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MotivationMotivation
 Input to analysis process is mix of structured, p y p ,

semi-structured and unstructured data
 Here, we focus on data that is best described 

as multi-modal, attributed graph or network
 Input to analysis process is often noisy and 

incomplete
 In addition, analytic process requires reasoning 

b t i il it t i t d l i labout similarity, uncertainty and logical 
conclusions
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NeedsNeeds
 Mathematical models which can infer 

missing values, infer links, and infer matches or 
duplicates in the data, and can capture the 

t i t d i i i i th l tiuncertainty and imprecision in the analytic 
process
C ti l i th d th t Comparative analysis methods that can 
contrasts the results of different models
 Visual analytic tools that support the Visual analytic tools that support the 

understanding results of comparison and 
support the analyst in interactively updating thesupport the analyst in interactively updating the 
model/conclusions
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Why PSL?Why PSL?
 Collective Reasoning under Uncertaintyg y
- Combining probabilistic and logical inference

 Reasoning about SimilarityReasoning about Similarity
- Degrees of Similarity vs. Bivalent Logic

 Reasoning with Sets of ObjectsReasoning with Sets of Objects
 Simplicity,  ‘‘Vanilla‘‘-version  usability

S l bilit f l d t t Scalability for large data sets
 Integration Framework
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Ex 1: Entity ResolutionEx. 1: Entity Resolution
 Entities
- People

 Attributes
A B

John Smith J. Smith

name name

- Name

 Relationships

A B
friend friend

- Friendship C

E

D F G

H= H

=
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Example: Entity ResolutionExample: Entity Resolution
 Entities, attributes, , ,

relationships
 Use rules to express 

A B

John Smith J. Smith

name name

evidence
- Modular, simple

“If t l h th

A B
friend friend

- “If two people have the same 
name, they are probably identical’’

- “If two people have the same 
f i d th b bl

C

E

D F G

H=
friends, they are probably 
identical’’

- “If A=B and B=C, then A and C 
t l d t th

H

=

must also denote the same 
person’’
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Syntax ComponentsSyntax Components
 Rules + Weightsg
- A , B fl C : w , w real number

 Rules defines evidence
- Soft Evidence: “If X then likely Y’’

• 0 < w < ∞

C l i E id “If X th d fi it l Y’’- Conclusive Evidence: “If X then definitely Y’’
• w = ∞

- Modularized: A model is a set of rulesModularized: A model is a set of rules
- Humanly understandable

 Weight specifies relative probabilityg p p y
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Addressing EntitiesAddressing Entities
 Use relational syntaxy
- X.name
- X.father
- X.friend (a friend)

 Explicitly handle sets
- {X.friend} - all friends
- {X.friend.friend} - all second level friends

X friend {friend} all friends of a friend- X.friend.{friend} - all friends of a friend
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ExampleExample
 X.name =s Y.name => X = Y : 5s
- Implicit universal quantification
- =s denotes a string similarity function

 {X.friend} ={} {Y.friend} => X = Y : 3
- ={} denotes a set similarity function
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Addressing EntitiesAddressing Entities
 Entity Addressing can consider inferred y g

relationships or be restricted to known ones.
- Atoms for ‘’closed’’ predicates are always assumed to be 

known ‘’Open’’ predicates are subject to inferenceknown. Open  predicates are subject to inference.

{A.groups} ={} {B.groups} => friend(A,B) : 2{ g p } {} { g p } ( , )
{A.friend} ={} {B.friend} => A=B : 3
- Consider inferred

{A.$friend} ={} {B.$friend} => A=B : 4
- Consider only known
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Advanced AddressingAdvanced Addressing
 QualificationsQ
- {?X.friend[age>50]}
- {?Y.friend[gender=female].friend}
- Like ‘’where’’ clauses

 Catch-all Global Addressing
- {?A.friend} = {*[age>65]} => 

?A.type=old_representative

 Catch all relations with qualifications Catch-all relations with qualifications
- {?X.*[type=association]}={?Y.*[type=association]}
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ConstraintsConstraints
 Predicate propertiesp p
- Child = inverse(parent)
- symmetric(friend)

 Exclusivity Constraints
- Needed e.g. in alignment problems
- functional(hasLabel)

• Each entity is assigned 1 label

- partialFunctional(equalConcept)- partialFunctional(equalConcept)
• Each concept is equivalent to at most 

one other.
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Truth Combiner FunctionsTruth Combiner Functions
Need to combine truth values for 

multiple atoms
- A , B fl C . D

 Lukasiewicz T-Norm
- T(A , B) = max( T(A)+T(B)-1 ,0)

- T(C . D) = min( T(C)+T(D) ,1)
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PSL InferencePSL Inference
Satisfaction DistanceSatisfaction Distance 
P = set of rules, KB All ground 

rules

d(P I) d(R I)
d(R1,I)

rules

d(P,I) =  d(R,I) x = 
d(Rn,I)

x

�( I | P) = 1/Z exp (- d(P,I))
x
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MAP InferenceMAP Inference
Most Probable InterpretationMost Probable Interpretation
- Most likely truth value assignment given some facts.

argmax  �( I | P)
II

i d(P I)

ñ
argmin d(P,I)

I
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MAP Inference ResultsMAP Inference Results
Exact PSL inference in polynomialExact PSL inference in polynomial 
time

Convex optimization problem-Convex optimization problem

O(n3.5) inference for PSL fragment
Second Order Cone Program-Second Order Cone Program
-Efficient commercial optimization 

kpackages
23



Ex 2: Collective ClassificationEx. 2:  Collective Classification
 Entities

B

- Documents

 Attributes A|B
- Word occurrence within 

document

R l i hi
A|B

 Relationships
- Citations

G l Cl if d t A Goal: Classify documents
- Fixed number of topics

Allow multi membership
B

A

- Allow multi-membership
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Collective ClassificationCollective Classification
 Documents, words, links

B
, ,

 Use rules to express 
evidence A|B
- “If an attribute-based classifier 

predicts a document’s topic to be X, 
then it is X” A|B

- “If a document has topic X, then the 
majority of documents it links to are 
also classified as X” A

- “If a document has topic X, then 
any document that refers to it is 
also of topic X” B

A
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Collective ClassificationCollective Classification
 Documents, words, links

B
0
1
1

Bayesian
Cl ifi

, ,
 Use rules to express 

evidence A|B

1
0

Classifier

- “If an attribute-based classifier 
predicts a document’s class to be X, 
then it is X” A|B

- “If a document has topic X, then the 
majority of documents it links to are 
also classified as X” A

- “If a document has topic X, then 
any document that refers to it is 
also of topic X” B

A
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Collective ClassificationCollective Classification
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B
, ,
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A|B
p ,
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B
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B
, ,
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Ex 3: Link PredictionEx. 3: Link Prediction
 Entities - People, Emails

 Attributes




- Words in emails

 Relationships 
- communication, work 

relationship

G l Id tif k  Goal: Identify work 
relationships

Supervisor subordinate



- Supervisor, subordinate, 
colleague
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Link PredictionLink Prediction
 People, emails, words, p , , ,

communication, relations
 Use rules to express 




evidence
- “If an email is classified as type 

X it is of type X” X, it is of type X
- “If A sends deadline emails to B, 

then A is the supervisor of B”
“If A is the supervisor of B and A - If A is the supervisor of B, and A 
is the supervisor of C, then B and 
C are colleagues”


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Link PredictionLink Prediction
 People, emails, words, p , , ,

communication, relations
 Use rules to express 




complete by

due

evidence
- “If an email is classified as type 

X it is of type X” X, it is of type X
- “If A sends deadline emails to B, 

then A is the supervisor of B”
“If A is the supervisor of B and A - If A is the supervisor of B, and A 
is the supervisor of C, then B and 
C are colleagues”


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Quantifying Uncertainty in GraphsQuantifying Uncertainty in Graphs
 Types of uncertaintyyp y
- Attribute uncertainty
- Link Uncertainty
- Entity Uncertainty

W di ib i Want to compare distributions
- Over attribute values

Link probabilities- Link probabilities
- Equivalence of objects



Comparative AnalysisComparative Analysis
 Our comparative operators are expressed p p p

using a graph algebra.
 We can compare posterior probabilities of 

nodes, edges and/or attributes.
 Basic operators serve as building blocks for 

more complex ones. 
 Ranking
- Unary operator that orders nodes, edges or 

attributes based on posterior probability, 
variability, etc.variability, etc.



Comparative OperatorsComparative Operators
 Difference

Given two uncertain graphs G1 and G2, compute a 
resultant graph that contains nodes and edges that 
have a difference in posterior probabilities greaterhave a difference in posterior probabilities greater 
than threshold τ

 IntersectionIntersection
Given two uncertain graphs G1 and G2, compute a 

resultant graph that contains nodes and edges that 
have a difference in posterior probabilities greater 
than threshold τ
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VisualizationVisualization
 Developing open source visual e e op g ope sou ce sua

analytic platform for comparing 
graphs.  Platform being built 
using open source toolkitsusing open source toolkits, 
Prefuse and Jung.

 Developing specialized 
visualizations that focus on 
comparing local uncertainty. We 
are currently exploring a 
bullseye metaphorbullseye metaphor.
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Shark Bay Dolphin ResearchShark Bay Dolphin Research 
Project Overview

Dolphins monitored by Dolphins monitored by 
international team of 
scientists since 1984scientists since 1984.
- 14000 surveys
- Thousands of hours of 

focal follows
- Thousands of pictures
- GIS spatial data
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