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Data in High-D
A deluge of data: documents, web searching, customer databases, 
hyper-spectral imagery, social networks, gene arrays, proteomics 
data, sensor networks, financial transactions, traffic 
statistics (automobilistic, computer networks)... 

Common feature: data is given in a high dimensional space, 
however it has a much lower dimensional intrinsic geometry. 
(i) physical constraints: for example the effective state-space of at 
least some proteins seems low-dimensional, at least when viewed 
at the time scale when important processes (e.g. folding) 
take place. 
(ii) statistical constraints: for example many dependencies among 
word frequencies in a document corpus force the distribution of 
word frequency to low-dimensional, compared to the 
dimensionality of the whole space.
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Example 1: Text documents
About 1100 Science News articles, from 8 different categories. We 
compute about 1000 coordinates, i-th coordinate of document d 
represents frequency in document d of the i-th word in a dictionary.
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Example 2: Handwritten digits
Data base of about 60,000 28x28 gray-scale pictures of 
handwritten digits, collected by USPS. Point cloud in       .
Goal: automatic recognition.

R728
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Example 3: Molecular 

The dynamics of a small protein (12 atoms, H atoms removed) in a 
bath of water molecules is approximated by a Langevin system of 
stochastic equations:

The set of states of the protein is a noisy set of points in 

ẋ = −∇U(x) + ẇ

R36

Joint with C. Clementi
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Ongoing efforts in several 
directions

• Using diffusion processes on graphs for (inter)active learning.

• Perform multiscale analysis on graphs: construction of graph-adaptive
multiscale analysis, for graph visualization and exploration, and (inter)active
learning.

• Estimating intrinsic dimensionality of data

• Construct data-adaptive dictionaries for data-modeling and exploration.

• Apply recent results of provably good parametrizations of manifolds with
heat kernels and eigenfunctions of the Laplacian
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Random walks on data, Graphs 
Given:

• Data X = {xi}N

i=1 ⊂ RD
.

• Local similarities via a kernel function W (xi, xj) ≥ 0.

Simplest example: Wσ(xi, xj) = e
−||xi−xj ||2/σ

.

Model the data as a weighted graph (G, E, W ): vertices represent

data points, edges connect xi, xj with weight Wij := W (xi, xj),

when positive. Let Dii =
�

j
Wij and

P = D
−1

W� �� �
random walk

, T = D
− 1

2 WD
− 1

2� �� �
symm. “random walk��

, H = e
−tL

� �� �
Heat kernel

Here L = I − T is the normalized Laplacian.

Note: W depends on the type of data. Moreover, W should be

“local”, i.e. close to 0 for points not sufficiently close.
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Some basic properties of r.w.’s

• P t(x, y) is the probability of jumping from x to y in t steps

• P t(x, ·) is a “probability bump” on the graph

• P and T are similar, therefore share the same eigenvalues {λi} and
the eigenfunctions are related by a simple transformation. Let Tϕi =
λiϕi, with 1 = λ1 ≥ λ2 ≥ . . . .

• “typically” P (or T ) is large and sparse, but its high powers are full
and low-rank

• one can take limits as n→∞ of the above, when the points are sam-
pled from a manifold M, and recover in the limit natural operators
such as Laplacian, heat kernels etc... on M.
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(Inter)Active Learning
With E. Monson and R. 

Brady [C.S.]A simple tool to explore possible algorithms
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(Inter)Active Learning
With E. Monson and R. 

Brady [C.S.]

Graph is actually changed as labels are added - can update its visualization!

Thursday, December 3, 2009



Multiscale Analysis 
on Graphs

We would like to be able to perform multiscale analysis of graphs, and of
functions on graphs.

Of: produce coarser and coarser graphs, in some sense sketches of the original at
different levels of resolution. This could allow a multiscale study of the geometry
of graphs.

On: produce coarser and coarser functions on graphs, that allow, as wavelets do
in low-dimensional Euclidean spaces, to analyse a function at different scales.
We tackle these two questions at once.

With R. Coifman [Math.]
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Multiscale graph 
representations

Let T = D−
1
2 WD−

1
2 as above be the L2-normalized symmetric “random

walk”.
The eigenvalues of T and its powers “typically” look like this:

With E. Monson and R. 
Brady [C.S.]
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Multiscale graph 
representations

Let T = D−
1
2 WD−

1
2 as above be the L2-normalized symmetric “random
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Simple geometric 
graph from a 2-D 

point cloud

With E. Monson and R. 
Brady [C.S.]
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Multiscale graph 
representations
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2 WD−

1
2 as above be the L2-normalized symmetric “random

walk”.
The eigenvalues of T and its powers “typically” look like this:

Simple geometric 
graph from a 2-D 

point cloud

Functions at 
multiple scales

With E. Monson and R. 
Brady [C.S.]
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Multiscale random walks

We construct multiscale analyses associated with a diffusion-like process T on
a space X, be it a manifold, a graph, or a point cloud. This gives:

(i) A coarsening of X at different “geometric” scales, in a chain X → X1 →
X2 → · · ·→ Xj . . . ;

(ii) A coarsening (or compression) of the process T t at all time scales t = tj =
2j , {Tj = [T 2j

]Φj

Φj
}j , each acting on the corresponding Xj ;

(iii) A set of wavelet-like basis functions for analysis of functions (observables)
on the manifold/graph/point cloud/set of states of the system.
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Scheme for MRA
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Scheme for MRA

Let T = D−
1
2 WD−

1
2 as above be the L2-normalized symmetric “random

walk”.
The eigenvalues of T and its powers “typically” look like this:

Dilations
Compression

Scaling functions and 
dilations
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Compression step: 
more details

Let T = D−
1
2 WD−

1
2 as above be the L2-normalized symmetric “random

walk”.
The eigenvalues of T and its powers “typically” look like this:

In order to compress the matrix T we use “rank-revealing QR” decompositions.
Fix � > 0.

TΠ = QR =
�

Q11 Q12

� �
R11 R12

0 R22

�
�� Q11

�
R11 R12

�

• Q orthogonal, R upper triangular,Π permutation, ||R22||2 � �

• Q are the scaling functions [Φ1]Φ0 , [R11|R12] is [T ]Φ1
Φ0

, the compressed
operator from fine to coarse scale.

• The number of columns N1 of Q11 (and of R11) determines the dimension
of the next coarse scale.

• The first N1 columns of Π select N1 representative vertices on the graph.
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Consistence of 
multiscale r.w.’s

Let T = D−
1
2 WD−

1
2 as above be the L2-normalized symmetric “random

walk”.
The eigenvalues of T and its powers “typically” look like this:

Let Gj = Φj be the graph whose vertices are the scaling functions at scale j.
Tj � [T 2j+1

]Φj

Φj
is a “random walk” (symmetrized) on Gj , a compressed version

of T 2j
restricted to Vj . In fact:

T 2j+1
f � P ∗

Vj
TjPVj f

with � meaning �-close in L2(G).
We think of (Gj , Tj) as a coarse version of G, constructed in such way that the
random walk on Gj is the random talk on G at time 2j , compressed.
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Example 2: text 
documents
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Example 2: text 
documents
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We observe the full data set (e.g. a body of text documents), and want to learn
a categorization of the data (e.g. topics of the text documents). We pay a price
for every label we obtain from an expert.
We would like to find points s.t. if we get their correct label we maximize the
gain in prediction accuracy.
Natural candidates are the multiscale diffusion centers. We compare them to
using random points and to using points of high degree.

Start with 
few labelled 

points

Predict 
(diffusion)

Label a ``well-
chosen’’ new point

``Well-chosen’’: well-spread, and with highly uncertain prediction

Active Learning
With E. Monson and R. 

Brady [C.S.]
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Active Learning
With E. Monson and R. 

Brady [C.S.]1147 Science News articles, 8  categories
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Active Learning
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With E. Monson and R. 
Brady [C.S.]
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Active Learning
With E. Monson and R. 

Brady [C.S.]11291 Newsgroup Data, 20 categories
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Multiscale inference
With J. Guinney [Comp.Bio.], S. 

Mukherjee [Stat.], P. Febbo [Med.]

A data matrix X, N ×D may be thought as representing data on a δ-function
basis (N single samples in terms of D single coordinates).

When we compute the SVD X = UΣV T we are computing global coordinates
in sample space (the columns of U) and in coordinate space (the columns of
V T ). It is a sort of linear Fourier analysis.

With this multiscale decomposition we can interpolate in-between at all scales
and obtain useful data representations.

The random walk methods do that nonlinearly, by following the geometry of
the data. Equivalent to working in a higher-dimensional feature space inferred
from the data.
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X is N × D, N documents in RD, compute multiscale dictionary Φ (D ×M)
on the D words. If f maps documents to their topic, write f = XΦβ + η and
find β by

argminβ ||f −XΦβ||22 + λ||{2−jγβj,k}||1 ,

which is a form of sparse regression. (λ, γ) are determined by cross-validation.

Fitting term, with 
linear function of 

multiscale features

Sparsity in terms of 
multiscale dictionary

We obtain very sparse solutions on various data sets, with corresponding basis
elements having different scales.

Multiscale inference
With J. Guinney [Comp.Bio.], S. 

Mukherjee [Stat.], P. Febbo [Med.]
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Example: text documents
X is N × D, N documents in RD, compute multiscale dictionary Φ (D ×M)
on the D words. If f maps documents to their topic, write f = XΦβ + η and
find β by

argminβ ||f −XΦβ||22 + λ||{2−jγβj,k}||1 ,

which is a form of sparse regression. (λ, γ) are determined by cross-validation.
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Example: gene arrays

Source of data: Nakagawa T, Kollmeyer T, Morlan B, Anderson, S, Bergstralh E, et al, (2008) 
A tissue biomarker panel predicting systemic progression after PSA recurrence post-definitive prostate cancer therapy, Plos One 3:e2318.

X is N ×D, N patients with D genes (here N ∼ 400 and D ∼ 1000).

Thursday, December 3, 2009



Example: gene arrays

Source of data: Nakagawa T, Kollmeyer T, Morlan B, Anderson, S, Bergstralh E, et al, (2008) 
A tissue biomarker panel predicting systemic progression after PSA recurrence post-definitive prostate cancer therapy, Plos One 3:e2318.

X is N ×D, N patients with D genes (here N ∼ 400 and D ∼ 1000).

Thursday, December 3, 2009



Example: gene arrays

Source of data: Nakagawa T, Kollmeyer T, Morlan B, Anderson, S, Bergstralh E, et al, (2008) 
A tissue biomarker panel predicting systemic progression after PSA recurrence post-definitive prostate cancer therapy, Plos One 3:e2318.

Added advantage: the multiscale genes we construct are much interpretable than 
eigengenes, several of them match important pathways, and moreover both small 
scale and large scale genelets seem relevant.

X is N ×D, N patients with D genes (here N ∼ 400 and D ∼ 1000).
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Heat and Eigenfunction maps

We have results that show that one may use heat kernels or Laplacian eigen-
functions to obtain bi-Lipschitz maps from large portion of a manifold M of
dimension k to Euclidean space Rk. These manifold learning algorithms are
quite different from existing ones. Maps are in the form

• x �→ (Kt(x, xi))k
i=1 where Kt(·, xi) is the heat kernel on M centered at

xi ∈M at time t. The sources xi are well-chosen depending on the large
region being mapped.

• x �→ (ϕji(x))k
i=1 where the ϕj ’s are eigenfunctions of the Laplacian ∆ on

M, and the indices ji are well-chosen, depending on the large region of
M being mapped.

These algorithms, as most others, require k as in input.

With P.W. Jones and R. Schul [Math.]
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Heat and Eigenfunction maps
These results require two parameters:

(a) The radius R of the largest ball that admits a (1+�)-biLipschitz
embedding.

(b) The intrinsic dimensionality k.

(a) seems hard, but in fact trivial by greedy multiscale algorithm,
that applies the Theorem for R = Rj := (1 + δ)j , for j = 0, . . . , J .
If Theorem yields the desired map at scale Rj , increase j, otherwise
stop. The Theorem guarantees that we stop at the optimal (oracle)
scale (up to a factor (1 + δ)).
(b) is a classical problem. Existing algorithms do not seem to
perform well and have weak guarantees. Two approaches: use the
Theorem (with different k’s), or use Multiscale SVD. These two
approaches are essentially the same.

With P.W. Jones and R. Schul [Math.]
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Intrinsic dimensionality

Model: data {xi}n
i=1 is sampled from a manifold M of dimension k, em-

bedded in RD, with k � D. We receive {xi + ηi}n
i=1, where ηi ∼i.i.d η is

D-dimensional noise (e.g. Gaussian).

Objective: estimate k. Motivations:

• Basic measure of complexity of the data

• Settle claims about low-dimensional structures in data

• Needed by many algorithms that seek to parametrize the data

• Equivalent to number of: latent variables in a linear model, degrees

of freedom in a dynamical system; useful for clustering the data by

local dimensionality, finding compressed representations of the data,

building dictionaries for representing and modeling the data, etc...

• Much work has been done, but it is quite unsatisfactory (more on this

later...)

With P.W. Jones and R. Schul [Math.]
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Rough overview of existing 
techniques

15 10 5 0 5 10 15 20
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σ2V2

σ1V1

Two standard methods:
Volume-based: on a k-dimensional set, |Br(z) ∩ M| ∼ rk. Compute
log |Br(z)| for several values of r and fit a line. Empirical version needs
n ∼ 2k. Many papers with variations on this theme, including refinements
in the last few years. For example one may try to construct Br(z) on the
manifold.
Principal Component Analysis: if Xn is the n × D matrix with the sam-
ples, write the Singular Value Decomposition X = UΣV T , where U, V are
orthogonal and Σ diagonal with elements (singular values) σ1 ≥ σ2 ≥ . . . .
Alternatively, let cov(Xn) = 1

nXT
n Xn = 1

nV Σ2V T . For n points x1, . . . , xn,
among all i-dimensional planes, the plane πi spanned by the top i principal
vectors Vi minimizes

n�

l=1

||xl − πi(xl)||2 .

Covariance estimation results:
exactly k non-zero σi’s, w.h.p.,
as soon as n � k log k.

With A. Little [Math.] 
and L. Rosasco [C.S.]
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Sketch of Results

We obtain general results which imply, as particular cases, the following: if
certain geometric conditions and bounds on the noise hold, the algorithm
succeeds

• Consistency: as the number of samples n→ +∞

• Scaling limit: as n, D → +∞ with n
D → γ

• (Ambient dimension)-free limit: for fixed n, for D → +∞, and
σ
√

D ∼ 1 (i.e. E[||η||] = O(1) independently of D)

• (Intrinsic dimension)-free: n, k → +∞, n
k log k → γ

• Dimension-free: a combination of the last two.

With A. Little [Math.] 
and L. Rosasco [C.S.]

Thursday, December 3, 2009



Comparisons: unit cube
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Fig. 4. Benchmark data sets: cube.

lation Dimension and Taken estimators and ... as implemented by ....LL please
fill in the references here...

6.5 Data sets

Lorenzo: Need to run the digits, and other data sets as in the papers by Hero
and Shapiro. I think it would also be great to run this on patches of an image.
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Fig. 4. Benchmark data sets: cube.

lation Dimension and Taken estimators and ... as implemented by ....LL please
fill in the references here...

6.5 Data sets

Lorenzo: Need to run the digits, and other data sets as in the papers by Hero
and Shapiro. I think it would also be great to run this on patches of an image.

31

Thursday, December 3, 2009



Comparison: unit sphere
S6(250, σ)
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Fig. 5. Benchmark data sets: sphere.

6.6 Varifolds

6.7 Nonlinear and multiscale

MM: TODO REWRITE OR THROW AWAY...Certain intrinsic properties of
M may be recovered. For example if M is flat, an isometric parametrization
may be recovered (at least in the limit n → ∞) by Hessian eigenmaps [33];
more generally, bi-Lipschitz atlases may be found by heat kernel triangulation
[34].

Another issue that we need to consider is that we cannot expect in general
to have λ(z,r)

1 ! · · · ! λ(z,r)
k . Recall that from the bounds in Proposition ??

it was useful to have σk(C(z,r)zr) as large as possible, i.e. as close as possible
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Fig. 5. Benchmark data sets: sphere.

6.6 Varifolds

6.7 Nonlinear and multiscale

MM: TODO REWRITE OR THROW AWAY...Certain intrinsic properties of
M may be recovered. For example if M is flat, an isometric parametrization
may be recovered (at least in the limit n → ∞) by Hessian eigenmaps [33];
more generally, bi-Lipschitz atlases may be found by heat kernel triangulation
[34].

Another issue that we need to consider is that we cannot expect in general
to have λ(z,r)

1 ! · · · ! λ(z,r)
k . Recall that from the bounds in Proposition ??

it was useful to have σk(C(z,r)zr) as large as possible, i.e. as close as possible
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Comparison: S-shaped manifold
Z50(200, σ)
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Fig. 6. Benchmark data sets: S-manifold.
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Fig. 7. Benchmark data sets: Meyer’s staircase.

to σ1(C(z,r)zr). Geometrically, this corresponds to assuming that Xz,r is close
to being locally round, i.e. locally the principal curvatures should be roughly
the same. A prototypical example when this is not the case, is an ellipsoid
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Open problems & future dir.’s
• Faster algorithms for multiscale analysis on graphs
• Better visualization of multiscale analysis of graphs [E. Monson, R. Brady]

• Implementation and use in visualization of algorithms derived from 
eigenfunction/heat kernel embeddings

• Generalization to data sets with varying dimensionality [A. Little, J. Lee]

• Applications to real world data sets [A. Little, M. Crosskey; C. Clementi; L. Rosasco]

• Towards a toolbox of highly robust geometric analysis tools for data sets [A. 
Little, G. Chen].

• Dynamic graphs [K. Balachandrian, J. Lee]

Collaborators: E. Monson, R. Brady (Duke C.S.); R. Coifman (Math, Yale), P.W. Jones 
(Math, Yale); R. Schul (Math, Stonybrook); A. V. Little, K. Balachandrian (Math grad, 
Duke), J. Lee (Math undergrad, Duke); L. Rosasco (CS, MIT and Universita’ di 
Genova); C. Clementi (Chem., Rice); S. Mukherjee (Stat, Duke); J. Guinney (Comp. 
Bio. grad, Duke); P. Febbo (Med., Duke).
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