Visualization of Analytical Processes

Ole J. Mengshoel, Marija Ilic, and Ted Selker

Carnegie Mellon University

Electrical Power Networks: Aerospace Applications

On January 28 1968, a *faulty electrical switch* created a spark which ignited the pure oxygen environment; the fire quickly killed the Apollo 1 crew.

On September 2, 1998, Swissair 111 crashed into the Atlantic Ocean, killing all 229 people onboard. It was determined that wires shortcircuited and led to a fire.

A battery failure occurred on the Mars Global Surveyor, which last communicated with Earth on November 2, 2006. A software error oriented the spacecraft to an angle that over-exposed it to sunlight, causing the battery to overheat.

Carnegie Mellon SILICON VALLEY

Related Research	
Using Bayesian networks bybrid (discrete + continuous) BNs:	
 • clique tree based [Spiegelhalter & Lauritzen, 1988] using linear Gaussians [Olesen, 1993] 	
• particle filtering [Koller & Lerner, 2000] – discrete BNs:	
 fault diagnosis in terrestrial EPSs [Yongli et al., 2006], [Chien et al., 2002], 	
 Not using Bayesian network 	
– hybrid bond graphs [Narasimhan & Biswas 2007], [Daigle <i>et al.,</i> 2008]	
 general diagnostic engine [de Kleer & Williams, 1987], [Karin et al., 2006], [Bunus et al., 2009] 	
– convex optimization [Gorinevsky et al., 2009]	
Carnegie Mellon. SILICON VALLEY 14	

 Experiments, ADAPT Data Two types of scenarios: Tier 1 scenarios: nominal or contained one fault Tier 2 scenarios: nominal or contained single, double, or triple faults The ADAPT EPS was used to generate fault and nominal scenarios: Faults were injected simultaneously or sequentially Fault types were additive parametric (abrupt changes in parameter values) and discrete (unexpected changes in system mode) 								
Faults were permanent and included both component faults and sensor faults								
Metric	ProADAPT	RODON	HvDE-S	ProADAPT	Stanford	RODON		
False positives (FP) rate	0.0333	0.0645	0.2000	0.0732	0.3256	0.5417		
False negatives (FN) rate	0.0313	0.0968	0.0741	0.1392	0.0519	0.0972		
Detection accuracy	0.9677	0.9194	0.8548	0.8833	0.8500	0.7250		
Classification errors	2.0	10.0	26.0	76.0	110.5	84.1		
Mean time to detect T_d (ms)	1,392	218	130	5981	3946	3490		
Mean time to isolate T_i (ms)	4,084	7,205	653	12,486	14,103	36,331		
Mean CPU time T_c (ms)	1,601	11,766	513	3,416	963	8,0261		
Mean peak memory usage (kb)	1,680	26,679	5,795	6,539	5,912	29,878		
Score	72.80	59.85	59.50	83.20	81.50	70.50		
Rank	1	2	3	1	2	3		
9 competitors in Tier 1. 6 competitors in Tier 2.								

Inference	MPE Marginals				approach
Time (ms)	VE	ACE	CTP	ACE	vised in ProADAPT.
Minimum	17.25	0.1967	8.527	0.4934	
Maximum	38.45	2.779	54.51	5.605	
Median	17.63	-0.1995	9.204 -	-0.5624	
Mean	(17.79	0.2370	(10.02	0.6981	
St. Dev.	1.513 -	-0.2137	4.451 -	-0.6669	
Comparison between Arithmetic Circuit Evaluation (ACE), Variable Elimination (VE) and Clique Tree Propagation (CTP) Main conclusions: All three inference algorithms are quite efficient, thanks to auto- generation algorithm ACE outperforms VE (for MPE) and CTP (for marginals), both in Mean					

Visualizing Bayesian Networks					
Bayesian Network Tool	Visual model				
Hugin Expert	Nodes, Bar charts				
BayesBuilder	Nodes, Bar charts				
WinMine	Nodes				
BayesianLab	Nodes				
Netica	Nodes, Bar charts				
MSBNx	Nodes				
Analytica	Nodes				
GeNIe/SMILE	Nodes, Bar-charts/pie-chart				
ırnegie Mellon.					

29

Carnegie Mellon SILICON VALLEY

Web and Publications

- · Further details:
 - Intelligent sytems lab: http://mlt.sv.cmu.edu/cis/
 - DASHlink Health management technologies in aeronautics: https://dashlink.arc.nasa.gov/
 - ADAPT testbed: http://ti.arc.nasa.gov/projects/adap
 - Probabilistic diagnostics: <u>http://ti.arc.nasa.gov/project/pca/</u>
 - Personal: <u>http://ti.arc.nasa.gov/people/omengshoel</u>
- Publications:
 - O. J. Mengshoel, M. Chavira, K. Cascio, S. Poll, A. Darwiche, and S. Uckun, "Probabilistic Model-Based Diagnosis: An Electrical Power System Case Study." Accepted, *IEEE Trans. on Systems, Man* and Cybernetics, Part A, 2009.
 - O. J. Mengshoel, S. Poll, and T. Kurtoglu. "Developing Large-Scale Bayesian Networks by Composition: Fault Diagnosis of Electrical Power Systems in Aircraft and Spacecraft." In Proc. of the IJCAI-09 Workshop on Self-* and Autonomous Systems (SAS): Reasoning and Integration Challenges, 2009.
 - B. W. Ricks and O. J. Mengshoel. "Methods for Probabilistic Fault Diagnosis: An Electrical Power System Case Study." In Proc. of Annual Conference of the Prognostics and Health Management Society, 2009
 - O. J. Mengshoel, A. Darwiche, K. Cascio, M. Chavira, S. Poll, and S. Uckun, "Diagnosing Faults in Electrical Power Systems of Spacecraft and Aircraft." In *Proc. of the Twentieth Innovative Applications* of Artificial Intelligence Conference (IAAI-08), Chicago, IL, 2008.
 - O. J. Mengshoel, "Macroscopic Models of Clique Tree Growth for Bayesian Networks". In Proc. of the 22nd National Conference on Artificial Intelligence (AAAI-07). July 2007, Vancouver, Canada, pp. 1256-1262.
 - O. J. Mengshoel, "Designing Resource-Bounded Reasoners using Bayesian Networks: System Health Monitoring and Diagnosis." In Proc. of the 18th International Workshop on Principles of Diagnosis (DX-07), Nashville, TN, May 2007.

Carnegie Mellon SILICON VALLEY

31