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Overview of Visualization of Analytical Processes

* Challenges and opportunities:
— Currently a gap between:

— Dramatic improvements in hardware and software for gathering,
communicating and storing raw data; versus

— Capacity of humans to act on this data in a meaningful way
— This gap will only continue to widen in the near future
* Goals:

— Emphasis on large-scale, complex systems represented as probabilistic
graphical models

— Novel, mathematical, computational and visualization methods
— Analytical processing partly done by the computer, partly by the human
* Research areas:

— Novel feature transformation and data synthesis techniques, based on
probabilistic graphical models including Bayesian network

— Strong coupling of these analytical processes, using Bayesian networks,
with visualizations

— Domain-independent and scalable techniques, using Electrical Power
Systems as one major application
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Overview of Talk

* Previous research
— Probabilistic graphical models, Bayesian networks and arithmetic circuits
— Electrical power system application

* Research challenge
— Visual analytics for large-scale probabilistic graphical models

+ Initial explorations

— Coupling of analytical processes, using Bayesian networks, with
visualizations

— Domain-independent and scalable techniques, using Electrical Power
Systems as major application

Carnegie Mellon

SILICON VALLEY

Previous Research
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Problem Statement

Diagnosis of complex engineered systems using model-based
techniques is complicated by several challenges

Hybrid system behavior
Model construction
Real-time performance
Goal: Develop Bayesian methods for on-line diagnosis of complex
engineered systems with real-time performance constraints

Target: Demonstrate solutions to challenges using an electrical
power system as an example of a complex hybrid system that is
ubiquitous to aircraft, spacecraft, and industrial systems
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The Modeling Challenge
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Uncertainty in EPSs
Components and sensors may fail
Sensor noise
Load-dependent noise

Many possible modes

Due to relays (switches), circuit breakers,
certain failures

Need for high diagnostic accuracy
Avoid single-fault assumption ]
Large, complex systems are often |-
Difficult to model
Tedious to extend and update

P
L]
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The Hybrid Systems Challenge

Hybrid systems:
Discrete: Both healthy and faulty modes
Continuous: Both healthy and faulty behavior
Fault types in hybrid systems:
1.abrupt discrete faults
2.abrupt continuous (parametric) faults

a) offset~--.... . A sensor or
......... component may, in
b) stuck  Ttteel, P v
T e general, see an
< StuckVohageSensor ] T Abrupt but small Continuous Offset Fault_J arbitrarily small
245 and faulty drop or
JJJJJ increase in its
24.45 value
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. ®
H 8 2
= s
A sensor or %3
component may,
in general, get 2
stuck at any a
continuous value. Time
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The Real-Time Reasoning Challenge

Real-time operating system (RTOS) used
in current avionics:

Task has: period, deadline, and worst-case
execution time (WCET)

Priority-based preemptive scheduling

The challenge of embedding Al into hard |
real-time system: -
Hardness of the computational problems
High expectation and/or variance of a search |:-
algorithm’s execution time
The real-time challenge:

Diagnostic processes need to be designed
within RTOS resource bounds

“Embedding Al into real-time systems”
[Musliner et al., 1995]
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Electrical Power Networks:
Aerospace Applications

Y
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On January 28 1968, a faulty electrical / a
switch created a spark which ignited ¥y 5
the pure oxygen environment; the
fire quickly killed the Apollo 1 crew.

On September 2, 1998, Swissair 111
crashed into the Atlantic Ocean,
killing all 229 people onboard. It was
determined that wires short-
circuited and led to a fire.

A battery failure occurred on the Mars
Global Surveyor, which last
communicated with Earth on
November 2, 2006. A software error
oriented the spacecraft to an angle
that over-exposed it to sunlight,
causing the battery to overheat.
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Electrical Power Systems Testbed

+  Electrical power systems (EPSs) are critical
in aerospace

. EPS loads include: avionics, propulsion, life
support, and thermal management
— increased EPS use in air- and spacecraft

. ADAPT EPS testbed at NASA Ames:

—  acapability for controlled insertion of faults,
giving repeatable failure scenarios;

—  a standard testbed for evaluating diagnostic
algorithms & software; and

—  a stepping stone for maturing diagnostic
technologies.

See also http://ti.arc.nasa.gov/projects/adapt
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Probabilistic Diagnosis Approach

Bayesian network

Each health variable
has at least two
states (healthy and
faulty), thus enabling
the diagnoses of
zero, one, two, or
more faults.

Specification language

Arithmetic circuit

uekClosed | Phealthy Pstuckopen

Battery!  : battery :0.0005;
wirel  :wire £0.0000 : Battery1; OFFLINE <
Voltage1  : sensorVoltage : 0.0005 : Wiret; PHASE e
Current!  : sensorCurrent : 0.0005 : Wire1; Network (BN)
Breaker! : breaker 10,0005 : Wirel;
Status1  :sensorTouch  :0.0005 : Breakert;
Wire2  :wire 10.0000 : Breaker1;
Relay1 ay :0.0005 : Wire2; —
Feedback1 : sensorTouch  :0.0005:Relayl;  saahasuausn,,. The
Loadl  :load £0.0005 : Relay; System ProDiagnose
Temp1 - sensorCurrent : 0.0005 : Load1 ; A Specificatior N

s algorithm.

See [Mengshoel
et al., 2008] and
[Mengshoel et al.,
2009] for BN
auto-construction.

Voltage1 |
| Battery1 |—<>—| Breaker1 |—| Relay1 |—| Load1 |
[ \ [

I Feed-
Current1 Status1 back1 Temp1

Sensor,
Commands
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Probabilistic On-Line Diagnosis

I(r)\l:UT: d PrODiagnose/ Health status SUTPUT:
serve ProADAPT uery
Variables Variables

[ Sensor_Feedbacd (&1 |
0 readOper
—a

Sensor_Feedbacki (57

Probabilistic model for a vehicle’s subsystem(s):
It represents health of sensors and subsystem components explicitly
It contains random variables for other parts of the subsystem

A probabilistic approach to:
Diagnosis: health status of system component nodes
Sensor validation: health status of sensor nodes
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Fault Types Investigated

_________________________________

] 1 Component Fault Description
Independent faults Baicry Degraded
: Ab X Boolean Sensor Stuck at Value
' rupt [ Tripped
: P lThese are the fault | Circuit Breaker Failed Open
h ypes considered in |
i Permanent stk i Stuck Closed
e ! Inverter Failed Off
Discrete ) Stuck Open
: ) Relay Stuck Closed
Continuous (parametric) Stuck at Value
. Sensor Offset
Intermittent Fiow Blocked
. . Pump(T.oad) Failed Off
Inci plent Over Speed
Fan(Load) Under Speed
Failed Off
Dependent fau lts Light Bulb(Load) Failed Off

Common cause
N See [Kurtoglu et al., 2009a] and
Cascading [Kurtoglu of . 20096] for |

discussion of fault types
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Related Research

Using Bayesian networks
— hybrid (discrete + continuous) BNs:

» clique tree based [Spiegelhalter & Lauritzen, 1988] using linear
Gaussians [Olesen, 1993]

* particle filtering [Koller & Lerner, 2000]
— discrete BNs:
« fault diagnosis in terrestrial EPSs [Yongli et al., 2006], [Chien et al.,
2002],
Not using Bayesian network

— hybrid bond graphs [Narasimhan & Biswas 2007], [Daigle et al.,
2008]

— general diagnostic engine [de Kleer & Williams, 1987], [Karin et
al., 2006], [Bunus et al., 2009]

— convex optimization [Gorinevsky et al., 2009]
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ADAPT Experimental Testbed
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Figure from [Kurtoglu et al., 2009b]. |
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Bayesian Network Model of ADAPT Tier 2

ADAPT EPS
ADAPT|  Bayesian
Neowerk
Name Sym | Description | Qty per | Qty per sensor
EPS [ Nodes | Evidence
ey
DC Current it Measures DC 7 3 2
Sensor current in amps
T r— T
ensor ot i s
DC Voliage | , | Measures DC o s N
Semsor voltage in volts
AC Voltage Measures AC
Sensor © | voltage in volts A3 2
Gt Senseswhetor
Brester it
Posion | i |resker's of o 1
Sensr apencor
closed
Retay Senses whetr
Poston e
S esh or 24 2 1
- jowey
Temperature Measures
Semsor temperature in
te |Fabweaheitof I 3
atery cabiner,
and g s
Speed Measures RPM
Transmitter | st |ofthe large 2 5 3
fans.
Phase Angle Measures the
Transducer phase shiftin
degrees.
Xt |between the 2 6 2
sine waves of
| AC current and
voltage
AC | Measures the
Frequency | st |AC frequency 2 3 2
. Transmitter Hertz
The Bayesian Flow Measures the
network model of T | —" ) 5| s
ADAPT Tier 2. o
=T — s [VR—,
ety
It millivolts of 2 3 2
ocoming gt
TOTAL 83 43 25
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Experiments, ADAPT Data

o Two types of scenarios:
« Tier 1 scenarios: nominal or contained one fault
» Tier 2 scenarios: nominal or contained single, double, or triple faults

« The ADAPT EPS was used to generate fault and nominal scenarios:
» Faults were injected simultaneously or sequentially

« Fault types were additive parametric (abrupt changes in parameter values) and
discrete (unexpected changes in system mode)

« Faults were permanent and included both component faults and sensor faults

1o ADAPT DXC Tier 1 J_____ADAPT DXC Tier 2
Metric 1| ProADAPT [ RODON [ HyDE-S /| ProADAPT [ Stanford | RODON
False positives (FP) rate | 0.0333 I 0.0645 0.2000 4 0.0732 |t 03256 0.5417
False negatives (FN) rate ' 0.0313 1 0.0968 0.0741 0.1392 |y 0.0519 0.0972
Detection accuracy 1 0.9677 : 0.9194 0.85481 0.8833 || 0.8500 0.7250
Classification errors : 2.0 | 10.0 26.0, 76.0 |1 110.5 84.1
Mean time to detect T'; (ms) ! 1,392 |, 218 1301 5981 |, 3946 3490
Mean time to isolate T; (ms) | 4,084 |+ 7.205 653 | 12,486 |1 14.103 36,331
Mean CPU time T'; (ms) , 1,601 | 11.766 513, 3,416 |, 963 8.0261
Mean peak memory usage (kb) 1 1,680 || 26,679 5.7951 6,539 || 5912 29.878
Score 1 72.80 v 39.85 59.50 83.20 |i 81.50 70.50
Rank ! 10, 2 3! 10 2 3
9 competitors in Tier 1. 6 competitors in Tier 2.
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Experiments, Simulated Data

ACE is the

. approach
Inference MPE Marginals ulsjgd in

Time (ms) | VE | ACE | CTP | ACE T\ ProADAPT.
Minimum | 1725 | 0.1967 | 8.527 | 0.4934
Maximum | 3845 | 2.779 | 3451 | 5.605
Median 17.63]-0.1995 | 9.204 1-0.5624
Mean (17.79 | 02370} [10.02 | 0.6981_
St Dev. [3513°02137 | 4351 0:0669

Comparison between Arithmetic Circuit Evaluation (ACE),
Variable Elimination (VE) and Clique Tree Propagation (CTP)
Main conclusions:

All three inference algorithms are quite efficient, thanks to auto-
generation algorithm

ACE outperforms VE (for MPE) and CTP (for marginals), both in Mean
and St. Dev.
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Summary: Bayesian Networks for Diagnostics

« Diagnostic challenges in aerospace and
at NASA:

— Modeling of large, complex systems

— Hybrid systems - discrete and continuous
behavior

— Hard diagnostic problems, real time . .
requirements Bayesian Reasoning for
« Probabilistic diagnosis approach, Diagnostics: Operates ’g’oa
ProDiagnose, with application to ADAPT | State space of size > 2°
electrical power system: in time < 1 ms.

— Auto-generation of Bayesian network

— Compilation of Bayesian networks to
real-time arithmetic circuits

— Handling of abrupt discrete and
continuous (parametric) faults using
discrete and static Bayesian networks

— Strong performance on electrical power
system data from ADAPT testbed
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Proposed Research
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Goals and Expected Outcomes

Contributions in learning and reasoning in probabilistic
graphical models, including Bayesian networks, that
consider their use in visualization and human-
computer interaction

Solid mathematical foundation: probabilistic graphical
models (Bayesian networks, Markov random fields,
factor graphs, ...)

Difficulty for humans to reason under uncertainty,
especially under time pressure and stress
- Visualization options versus

— Do not visualize uncertainty (determinism - the traditional
stance)

— Visualize uncertainty

 Visualization of uncertainty has recently been shown to
improve human performance

Current visualization methods for probabilistic reasoning
target domains with “few” random variables - say 1 to
100 range - not in the 100 - 100,000,000 range

Carnegie Mellon
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Background: Physical Networks

Networks provide opportunities to study visual analytics of large-scale interactions:
Local interactions are relatively well-understood
Inference can, due to sparseness, be made fast

Our main example network: Electric Power Systems (EPSs)

Terrestrial power grid (on a national level)
Micro-grids (vehicle, building, neighborhood, ...)

Current analysis typically uses deterministic models at two time scales:
Short (several cycles at 60 Hz): dynamic differential equations
Long: steady-state power flow equations; Monte-Carlo simulation

Robustness and scalability issues because of network-wide interactions:
Blackouts in current EPS, due to cascading failures

An upgraded national EPS - Smart Grid:

Numerous distributed generator plants (wind, solar, etc.)

Their potential large number, intermittency, and unreliability is causing great
concern

Carnegie Mellon
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Visualizing Bayesian Networks

Bayesian Network Tool Visual model
Hugin Expert Nodes, Bar charts
BayesBuilder Nodes, Bar charts
WinMine Nodes
BayesianLab Nodes
Netica Nodes, Bar charts
MSBNx Nodes
Analytica Nodes
GeNle/SMILE Nodes, Bar-charts/pie-chart

Carnegie Mellon
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Problem Statement

= Current Bayesian network
visualizations, though useful,
have several limitations:
= Difficulty handling large-

scale domains

= Often no support for time

series data

= Often no displaying of
information (e.g., Bayesian
network) along with the
underlying data (e.g., time

series).

= Need to perform visual
search to locate interesting

information
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Bayesian network for
diagnosis of the ADAPT
electrical power
system: 671 nodes and
790 edges
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Candidate Visualizations

TreeMap (Ben
Shneiderman)

LT —_ i 0
CETTT FOOET |- Y
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SamlAm

MacroScope (Adnan
(Henry Darwiche)

Lieberman)

Visualization of Analytical Processes

Distribution
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Visualization Exploration (1

sT265 604
Component ID: ST165 -
Component Type: 60
O() ACFrequencyTransmitter o0
(V| description: AC Frequency 602
Transmitter ' abe !
o o0 200

= inverreRy

Component ID: E242 -
Component Type: 40 W 1T181 - urent sansor
p

DCVoltageSensor Sy 0| Component ID: ISH181 &
description: DC voltage sensor: | 34 5]} ”MM“MJ T b isasey | 08
description: Actuator position 700,
sensor 585
ss0

b o o

Bifocal XY with color map and zooming.
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Visualization Exploration (2

ST265 60.4
Component ID: ST165 -
Component Type: 605
ACFrequencyTransmitter gg‘]‘
description: AC Frequency 02
Transmitter ! ‘1 3‘2 % L]

o 10 2m

E242 Voltage Sensor
E242 2441
Component ID: E242

Component Type: =
DCVoltageS g

oltageSensor 2
description: DG voltage sensor: | 2404 NI |

1328

IT181 - Current Sensor

Component ID: ISH181 ot
Component Type: PositionSensor| ;.
description: Actuator position
sensor

0 1m om

Bifocal XY with color map, zooming, and comparison.
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Application Areas

Aerospace: The C-MAPSS software tool is used to simulate nominal and fault
engine degradation over a series of flights. In one C-MAPPS data set, 30
engine and flight condition parameters were recorded at 1 Hz for a number
of flights; see

for details. Another C-MAPSS data set, see

, contains turbofan engine degradation data.

Engineering: Water distribution networks can be modeled using the EPANET
software; see . This
software has been used to evaluate algorithms for sensor placement, which
have as their goal to quickly detect contaminants [Leskovec, 2007].

Social network data: Add Health is a longitudinal study, consisting of a
representative sample, of adolescents in grades 7-12 in the United States
during the 1994-95 school year. The data set contains information on the
social, economic, psychological and physical health of participants, along
with contextual (or network) data on family, community, school, friendships,
etc. See and [Hoff, 2007].

Homeland security: FODAVA data sets.
Electrical power networks: See other slides.
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Vision: Improving the visualization of
analytical processes, in particular
machine learning and inference
processes that use probabilistic
graphical models, in large-scale
systems such as electrical power

Summary: Visualization of Analytical Processes

Faculty:
Mengshoel, e
Selker, and llic &

systems.
Tasks: Abstract large scale-scale = Identify gaps in current
networks - such as electrical power approaches to visual analytics as

systems - into probabilistic graphical
representations. Combine algorithmics
and visulization to create better methods

applied to probabilistic graphical
models

m Find “common ground” between
visualization and probabilistic

for understanding, analyzing, and graphical models
controlling large-scale probabilistic m Develop methods that handle
models. large-scale networks, such as

Carnegie Mellon

electrical power systems, when
modeled as probabilistic
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