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Major Research Progress

1. Efficient dimension reduction algorithms with guaranteed performance.

Stable random projections for estimating Lα distances, where 0 < α ≤ 2.

2. Efficient dimension reduction algorithms invented for sparse data.

Conditional Random Sampling (CRS), well suitable for text data.

3. Efficient data stream computation algorithms

Both stable random projections and CRS are applicable to dynamic data.

4. Compressed Counting Efficient data stream algorithms invented by taking

advantage of the fact that most data are non-negative. Especially suitable for

computing entropy of data streams in network traffic monitoring and anomaly

detection.
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5 Boosting algorithms for classification

Adaptive Base Class (ABC) Boost,

Robust logitboost, ABC-MART, ABC-LogitBoost.

Surprisingly significant improvements over Friedman’s (and Friedman et. al.)

classical algorithms in many datasets.

This project was not included in the original proposal; we are still actively

seeking funding to continue this work.
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Modern Data Matrix

Data matrix A ∈ R
n×D : n rows and D columns.

1
2
3

1    2    3     4    5    6    7    8    D

n
5
4

• Massive eg, both n, D ≈ 1010

• Dynamic eg, high-speed data streams

• Often Sparse eg, text data
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Massive Data Summarization and Some Challenges

Summarization is fundamental in learning, visualization, and linear algebra.

• Summary statistics of individual rows (or columns)

eg, αth moment
∑D

i=1 |ui|
α, entropy, etc.

• Summary statistics between rows (or columns)

eg, dot products, αth distance
∑D

i=1 |ui − vi|
α, χ2 distance, etc.

Some challenges

• Memory intensive Loading A ∈ R
n×D may be infeasible.

Loading all pairwise (eg, n2) distances of A can be easily infeasible.

• CPU intensive

• Dynamic updating
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From Exact Answers to Approximations

(Good) Approximate summary statistics (eg distances) often suffice

• Visualization systems only need a certain resolution.

• Good (robust) algorithms are stable even using approximate inputs.

Simple random sampling (eg using a few columns) is not enough

• Not accurate.

• Not suitable for sparse data.
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(Symmetric) Stable Random Projections

A                  R   =   B

• Original data matrix A ∈ R
n×D : n rows and D columns,

Massive, eg, both n, D = O
(

1010
)

.

Possibly dynamic, according to the Turnstile model.

• Projection matrix R ∈ R
D×k: D rows and k columns, k ≪ n, D

Entries are samples of a symmetric α-stable distribution.

α = 2: Normal distribution. α = 1: Cauchy distribution.

• Projected matrix B ∈ R
n×k : n rows and k columns

Viewed as a sketch of A, which may be discarded.
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Symmetric α-Stable Distributions

Denoted by S(α, d), where 0 < α ≤ 2.

Two random variables Z1 ∼ S(α, 1) and Z2 ∼ S(α, 1).

For any constants C1 and C2

Z = C1 × Z1 + C2 × Z2 ∼ S (α, |C1|
α + |C2|

α)

For example, weighted sum of normals is also normal (α = 2).
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A                  R   =   B

Therefore, the projected matrix B contains information about

1. αth moment,
∑D

i=1 |ui|
α, of each row of A.

2. αth distance,
∑D

i=1 |ui − vi|
α, between any two rows of A.
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Applications of Symmetric Stable Random Projections

• Data visualization algorithms

Multi-dimensional scaling (MDS) requires a pairwise similarity matrix.

• Machine Learning algorithms

SVM (support vector machine) requires a O(n2) pairwise distance matrix.

• Information retrieval

Finding (filtering) nearly duplicate docs (often measured by distance)

• Databases

Estimating join sizes (dot products) for optimizing query execution.

• Dynamic data stream computations

Estimating summary statistics for visualizing/detecting anomaly real-time
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Recent Progress in Symmetric Stable Random Projections

• After random projections, the task boils down to estimating the scale

parameter from stable samples: xj , j = 1 to k.

• An ideal estimator: (1) accurate (=⇒ small k) (2) computationally efficient.

• Previous estimators were expensive: (1) geometric mean; (2) harmonic

mean; (3) fractional power.

• The optimal quantile estimator is both accurate and computationally efficient.

Ping Li, IEEE ICDM 2008



NSF/DHS-FODAVA Review, Efficient Data Reduction and Summarization, Dec. 3, 2009 13

Cramér-Rao Efficiencies (Accuracies)

Cramér-Rao efficiencies (the higher the better, max = 1.00) of various estimators.

The optimal quantile estimator is competitive in terms of accuracy.
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Computational Efficiencies (Speeds)

The optimal quantile (oq) estimator is a magnitude more computationally efficient.
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Tail Bounds (Performance Guarantee)

Denote the optimal quantile estimator by d̂(α),oq and the true value by d(α).

Pr

(

d̂(α),oq ≥ (1 + ǫ)d(α)

)

≤ exp

(

−k
ǫ2

GR

)

, ǫ > 0,

Pr

(

d̂(α),oq ≤ (1 − ǫ)d(α)

)

≤ exp

(

−k
ǫ2

GL

)

, 0 < ǫ < 1,

The constants, GR and GL are complicated but they can be easily plotted.
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The required sample size (number of projections):

Using d̂(α),oq with k ≥ G
ǫ2

(2 log n − log δ) , any pairwise lα distance among

n points can be approximated within a 1 ± ǫ factor with probability ≥ 1 − δ.
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Conditional Random Sampling (CRS)

The method of random projections exhibits many weaknesses:

• Didn’t consider data sparsity; but large-scale datasets are often highly sparse.

• Could only work for the lα distance for a particular α.

Conditional Random Sampling (CRS) partially overcomes those weaknesses:

• Designed specifically for sparse data.

• One-sketch-for-all: the same sample is re-used, not just for lα distances.

• Not necessarily less accurate than random projections.

• Already applied in industry.

• Recent progress: Ping Li et. al., NIPS 2008.
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Compressed Counting (CC)

• Applicable to dynamic data streams following strict-Turnstile model.

• Achieving an “infinite” improvement over symmetric projections when α ≈ 1.

• Applications in estimating entropy real-time for network anomaly detections.

• Papers: Li SODA 2009, Li UAI 2009 .
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Turnstile Data Stream Model

At time t, an incoming element : at = (it, It)

it ∈ [1, D] index, It: increment/decrement.

Updating rule : At[it] = At−1[it] + It

Goal : Count αth moment F(α) =
∑D

i=1 At[i]
α

Strict-Turnstile model : At[i] ≥ 0 always, suffices for almost all applications.
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For example, the strict-Turnstile model for an online bookstore

t=1            arriving stream  =  (3,  10  ) 

.... 

IP 1 IP 2 IP 3 IP 4 IP D....

0 0 0 0 0 0 0

t=0

.... 

IP 1 IP 2 IP 3 IP 4 IP D....

0 0 0 0 010

t=2            arriving stream  =  (1,  5  ) 

.... 

IP 1 IP 2 IP 3 IP 4 IP D....

0 0 0 0 0

t=3            arriving stream  =  (3,  −8  ) 

.... 

IP 1 IP 2 IP 3 IP 4 IP D....

0 0 0 0 0 0

user  3  ordered 10 books

user 1 ordered 5 books

user 3 cancelled 8 books

5 2

5

10
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Counting: Trivial if α = 1, but Non-trivial in General

Goal : Count F(α) =
∑D

i=1 At[i]
α, where At[it] = At−1[it] + It .

When α 6= 1, counting F(α) exactly requires D counters. (but D can be 264)

When α = 1, however, counting the sum is trivial, using a simple counter.

F(1) =
D
∑

i=1

At[i] =
t
∑

s=1

Is,

Compressed Counting (CC) captures this intuition

Symmetric stable random projections totally ignore this fact.
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Dramatic Variance Reduction

Symmetric GM: the estimator for symmetric stable projections in Li, SODA 2008.

Harmonic and geometric means: estimators for CC introduced in Li, SODA 2009.

Optimal Power: the estimator for CC introduced in Li, UAI 2009.
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Estimating Shannon Entropy Using Moments

Shannon entropy is widely used, eg., in Web and networks:

H = −
D
∑

i=1

At[i]

F(1)
log

At[i]

F(1)
, F(1) =

D
∑

i=1

At[i]

Shannon entropy may be approximated by Rényi entropy:

Hα =
1

1 − α
log

∑D

i=1 At[i]
α

(

∑D

i=1 At[i]
)α

or Tsallis entropy:

Tα =
1

α − 1

(

1 −
F(α)

Fα
(1)

)

.

lim
α→1

Hα = lim
α→1

Tα = H, as α → 1
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Normalized MSE for Estimating Entropy

(Symmetric) Stable Random Projections CC
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• Sample size k = 5, 10, 100, 1000, 4000, from top to bottom.

• CC significantly improves symmetric stable projections.

• The geometric mean (gm) estimator is not good.
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The optimal power (op) estimator is a truly practical algorithm for entropy

estimation.
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Boosting (Tree) Algorithms For Classification

• Classification is a one of the most basic tasks in machine learning.

• We developed Adaptive Base Class (ABC) Boost and implemented it using

Friedman’s classical MART algorithm: =⇒ ABC-MART. Ping Li, ICML 2009

• We are developing Robust Logitboost, which provides a stable

implementation of logitboost (Friedman et. al. 2000)

• We are also developing ABC-LogitBoost.

• Many new directions have been identified and will be exploited.

• This line of work was not included in the original proposal; we are actively

seeking funding to continue this project.
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An Empirical Study for Classification

• MART, ABC-MART, Robust LogitBoost, ABC-LogitBoost, on large datasets.

• Comparisons with SVM are available. For example, SVM achieved < 60%

classification accuracy on UCI-Poker datasets while we obtained > 90%.

• Comparisons with Deep Learning are also available; ours are competitive.
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Table 1: Datasets for multi-class Classification

dataset # Classes # training # test # features

Covertype 7 290506 290506 54

Poker525k 10 525010 500000 10

PokerT1 10 25010 500000 10

PokerT2 10 25010 500000 10

Mnist10k 10 10000 60000 784

M-Basic 10 12000 50000 784

M-Rotated 10 12000 50000 784

M-Image 10 12000 50000 784

M-Rand 10 12000 50000 784

M-RotImg 10 12000 50000 784

Letter4k 26 4000 16000 16

Letter2k 26 2000 18000 16
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Table 2: Summary of test mis-classification errors (smaller is better).

Dataset mart abc-mart robust logitboost abc-logitboost

Covertype 11350 10454 10765 9727

Poker525k 7061 2424 2704 1736

PokerT1 43575 34879 46789 37345

PokerT2 42935 34326 46600 36731

Mnist10k 2815 2440 2381 2102

M-Basic 2058 1843 1723 1602

M-Rotated 7674 6634 6517 5959

M-Image 5821 4727 4703 4268

M-Rand 6577 5310 5020 4711

M-RotImg 24912 23072 22962 22343

Letter4k 1370 1149 1252 1055

Letter2k 2482 2220 2309 2034
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Table 3: Error rates of various algorithms (including SVM and Deep Learning).

www.iro.umontreal.ca/∼lisa/twiki/bin/view.cgi/Public/DeepVsShallowComparisonICML2007

(Note that, we simply fixed our base learner tree-size to be 20).

M-Basic M-Rotated M-Image M-Rand M-RotImg

SVM-RBF 3.05% 11.11% 22.61% 14.58% 55.18%

SVM-POLY 3.69% 15.42% 24.01% 16.62% 56.41%

NNET 4.69% 18.11% 27.41% 20.04% 62.16%

DBN-3 3.11% 10.30% 16.31% 6.73% 47.39%

SAA-3 3.46% 10.30% 23.00% 11.28% 51.93%

DBN-1 3.94% 14.69% 16.15% 9.80% 52.21%

MART 4.12% 15.35% 11.64% 13.15% 49.82%

ABC-MART 3.69% 13.27% 9.45% 10.62% 46.14%

Robust LogitBoost 3.45% 13.03% 9.41% 10.04% 45.92%

ABC-LoigitBoost 3.20% 11.92% 8.54% 9.42% 44.69%
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Practical Advantages

MART, ABC-MART, Robust LogitBoost, ABC-LogitBoost

are well suited for industry applications:

• Few parameters. Performance is not sensitive to parameters; tuning is easy.

• No need to clean, normalize, kernelize the data.

• Easily scaling up to millions of samples.

• Not affected by irrelative features, automatically doing variable selections.

• Friedman’s MART algorithm has been widely used in industry.


