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• Challenges and opportunities: 

– Currently a gap between: 

– Dramatic improvements in hardware and software for gathering, 
communicating and storing raw data; versus 

– Capacity of humans to act on this data in a meaningful way

– This gap will only continue to widen in the near future

• Goals:

– Emphasis on large-scale, complex systems represented as probabilistic 
graphical models

– Novel, mathematical, computational and visualization methods

– Analytical processing partly done by the computer, partly by the human

• Research areas:

– Novel feature transformation and data synthesis techniques, based on 
probabilistic graphical models including Bayesian network

– Strong coupling of these analytical processes, using Bayesian networks, 
with visualizations

– Domain-independent and scalable techniques, using Electrical Power 
Systems as one major application

Overview of Visualization of Analytical Processes
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• Previous research

– Probabilistic graphical models, Bayesian networks and arithmetic circuits

– Electrical power system application

• Research challenge

– Visual analytics for large-scale probabilistic graphical models

• Initial explorations

– Coupling of analytical processes, using Bayesian networks, with 
visualizations

– Domain-independent and scalable techniques, using Electrical Power 
Systems as major application

Overview of Talk
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Previous Research
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Problem Statement

Diagnosis of complex engineered systems using model-based 
techniques is complicated by several challenges

Hybrid system behavior 

Model construction

Real-time performance 

Goal: Develop Bayesian methods for on-line diagnosis of complex 
engineered systems with real-time performance constraints

Target:  Demonstrate solutions to challenges using an electrical 
power system as an example of a complex hybrid system that is 
ubiquitous to aircraft, spacecraft, and industrial systems
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The Modeling Challenge

Uncertainty in EPSs

Components and sensors may fail

Sensor noise 

Load-dependent noise

Many possible modes
Due to relays (switches), circuit breakers, 
certain failures 

Need for high diagnostic accuracy
Avoid single-fault assumption

Large, complex systems are often 
Difficult to model 

Tedious to extend and update 
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The Hybrid Systems Challenge

Hybrid systems: 

Discrete:  Both healthy and faulty modes

Continuous: Both healthy and faulty behavior

Fault types in hybrid systems: 

1.abrupt discrete faults

2.abrupt continuous (parametric) faults

a) offset 

b) stuck

A sensor or 

component may, 

in general, get 

stuck at any 

continuous value.

A sensor or 

component may, in 

general, see an 

arbitrarily small 

and faulty drop or 

increase in its 

value 
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The Real-Time Reasoning Challenge

Real-time operating system (RTOS) used 
in current avionics:

Task has: period, deadline, and worst-case 
execution time (WCET) 

Priority-based preemptive scheduling

The challenge of embedding AI into hard 
real-time system:

Hardness of the computational problems

High expectation and/or variance of a search 
algorithm’s execution time 

The real-time challenge:

Diagnostic processes need to be designed 
within RTOS resource bounds 

“Embedding AI into real-time systems” 
[Musliner et al., 1995]
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On January 28 1968, a faulty electrical 
switch created a spark which ignited 
the pure oxygen environment; the 
fire quickly killed the Apollo 1 crew. 

On September 2, 1998, Swissair 111 
crashed into the Atlantic Ocean, 
killing all 229 people onboard.  It was 
determined that wires short-
circuited and led to a fire. 

A battery failure occurred on the Mars 
Global Surveyor, which last 
communicated with Earth on 
November 2, 2006. A software error 
oriented the spacecraft to an angle 
that over-exposed it to sunlight, 
causing the battery to overheat. 

Electrical Power Networks: 
Aerospace Applications
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Electrical Power Systems Testbed

• Electrical power systems (EPSs) are critical 

in aerospace 

• EPS loads include: avionics, propulsion, life 

support, and thermal management 

– increased EPS use in air- and spacecraft

• ADAPT EPS testbed at NASA Ames: 

– a capability for controlled insertion of faults, 

giving repeatable failure scenarios; 

– a standard testbed for evaluating diagnostic 

algorithms & software; and

– a stepping stone for maturing diagnostic 

technologies. 

See also http://ti.arc.nasa.gov/projects/adapt/

10



12/4/2009

6

C

a

r

n

e
g

i

e

M
e

l

l

Probabilistic Diagnosis Approach

Arithmetic 

Circuit (AC)

Offline 

Compilation

Online

Inference

Diagnosis: 

MLV, MPE, 

or MAP 

Bayesian 

Network (BN)

Sensor, 

Commands

System 

Specification

Offline

Generation

ON-LINE

PHASE

OFF-LINE

PHASE

Battery1      : battery              : 0.0005;

Wire1          : wire                  : 0.0000 : Battery1;             

Voltage1     : sensorVoltage  : 0.0005 : Wire1;

Current1      : sensorCurrent  : 0.0005 : Wire1;

Breaker1     : breaker            : 0.0005 : Wire1;

Status1       : sensorTouch     : 0.0005  : Breaker1;

Wire2          : wire                   : 0.0000 : Breaker1;

Relay1        : relay                  : 0.0005 : Wire2;

Feedback1 : sensorTouch      : 0.0005 : Relay1;

Load1         : load                   : 0.0005 : Relay1;

Temp1        : sensorCurrent   : 0.0005 : Load1 ;

Each health variable 

has at least two 

states (healthy and 

faulty), thus enabling 

the diagnoses of  

zero, one, two, or 

more faults.  

The 

ProDiagnose

algorithm.

Bayesian network Arithmetic circuit

Specification language

Battery1

Voltage1

Current1

Breaker1 Relay1 Load1

Feed-

back1

Wire1 Wire2

Status1 Temp1

See [Mengshoel 

et al., 2008] and 

[Mengshoel et al., 

2009] for  BN 

auto-construction.
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Probabilistic On-Line Diagnosis

ProDiagnose/

ProADAPT
Commands

Health status

Sensor readings

Probabilistic model for a vehicle’s subsystem(s): 

It represents health of sensors and subsystem components explicitly

It contains random variables for other parts of the subsystem 

A probabilistic approach to: 

Diagnosis: health status of system component nodes

Sensor validation: health status of sensor nodes

INPUT: 

Observed 

Variables

OUTPUT: 

Query 

Variables

12
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Fault Types Investigated

Independent faults

Abrupt 

Permanent

Discrete 

Continuous (parametric)

Intermittent

Incipient

Dependent faults

Common cause

Cascading

These are the fault 

types considered in 

this talk. 

See [Kurtoglu et al., 2009a] and 

[Kurtoglu et al., 2009b] for 

discussion of fault types. 
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Related Research

• Using Bayesian networks

– hybrid (discrete + continuous) BNs:

• clique tree based [Spiegelhalter & Lauritzen, 1988] using linear 
Gaussians [Olesen, 1993]

• particle filtering [Koller & Lerner, 2000]

– discrete BNs: 

• fault diagnosis in terrestrial EPSs [Yongli et al., 2006], [Chien et al., 
2002],

• Not using Bayesian network

– hybrid bond graphs [Narasimhan & Biswas 2007], [Daigle et al., 
2008]

– general diagnostic engine [de Kleer & Williams, 1987], [Karin et 
al., 2006], [Bunus et al., 2009]

– convex optimization [Gorinevsky et al., 2009]
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ADAPT Experimental Testbed

Tier 1 

Tier 2 

Figure from [Kurtoglu et al., 2009b]. 

Tier 1 experiments were 

substantially easier than Tier 2 

experiments: 
• a subset of ADAPT was used 

•relays were closed at all times
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Bayesian Network Model of ADAPT Tier 2

The Bayesian 

network model of 

ADAPT Tier 2. 

16
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Experiments, ADAPT Data

• Two types of scenarios: 
• Tier 1 scenarios: nominal or contained one fault 

• Tier 2 scenarios: nominal or contained single, double, or triple faults

• The ADAPT EPS was used to generate fault and nominal scenarios: 
• Faults were injected simultaneously or sequentially

• Fault types were additive parametric (abrupt changes in parameter values) and 
discrete (unexpected changes in system mode)

• Faults were permanent and included both component faults and sensor faults

9 competitors in Tier 1. 6 competitors in Tier 2.
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Experiments, Simulated Data 

Comparison between Arithmetic Circuit Evaluation (ACE), 
Variable Elimination (VE) and Clique Tree Propagation (CTP) 

Main conclusions: 

All three inference algorithms are quite efficient, thanks to auto-
generation algorithm 

ACE outperforms VE (for MPE) and CTP (for marginals), both in Mean 
and St. Dev. 

ACE is the 

approach 

used in 

ProADAPT. 
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• Diagnostic challenges in aerospace and 
at NASA: 

– Modeling of large, complex systems 

– Hybrid systems – discrete and continuous 
behavior

– Hard diagnostic problems, real time 
requirements

• Probabilistic diagnosis approach, 
ProDiagnose, with application to ADAPT 
electrical power system:

– Auto-generation of Bayesian network

– Compilation of Bayesian networks to 
real-time arithmetic circuits

– Handling of abrupt discrete and 
continuous (parametric) faults using 
discrete and static Bayesian networks

– Strong performance on electrical power 
system data from ADAPT testbed

Bayesian Reasoning for 

Diagnostics: Operates in a 

state space of size > 2500

in time < 1 ms. 

Summary: Bayesian Networks for Diagnostics

C

a

r

n

e
g

i

e

M
e

l

l

Proposed Research
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Contributions in learning and reasoning in probabilistic 
graphical models, including Bayesian networks, that 
consider their use in visualization and human-
computer interaction

Solid mathematical foundation: probabilistic graphical 
models (Bayesian networks, Markov random fields, 
factor graphs, …) 

Difficulty for humans to reason under uncertainty, 
especially under time pressure and stress

• Visualization options 

– Do not visualize uncertainty (determinism - the traditional 
stance) 

– Visualize uncertainty 

• Visualization of uncertainty has recently been shown to 
improve human performance 

Current visualization methods for probabilistic reasoning 
target domains with “few” random variables – say 1 to 
100 range – not in the 100 - 100,000,000 range 

Goals and Expected Outcomes

versus
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Networks provide opportunities to study visual analytics of large-scale interactions:

Local interactions are relatively well-understood

Inference can, due to sparseness, be made fast

Our main example network: Electric Power Systems (EPSs)

Terrestrial power grid (on a national level) 

Micro-grids (vehicle, building, neighborhood, …) 

Current analysis typically uses deterministic models at two time scales: 

Short (several cycles at 60 Hz): dynamic differential equations

Long:  steady-state power flow equations; Monte-Carlo simulation 

Robustness and scalability issues because of network-wide interactions: 

Blackouts in current EPS, due to cascading failures 

An upgraded national EPS – Smart Grid: 

Numerous distributed generator plants (wind, solar, etc.)

Their potential large number, intermittency, and unreliability is causing great 
concern

Background: Physical Networks
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Bayesian Network Tool Visual model

Hugin Expert Nodes, Bar charts

BayesBuilder Nodes, Bar charts

WinMine Nodes

BayesianLab Nodes

Netica Nodes, Bar charts

MSBNx Nodes

Analytica Nodes

GeNIe/SMILE Nodes, Bar-charts/pie-chart

Visualizing Bayesian Networks
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� Current Bayesian network 

visualizations, though useful, 

have several limitations: 

� Difficulty handling large-

scale domains

� Often no support for time 

series data

� Often no displaying of 

information (e.g., Bayesian 

network) along with the 

underlying data (e.g., time 

series). 

� Need to perform visual 

search to locate interesting 

information

� …

Problem Statement

Bayesian network for 

diagnosis of the ADAPT 

electrical power  

system:  671 nodes and 

790 edges  

24
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MacroScope

(Henry 

Lieberman) 

SamIAm

(Adnan

Darwiche) 

TreeMap (Ben 

Shneiderman) 

Candidate Visualizations
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Probabilistic Graphical Models for Diagnosis

Visualization & 

Mosaics

Large-Scale Domains

Power 
Distribution

Power 
Storage

Power Storage Power 
Distribution

Visualization of Analytical Processes

?

26
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Visualization Exploration (1)

Bifocal XY with color map and zooming. 
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Bifocal XY with color map, zooming, and comparison. 

Visualization Exploration (2)
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Application Areas

• Aerospace:  The C-MAPSS software tool is used to simulate nominal and fault 
engine degradation over a series of flights. In one C-MAPPS data set, 30 
engine and flight condition parameters were recorded at 1 Hz for a number 
of flights; see https://dashlink.arc.nasa.gov/data/c-mapss-aircraft-engine-
simulator-data/ for details. Another C-MAPSS data set, see 
https://dashlink.arc.nasa.gov/data/turbofan-engine-degradation-simulation-
data-set/, contains turbofan engine degradation data. 

• Engineering: Water distribution networks can be modeled using the EPANET 
software; see http://www.epa.gov/nrmrl/wswrd/dw/epanet.html. This 
software has been used to evaluate algorithms for sensor placement, which 
have as their goal to quickly detect contaminants [Leskovec, 2007].  

• Social network data: Add Health is a longitudinal study, consisting of a 
representative sample, of adolescents in grades 7-12 in the United States 
during the 1994-95 school year. The data set contains information on the 
social, economic, psychological and physical health of participants, along 
with contextual (or network) data on family, community, school, friendships, 
etc. See http://www.cpc.unc.edu/projects/addhealth and [Hoff, 2007].  

• Homeland security: FODAVA data sets. 

• Electrical power networks: See other slides.
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Vision:  Improving the visualization of  

analytical processes, in particular 

machine learning and inference 

processes that use probabilistic 

graphical models, in large-scale 

systems such as electrical power 

systems. 

Faculty:  

Mengshoel, 

Selker, and Ilic

� Identify gaps in current 

approaches to visual analytics as 

applied to probabilistic graphical 

models

� Find “common ground” between 

visualization and probabilistic 

graphical models

� Develop methods that handle 

large-scale networks, such as 

electrical power systems, when 

modeled as probabilistic 

graphical models

Tasks:: Abstract large scale-scale 

networks – such as electrical power 

systems – into  probabilistic graphical 

representations. Combine algorithmics

and visulization to create better methods 

for understanding, analyzing, and 

controlling large-scale probabilistic 

models. 

Summary: Visualization of Analytical Processes
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Web and Publications
• Further details: 

– Intelligent sytems lab: http://mlt.sv.cmu.edu/cis/

– DASHlink - Health management technologies in aeronautics: https://dashlink.arc.nasa.gov/

– ADAPT testbed: http://ti.arc.nasa.gov/projects/adapt/

– Probabilistic diagnostics: http://ti.arc.nasa.gov/project/pca/

– Personal: http://ti.arc.nasa.gov/people/omengshoel

• Publications: 
– O. J. Mengshoel, M. Chavira, K. Cascio, S. Poll, A. Darwiche, and S. Uckun, “Probabilistic Model-

Based Diagnosis: An Electrical Power System Case Study.” Accepted, IEEE Trans. on Systems, Man 

and Cybernetics, Part A, 2009.

– O. J. Mengshoel, S. Poll, and T. Kurtoglu. “Developing Large-Scale Bayesian Networks by 

Composition: Fault Diagnosis of Electrical Power Systems in Aircraft and Spacecraft.” In Proc. of the 

IJCAI-09 Workshop on Self-* and Autonomous Systems (SAS): Reasoning and Integration 

Challenges, 2009. 

– B. W. Ricks and O. J. Mengshoel.  “Methods for Probabilistic Fault Diagnosis: An Electrical Power 

System Case Study.” In Proc. of Annual Conference of the Prognostics and Health Management 

Society, 2009

– O. J. Mengshoel, A. Darwiche, K. Cascio, M. Chavira, S. Poll, and S. Uckun, “Diagnosing Faults in 

Electrical Power Systems of Spacecraft and Aircraft.” In Proc. of the Twentieth Innovative Applications 

of Artificial Intelligence Conference (IAAI-08), Chicago, IL, 2008. 

– O. J. Mengshoel, “Macroscopic Models of Clique Tree Growth for Bayesian Networks”. In Proc. of the 

22nd National Conference on Artificial Intelligence (AAAI-07). July 2007, Vancouver, Canada, pp. 

1256-1262. 

– O. J. Mengshoel, “Designing Resource-Bounded Reasoners using Bayesian Networks: System 

Health Monitoring and Diagnosis.” In Proc. of the 18th International Workshop on Principles of 

Diagnosis (DX-07), Nashville, TN, May 2007. 
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