

Motivation

- Input to analysis process is mix of structured, semi-structured and unstructured data
- Here, we focus on data that is best described as multi-modal, attributed graph or network
- Input to analysis process is often noisy and incomplete
- In addition, analytic process requires reasoning about similarity, uncertainty and logical conclusions

Needs

- Mathematical models which can infer missing values, infer links, and infer matches or duplicates in the data, and can capture the uncertainty and imprecision in the analytic process
- Comparative analysis methods that can contrasts the results of different models
- Visual analytic tools that support the understanding results of comparison and support the analyst in interactively updating the model/conclusions

The Big Picture

Outline

- Motivation
- Mathematical Foundations for Uncertainty in Graphs
- Probabilistic Similarity Logic (PSL)
- Comparative Analysis
- Visual Analytic Support
- Application Domains

Why PSL?

- Collective Reasoning under Uncertainty
- Combining probabilistic and logical inference
- Reasoning about Similarity
- Degrees of Similarity vs. Bivalent Logic
- Reasoning with Sets of Objects
- Simplicity, "Vanilla"-version \rightarrow usability
- Scalability for large data sets
- - Integration Framework

Ex. 1: Entity Resolution

- Entities
- People
- Attributes
- Name
- Relationships
- Friendship

Example: Entity Resolution

- Entities, attributes, relationships
- Use rules to express evidence
- Modular, simple
- "If two people have the same name, they are probably identical"
- "If two people have the same friends, they are probably identical"
- "If $A=B$ and $B=C$, then A and C
 must also denote the same person"

Example: Entity Resolution

- Entities, attributes, relationships
- Use rules to express evidence
- Modular, simple
- "If two people have the same name, they are probably identical"
- "If two people have the same friends, they are probably identical"
- "If $A=B$ and $B=C$, then A and C
 must also denote the same person"

Example: Entity Resolution

- Entities, attributes, relationships
- Use rules to express evidence
- Modular, simple
- '"f two people have the same name, they are probably identical"
- "If two people have the same friends, they are probably identical"
- "If $A=B$ and $B=C$, then A and C
 must also denote the same person"

Example: Entity Resolution

- Entities, attributes, relationships
- Use rules to express evidence
- Modular, simple
- "If two people have the same name, they are probably identical"
- "If two people have the same friends, they are probably identical"
- "If $A=B$ and $B=C$, then A and C
 must also denote the same person"

Syntax Components

- Rules + Weights
- A / B ${ }^{2}$ C: w, w real number
- Rules defines evidence

- Soft Evidence: "If X then likely Y"
- $0<w<\infty$
- Conclusive Evidence: "If X then definitely $Y^{\prime \prime}$
- $W=\infty$
- Modularized: A model is a set of rules
- Humanly understandable
- Weight specifies relative probability

Addressing Entities

- Use relational syntax
- X.name
- X.father
- X.friend (a friend)
- Explicitly handle sets
- \{X.friend $\}$ - all friends
- \{X.friend.friend\} - all second level friends
- X.friend.\{friend\} - all friends of a friend

Example

- X.name $=_{\text {s }}$ Y.name $=>X=Y: 5$
- Implicit universal quantification
- $=_{s}$ denotes a string similarity function
- $\{\mathrm{X}$.friend $\}={ }_{\{ \}}\{\mathrm{Y}$.friend $\}=>X=Y: 3$
- $=_{\{ \}}$denotes a set similarity function

Addressing Entities

- Entity Addressing can consider inferred relationships or be restricted to known ones.
- Atoms for 'closed" predicates are always assumed to be known. 'Open" predicates are subject to inference.
$\{$ A.groups $\}={ }_{\{ \}}\{B$. groups $\}=>$ friend $(A, B): 2$
$\{A$. friend $\}{ }_{\{ \}}\{B$.friend $\}=>A=B: 3$
- Consider inferred
$\{A . \$ f r i e n d\}={ }_{\{ \}}\{B . \$$ friend $\}=>A=B: 4$
- Consider only known

Advanced Addressing

- Qualifications
- \{?X.friend[age>50]\}
- \{?Y.friend[gender=female].friend\}
- Like "where" clauses
- Catch-all Global Addressing
$-\{$?A.friend $\}=\{*[$ age $>65]\}=>$?A.type=old_representative
- Catch-all relations with qualifications
- \{?X.*[type=association]\}=\{?Y.*[type=association]\}

Constraints

- Predicate properties
- Child = inverse(parent)
- symmetric(friend)
- Exclusivity Constraints
- Needed e.g. in alignment problems
- functional(hasLabel)
- Each entity is assigned 1 label
- partialFunctional(equalConcept)
- Each concept is equivalent to at most one other.

Truth Combiner Functions

- Need to combine truth values for multiple atoms
- A / B ${ }^{2}$ C1 D
- Lukasiewicz T-Norm

$$
\begin{aligned}
& -T(A / B)=\max (T(A)+T(B)-1,0) \\
& -T(C 1 D)=\min (T(C)+T(D), 1)
\end{aligned}
$$

PSL Inference

- Satisfaction Distance
- P = set of rules, KB
$\left.\cdot d(P, I)=\|d(\vec{R}, I)\|_{x}=\| d \begin{array}{c}d\left(R_{1}, I\right) \\ \vdots \\ d\left(R_{n}, I\right)\end{array}\right) \|_{x}$
: S(I | P) $=1 / z \exp (-d(P, I))$

MAP Inference

- Most Probable Interpretation
- Most likely truth value assignment given some facts.
$\operatorname{argmax} \mathrm{S}(\mathrm{I} \mid \mathrm{P})$
I
argmin $d(P, I)$
I

MAP Inference Results

- Exact PSL inference in polynomial time
-Convex optimization problem
- $\mathrm{O}\left(\mathrm{n}^{3.5}\right)$ inference for PSL fragment
-Second Order Cone Program
-Efficient commercial optimization packages

Ex. 2: Collective Classification

- Entities
- Documents
- Attributes
- Word occurrence within document
- Relationships
- Citations
- Goal: Classify documents
- Fixed number of topics
- Allow multi-membership

Collective Classification

- Documents, words, links
- Use rules to express evidence
- "If an attribute-based classifier predicts a document's topic to be X, then it is $\mathrm{X}^{\prime \prime}$
- "If a document has topic X, then the majority of documents it links to are also classified as $\mathrm{X}^{\prime \prime}$
- "If a document has topic X, then any document that refers to it is also of topic $\mathrm{X}^{\prime \prime}$

Collective Classification

- Documents, words, links
- Use rules to express evidence
- "If an attribute-based classifier predicts a document's class to be X, then it is $\mathrm{X}^{\prime \prime}$
- "If a document has topic X, then the majority of documents it links to are also classified as $\mathrm{X}^{\prime \prime}$
- "If a document has topic X, then any document that refers to it is also of topic $\mathrm{X}^{\prime \prime}$

Collective Classification

- Documents, words, links
- Use rules to express evidence
- "If a classifier predicts a document's topic to be X, then it is $X^{\prime \prime}$
- "If a document has topic X, then the majority of documents it links to are also classified as $\mathrm{X}^{\prime \prime}$
- "If a document has topic X, then any document that refers to it is also of topic $X^{\prime \prime}$

Collective Classification

- Documents, words, links
- Use rules to express evidence
- "If a classifier predicts a document's topic to be X, then it is $X^{\prime \prime}$
- "If a document has topic X, then the majority of documents it links to are also classified as $\mathrm{X}^{\prime \prime}$
- "If a document has topic X, then any document that refers to it is also of topic $X^{\prime \prime}$

Ex. 3: Link Prediction

- Entities
- People, Emails
- Attributes
- Words in emails
- Relationships
- communication, work relationship
- Goal: Identify work relationships
- Supervisor, subordinate, colleague

Link Prediction

- People, emails, words, communication, relations
- Use rules to express evidence
- "If an email is classified as type X, it is of type $X^{\prime \prime}$
- "If A sends deadline emails to B, then A is the supervisor of $B^{\prime \prime}$
- "If A is the supervisor of B, and A is the supervisor of C, then B and C are colleagues"

Link Prediction

- People, emails, words, communication, relations
- Use rules to express evidence
- "If an email is classified as type X, it is of type $X^{\prime \prime}$
- "If A sends deadline emails to B, then A is the supervisor of $B^{\prime \prime}$
- "If A is the supervisor of B, and A is the supervisor of C, then B and C are colleagues"

Link Prediction

- People, emails, words, commuication, relations
- Use rules to express evidence
- "If an email is classified as type X, it is of type $X^{\prime \prime}$
- "If A sends deadline emails to B, then A is the supervisor of $B^{\prime \prime}$
- "If A is the supervisor of B, and A is the supervisor of C, then B and C are colleagues"

Link Prediction

- People, emails, words, communication, relations
- Use rules to express evidence
- "If an email is classified as type X, it is of type $X^{\prime \prime}$
- "If A sends deadline emails to B, then A is the supervisor of $B^{\prime \prime}$
- "If A is the supervisor of B, and A is the supervisor of C, then B and C are colleagues"

Outline

- Motivation
- Mathematical Foundations for Uncertainty in Graph
- Probabilistic Similarity Logic (PSL)
- Comparative Analysis
- Visual Analytic Support
- Application Domains
- Research Plan

Quantifying Uncertainty in Graphs

- Types of uncertainty
- Attribute uncertainty
- Link Uncertainty
- Entity Uncertainty
- Want to compare distributions
- Over attribute values
- Link probabilities
- Equivalence of objects

Comparative Analysis

- Our comparative operators are expressed using a graph algebra.
- We can compare posterior probabilities of nodes, edges and/or attributes.
- Basic operators serve as building blocks for more complex ones.
- Ranking
- Unary operator that orders nodes, edges or attributes based on posterior probability, variability, etc.

Comparative Operators

- Difference

Given two uncertain graphs G1 and G2, compute a resultant graph that contains nodes and edges that have a difference in posterior probabilities greater than threshold T

- I ntersection

Given two uncertain graphs G1 and G2, compute a resultant graph that contains nodes and edges that have a difference in posterior probabilities greater than threshold T

Outline

- Motivation
- Mathematical Foundations for Uncertainty in Graph
- Probabilistic Similarity Logic (PSL)
- Comparative Analysis
- Visual Analytic Support
- Application Domains

Visualization

- Developing open source visual analytic platform for comparing graphs. Platform being built using open source toolkits, Prefuse and Jung.
- Developing specialized visualizations that focus on comparing local uncertainty. We are currently exploring a
 bullseye metaphor.

Outline

- Motivation
- Mathematical Foundations for Uncertainty in Graph
- Probabilistic Similarity Logic (PSL)
- Comparative Analysis
- Visual Analytic Support
- Application Domains

Shark Bay Dolphin Research Project Overview

- Dolphins monitored by international team of scientists since 1984.
- 14000 surveys
- Thousands of hours of focal follows
- Thousands of pictures
- GIS spatial data

Summary

