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Research Goals

• Visual-Model-Based Transformations
• Applications

- Automated visualization based on VMBT.
- Interactive visual analytics based on VMBT.



Background

• Every visualization depends on a model 
(even EDA).

• Scagnostics (Scatterplot Diagnostics) is a 
Tukey (John and Paul) idea that offers 
such a model. Scagnostics help us to 
characterize 2D scatterplots (lots of them).



Scagnostics

• Wilkinson, Anand, and Grossman (2006) 
characterize a scatterplot (2D point set) 
with nine measures.

• We base our measures on three geometric 
graphs.

• Our geometric graphs are:
- Convex Hull
- Alpha Shape
- Minimum Spanning Tree



Convex Hull



Alpha Shape



Minimum Spanning Tree



Computing

• Bin
• Delete Outliers
• Compute Measures

- Shape
- Trend
- Density



• We bin on a 40x40 hexagon grid.
• Until there are fewer than 250 nonempty 

cells, we recursively enlarge the bin size 
and re-bin.

Hexagon Binning
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Problems to Solve
1) Geometric graphs are sensitive to single points.

     a) Use peeled MST to locate outliers (yields a few measures itself).

     a) Delete outliers before computing other graphs.

     b) Use robust measures.

2) Geometric graphs are expensive to compute.

     a) Make basis graphs subset of Delaunay Triangulation (DT).

     a) Use hexagon binning to make n constant (n ~ 2500 = 50 x 50).

A 20 x 20 hex grid
on weather data



• Peel MST using distribution of edge lengths.
• An outlier is MST vertex whose adjacent edges 

all have a large weight.
• We use a statistical test to identify large weights.

Delete Outliers



Shape
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Shape
2) Convex: ratio of area of alpha shape to the area of convex hull.

3) Skinny: ratio of perimeter to area of the alpha shape.

4) Stringy: ratio of diameter of MST to length of MST. Similar to skinny.

The diameter of a graph is the longest shortest path between a pair of its vertices.

Convex: area of alpha shape divided by area of convex hull

Skinny: ratio of perimeter to area of the alpha shape

Stringy: ratio of 2-degree vertices in MST to number of vertices > 1-degree



Trend
Monotonic: squared Spearman correlation coefficient
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Trend
5) Monotonic: Squared Spearman Correlation Coefficient

6) Straight: ratio of diameter of MST to Euclidean distance between the vertices 

on which the diameter is based.



Density
Skewed:  ratio of (Q90 - Q50) / (Q90 - Q10), where quantiles are on  MST edge lengths
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Density
7) Skewed: ratio of (Q90 - Q50) / (Q90 - Q10), where the quantiles are taken from the 

MST edge lengths.

8) Clumpy: 1 minus the ratio of the longest edge in the largest runt (blue) to the 

length of runt cutting edge (red).

The Hartigan RUNT statistic for a node of a hierarchical clustering tree is the 

smaller of the number of leaves owned by each of its two children. We derive this 

for each vertex in the MST using an edge-cutting algorithm.

largest runt

longest edge

in runt

Clumpy:  1 minus the ratio of the longest edge in the largest runt (blue) to the  
length of runt-cutting edge (red)
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Density
7) Skewed: ratio of (Q90 - Q50) / (Q90 - Q10), where the quantiles are taken from the 

MST edge lengths.

8) Clumpy: 1 minus the ratio of the longest edge in the largest runt (blue) to the 

length of runt cutting edge (red).

The Hartigan RUNT statistic for a node of a hierarchical clustering tree is the 

smaller of the number of leaves owned by each of its two children. We derive this 

for each vertex in the MST using an edge-cutting algorithm.

largest runt

longest edge

in runt

Outlying: proportion of total MST length due to edges adjacent to outliers



Density
Sparse:  90th percentile of distribution of edge lengths in MST

Striated:  proportion of all vertices in the MST that are degree-2 and have a 
cosine between adjacent edges less than -.75



Visual-Model-Based 
Transformations

• Compute Transformation X        S
• Analyze Patterns in S
• Invert Transform to X

VMBT()

project() visualize()

X = U (1)SU (2) = S⊗1 U (1)⊗2 U (2)

X = S⊗1 U (1)⊗2 U (2)⊗3 U (3)

{Pi} S⊂ Rq {Vj}

X ⊂ Rp {Vj}
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VMBT Applications

• Scagnostics Explorer
• AutoVis (Automated Visualization)
• Time/Space Explorer
• Visual Classifier



Scagnostics Explorer

• Scatterplot matrix display
• Brushing
• Linking
• Anomaly Detection



Scagnostics Explorer
(Wilkinson and Anand)



AutoVis

• Modeling: Grammar of Graphics
• Discovery: Scagnostics
• Filtering: Scagnostics Distributions
• Protection: False Discovery Rate



AutoVis Software
(Wills and Wilkinson)



Time/Space Explorer

Xt1

n

p

Xt2 Xtk…

Time series 
analysis of 
scagnostics 
measures

time
0

1

t1 tk



Spatial-temporal data
• GoMOOS Moored Buoy Program

– 12 buoys in the Gulf of Maine
– Historical data 
– Sensor readings

• Pressure
• Temperature
• Wind speed
• Visibility

(http://gyre.umeoce.maine.edu/buoyhome.php/)



Spatial-temporal pattern discovery

• Local behavior – for each buoy

Day1

n

p

Day2 Dayk…
Each bivariate 
distribution is 
characterized by 
the scagnostics



Spatial-temporal pattern discovery

• Local behavior – for each buoy

Day1

n

p

Day2 Dayk…
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Each bivariate 
distribution is 
characterized by 
the scagnostics



Scagnostics time series for
air temperature(C) vs. wind gust(m/s)



Visual Classifier
• Visually identify structure, formally define it so we 

can query unseen data for similar structure
• We use the union of open hypercubes to define 

the L∞ norm topology
– Composite Hyper-rectangular Description Regions 

(CHDRs) – capture large-scale structure
– 3-operator algebra on CHDRs – add, remove, restrict
– Generate set-wise rules using gestures in the 

exploratory GUI
– Log the rules and apply them to a test set



Visual Classifier



Benefits
• Simple specification of 

neighborhoods
– Visual brushing 

operations are 
translated into rules 
built from basic algebra 
on intervals

• Simple expressions to 
specify complex 
geometric objects – 
union of CHDRs



Challenges
• Can we build a classifier that is more than a black 

box – allows for insights into variables (unlike 
random forests, neural nets, SVMs, etc.)?

• How far can we go with the human eye – can we 
compete with best classifiers out there?

• How trained does a user have to be?
• How to select a “good” subset of dimensions to 

view when the number of dimensions is large?



How will this influence 
FODAVA?
• Exploration 

- what aspects of our data should we examine 
before we build a model?

• Anomaly Detection
- can we detect more than just outliers?

• Guided Search
- what is interesting to an analyst?



Plans for developing FODAVA?

• Proselytize visual models that are 
motivated by 

- vision (the capabilities of the visual system 
motivate our models)

- data (real data motivate our models)  


