamini and Hochberg, JRSS, 1995

• Sort a list of “p” values and define p0 = 0
 P = [p1, ..., pm]

• Compute BH index

• Use adjusted “p” value (indexed by rBH) as cutoff
• Based on uniform distribution of “p” values, so tests 

may be heterogeneous



Scagnostics on Graphs
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 Adilson Motter is developing scagnostics for (V, E) graphs. This effort 
is similar to what we did for scatterplots. One wants a relatively small 
set of measures that are relatively independent and that nicely 
characterize a wide universe of real directed and undirected graphs. 
The goal is to classify real graphs, recognize anomalies, and locate 
exemplars in subgraphs of large graphs.



Classification
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 Based on our analysis of how people visually classify 2D point sets, 
we have developed a high-dimensional, linear complexity, supervised 
classifier called Linf. This classifier, using the L-infinity metric, rivals 
or outperforms leading classifiers on 10 “difficult” datasets.



Visual Classification
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 Anand, Wilkinson, and Tuan (ICDM, 2009) developed a visual 
classifier to analyze how people distinguish target point sets from 
background point sets. We designed the software to behave like a 
video game.



Description Regions
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• Weighted L-infinity norm
 ||x||∞ = sup(w1|x1|, w2|x2|, . . . wn|xn|)

• Hypercube Description Region (HDR)
 The set of points less than a fixed distance from a single point using 

the L-infinity norm.
• Composite Hypercube Description Region (CHDR)

 Union of HDRs.



The Linf Algorithm
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1.Transform
 t(x) = sgn(x)sqrt(abs(x))

2.Project
 Pick next target class (one against all).
 Compute 25 random, integer-weighted, 2D projections.
 Pick best 5 projections on a class-separation measure. 

3.Bin
 b = 2log2(n)
 Compute purity of target class instances in each bin.

4.Cover

5.Repeat
 Store best cover in scoring list.
 Repeat steps 2-4 until no training instances left.

i

j                                           j                                            j                                            j



Results
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Venn/Euler Diagrams
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 How do we fit a Venn/Euler diagram to empirical data involving more 
than 3 sets? These diagrams are widely used in the bioinformatics 
community. We have developed an R function called venneuler() and 
have posted it on CRAN for general use.
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SheepEuler diagram for 11 animals based on gene lists 
from the Agilent DNA oligo microarray database. 
The analysis was based on 247,412 gene 
symbols and 11 animal names. The stress for this 
solution is .06, with corresponding correlation of 
0.97 between circle and intersection areas and 
counts of genes. The computation was completed 
in under 30 seconds on a 2.5 GHz MacBook Pro 
running the Java 1.5 Virtual Machine in 2GB of 
allocated memory.



The venneuler() Algorithm
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1.Make list of m intersections among n sets (m = 2n)

2.Make list of disk intersections (size disks proportional to |Xi|). 

3.Make list of disjoint counts and list of disjoint areas.

4.Estimate model.

5.Move disks and repeat 2-5 to minimize error, using gradient:



Calculating Areas
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Treemaps
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 We are investigating the ordering of treemaps.



Seriating a Tree
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Fisher-Anderson Iris Data
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