Foundations of Comparative Analytics for Uncertainty in Graphs

Lise Getoor, University of Maryland Alex Pang, UC Santa Cruz Lisa Singh, Georgetown University

Motivation

- Input to analysis process is mix of structured, semi-structured and unstructured data
- Here, we focus on data that is best described as multi-modal, attributed graph or network
- Input to analysis process is often noisy and incomplete
- In addition, analytic process requires reasoning about similarity, uncertainty and logical conclusions

Needs

- Mathematical models which can infer missing values, infer links, and infer matches or duplicates in the data, and can capture the uncertainty and imprecision in the analytic process
- Comparative analysis methods that can contrasts the results of different models
- Visual analytic tools that support the understanding results of comparison and support the analyst in interactively updating the model/conclusions

The Big Picture

Outline

- Motivation
- Mathematical Foundations for Uncertainty in Graphs
 - Probabilistic Similarity Logic (PSL)
- Comparative Analysis
- Visual Analytic Support
- Application Domains

Why PSL?

- Collective Reasoning under Uncertainty
 - Combining probabilistic and logical inference
- Reasoning about Similarity
 - Degrees of Similarity vs. Bivalent Logic
- Reasoning with Sets of Objects
- Simplicity, "Vanilla"-version \rightarrow usability
- Scalability for large data sets
- Integration Framework

Ex. 1: Entity Resolution

- Entities
 - People
- Attributes
 - Name
- Relationships
 - Friendship

- Entities, attributes, relationships
- Use rules to express evidence
 - Modular, simple
 - "If two people have the same name, they are probably identical"
 - "If two people have the same friends, they are probably identical"
 - "If A=B and B=C, then A and C must also denote the same person"

- Entities, attributes, relationships
- Use rules to express evidence
 - Modular, simple
 - "If two people have the same name, they are probably identical"
 - "If two people have the same friends, they are probably identical"
 - "If A=B and B=C, then A and C must also denote the same person"

- Entities, attributes, relationships
- Use rules to express evidence
 - Modular, simple
 - '"f two people have the same name, they are probably identical"
 - "If two people have the same friends, they are probably identical"
 - "If A=B and B=C, then A and C must also denote the same person"

- Entities, attributes, relationships
- Use rules to express evidence
 - Modular, simple
 - "If two people have the same name, they are probably identical"
 - "If two people have the same friends, they are probably identical"
 - "If A=B and B=C, then A and C must also denote the same person"

Syntax Components

- Rules + Weights
 - A / B ² C : w , w real number
- Rules defines evidence

- Soft Evidence: "If X then likely Y"
 - $0 < w < \infty$
- Conclusive Evidence: "If X then definitely Y"
 - w = ∞
- Modularized: A model is a set of rules
- Humanly understandable
- Weight specifies relative probability

Addressing Entities

- Use relational syntax
 - X.name
 - X.father
 - X.friend (a friend)
- Explicitly handle sets
 - {X.friend} all friends
 - {X.friend.friend} all second level friends
 - X.friend. {friend} <u>all</u> friends of <u>a</u> friend

Example

- X.name $=_{s}$ Y.name => X = Y : 5
 - Implicit universal quantification
 - $=_{s}$ denotes a string similarity function
- {X.friend} =_{} {Y.friend} => X = Y : 3
 - = $_{\{\}}$ denotes a set similarity function

Addressing Entities

- Entity Addressing can consider inferred relationships or be restricted to known ones.
 - Atoms for 'closed" predicates are always assumed to be known. 'Open" predicates are subject to inference.

 $A.groups = {B.groups = > friend(A,B) : 2$ ${A.friend} = {B.friend = > A=B : 3$

- Consider inferred

 $A.\$ = A=B : 4

- Consider only known

Advanced Addressing

- Qualifications
 - {?X.friend[age>50]}
 - {?Y.friend[gender=female].friend}
 - Like 'where" clauses
- Catch-all Global Addressing
 - {?A.friend} = {*[age>65]} => ?A.type=old_representative
- Catch-all relations with qualifications
 - {?X.*[type=association]}={?Y.*[type=association]}

Constraints

- Predicate properties
 - Child = inverse(parent)
 - symmetric(friend)
- Exclusivity Constraints
 - Needed e.g. in alignment problems
 - functional(hasLabel)
 - Each entity is assigned 1 label
 - partialFunctional(equalConcept)
 - Each concept is equivalent to at most one other.

Truth Combiner Functions

- Need to combine truth values for multiple atoms
 - A / B ² C 1 D
- Lukasiewicz T-Norm
 - T(A / B) = max(T(A)+T(B)-1,0)
 - T(C 1 D) = min(T(C)+T(D),1)

PSL Inference
• Satisfaction Distance
• P = set of rules, KB
•
$$d(P,I) = ||d(\vec{R},I)||_{x} = \left\| \begin{bmatrix} d(R_{1},I) \\ d(R_{n},I) \end{bmatrix} \right\|_{x}$$

• $s(I | P) = \frac{1}{2} \exp(-d(P,I))$

MAP Inference

Most Probable Interpretation

- Most likely truth value assignment given some facts.

argmax s(I|P) I argmin d(P,I) I

MAP Inference Results

- Exact PSL inference in polynomial time
 - Convex optimization problem
- O(n^{3.5}) inference for PSL fragment
 Second Order Cone Program
 - Efficient commercial optimization packages

Ex. 2: Collective Classification

- Entities
 - Documents
- Attributes
 - Word occurrence within document
- Relationships
 - Citations
- Goal: Classify documents
 - Fixed number of topics
 - Allow multi-membership

- Documents, words, links
- Use rules to express evidence
 - "If an attribute-based classifier predicts a document's topic to be X, then it is X"
 - "If a document has topic X, then the majority of documents it links to are also classified as X"
 - "If a document has topic X, then any document that refers to it is also of topic X"

- Documents, words, links
- Use rules to express evidence
 - "If an attribute-based classifier predicts a document's class to be X, then it is X"
 - "If a document has topic X, then the majority of documents it links to are also classified as X"
 - "If a document has topic X, then any document that refers to it is also of topic X"

- Documents, words, links
- Use rules to express evidence
 - "If a classifier predicts a document's topic to be X, then it is X"
 - "If a document has topic X, then the majority of documents it links to are also classified as X"
 - "If a document has topic X, then any document that refers to it is also of topic X"

- Documents, words, links
- Use rules to express evidence
 - "If a classifier predicts a document's topic to be X, then it is X"
 - "If a document has topic X, then the majority of documents it links to are also classified as X"
 - "If a document has topic X, then any document that refers to it is also of topic X"

Ex. 3: Link Prediction

- Entities
 - People, Emails
- Attributes
 - Words in emails
- Relationships
 - communication, work relationship
- Goal: Identify work relationships
 - Supervisor, subordinate, colleague

- People, emails, words, communication, relations
- Use rules to express evidence
 - "If an email is classified as type X, it is of type X"
 - "If A sends deadline emails to B, then A is the supervisor of B"
 - "If A is the supervisor of B, and A is the supervisor of C, then B and C are colleagues"

- People, emails, words, communication, relations
- Use rules to express evidence
 - "If an email is classified as type X, it is of type X"
 - "If A sends deadline emails to B, then A is the supervisor of B"
 - "If A is the supervisor of B, and A is the supervisor of C, then B and C are colleagues"

- People, emails, words, commuication, relations
- Use rules to express evidence
 - "If an email is classified as type X, it is of type X"
 - "If A sends deadline emails to B, then A is the supervisor of B"
 - "If A is the supervisor of B, and A is the supervisor of C, then B and C are colleagues"

- People, emails, words, communication, relations
- Use rules to express evidence
 - "If an email is classified as type X, it is of type X"
 - "If A sends deadline emails to B, then A is the supervisor of B"
 - "If A is the supervisor of B, and A is the supervisor of C, then B and C are colleagues"

Outline

- Motivation
- Mathematical Foundations for Uncertainty in Graph
 - Probabilistic Similarity Logic (PSL)
- Comparative Analysis
- Visual Analytic Support
- Application Domains
- Research Plan

Quantifying Uncertainty in Graphs

- Types of uncertainty
 - Attribute uncertainty
 - Link Uncertainty
 - Entity Uncertainty
- Want to compare distributions
 - Over attribute values
 - Link probabilities
 - Equivalence of objects

Comparative Analysis

- Our comparative operators are expressed using a graph algebra.
- We can compare posterior probabilities of nodes, edges and/or attributes.
- Basic operators serve as building blocks for more complex ones.
- Ranking
 - Unary operator that orders nodes, edges or attributes based on posterior probability, variability, etc.

Comparative Operators

Difference

Given two uncertain graphs G1 and G2, compute a resultant graph that contains nodes and edges that have a difference in posterior probabilities greater than threshold τ

Intersection

Given two uncertain graphs G1 and G2, compute a resultant graph that contains nodes and edges that have a difference in posterior probabilities greater than threshold τ

Outline

- Motivation
- Mathematical Foundations for Uncertainty in Graph
 - Probabilistic Similarity Logic (PSL)
- Comparative Analysis
- Visual Analytic Support
- Application Domains

Visualization

- Developing open source visual analytic platform for comparing graphs. Platform being built using open source toolkits, Prefuse and Jung.
- Developing specialized visualizations that focus on comparing local uncertainty. We are currently exploring a bullseye metaphor.

Outline

- Motivation
- Mathematical Foundations for Uncertainty in Graph
 - Probabilistic Similarity Logic (PSL)
- Comparative Analysis
- Visual Analytic Support
- Application Domains

Shark Bay Dolphin Research Project Overview

- Dolphins monitored by international team of scientists since 1984.
 - 14000 surveys
 - Thousands of hours of focal follows
 - Thousands of pictures
 - GIS spatial data

