



#### **FODAVA Partners**

Leland Wilkinson (SYSTAT & UIC) Robert Grossman (UIC) Adilson Motter (Northwestern) Anushka Anand, Troy Hernandez (UIC)

Visually-Motivated Characterizations of Point Sets Embedded in High-Dimensional Geometric Spaces

#### **Research Goals**

- Visual-Model-Based Transformations
- Applications
  - Automated visualization based on VMBT.
  - Interactive visual analytics based on VMBT.

## Background

- Every visualization depends on a model (even EDA).
- Scagnostics (Scatterplot Diagnostics) is a Tukey (John and Paul) idea that offers such a model. Scagnostics help us to characterize 2D scatterplots (lots of them).

# Scagnostics

- Wilkinson, Anand, and Grossman (2006) characterize a scatterplot (2D point set) with nine measures.
- We base our measures on three *geometric graphs*.
- Our geometric graphs are:
  - Convex Hull
  - Alpha Shape
  - Minimum Spanning Tree

#### Convex Hull



#### Alpha Shape



#### Minimum Spanning Tree



# Computing

- Bin
- Delete Outliers
- Compute Measures
  - Shape
  - Trend
  - Density

# Hexagon Binning

- We bin on a 40x40 hexagon grid.
- Until there are fewer than 250 nonempty cells, we recursively enlarge the bin size and re-bin.



A 20 x 20 hex grid on weather data

# **Delete Outliers**

- Peel MST using distribution of edge lengths.
- An outlier is MST vertex whose adjacent edges all have a large weight.
- We use a statistical test to identify large weights.



#### Shape

Convex: area of alpha shape divided by area of convex hull



Skinny: ratio of perimeter to area of the alpha shape



Stringy: ratio of 2-degree vertices in MST to number of vertices > 1-degree



#### Trend

Monotonic: squared Spearman correlation coefficient



#### Density

Skewed: ratio of  $(Q_{90} - Q_{50}) / (Q_{90} - Q_{10})$ , where quantiles are on MST edge lengths



Clumpy: 1 minus the ratio of the longest edge in the largest runt (blue) to the length of runt-cutting edge (red)



Outlying: proportion of total MST length due to edges adjacent to outliers



## Density

Sparse: 90th percentile of distribution of edge lengths in MST



Striated: proportion of all vertices in the MST that are degree-2 and have a cosine between adjacent edges less than -.75



#### Visual-Model-Based Transformations

- Compute Transformation  $X \longrightarrow S$
- Analyze Patterns in S
- Invert Transform to X



# **VMBT** Applications

- Scagnostics Explorer
- AutoVis (Automated Visualization)
- Time/Space Explorer
- Visual Classifier

# Scagnostics Explorer

- Scatterplot matrix display
- Brushing
- Linking
- Anomaly Detection

# Scagnostics Explorer

(Wilkinson and Anand)



#### AutoVis

- Modeling: Grammar of Graphics
- Discovery: Scagnostics
- Filtering: Scagnostics Distributions
- Protection: False Discovery Rate

#### AutoVis Software

#### (Wills and Wilkinson)



#### **Time/Space Explorer**



## Spatial-temporal data

- GoMOOS Moored Buoy Program
  - 12 buoys in the Gulf of Maine
  - Historical data
  - Sensor readings
    - Pressure
    - Temperature
    - Wind speed
    - Visibility



#### Spatial-temporal pattern discovery

Local behavior – for each buoy



Each bivariate distribution is characterized by the scagnostics

#### Spatial-temporal pattern discovery

Each bivariate

characterized by

the scagnostics

distribution is

Local behavior – for each buoy



#### Scagnostics time series for air temperature(C) vs. wind gust(m/s)

| 🗟 Comparison of scagnostic measures |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| clumpy                              | ~                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CORVEX                              | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| monotonic                           | man man and man Man and and and and and and and and and a | Aman Aman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| outlying                            | Nin Am Man Mar        | Landren and Advantages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| skewed                              | ,~~~~\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                    | 🔊 Day # 92: air temperature vs. wind gust 📃 🔲 🎑                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| skinny                              | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                    | and the second sec |
| sparse                              | ۲۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| striated                            | <sup>ֈ</sup> ֈՠֈՠՠՠՠ՟՟՟ՠՠՠՠՠՠՠ՟՟ֈՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠ        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| stringy                             | Lanana ana ana talana ana ana ana ana ana ana ana ana an  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                     |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

## Visual Classifier

- Visually identify structure, formally define it so we can query unseen data for similar structure
- We use the union of open hypercubes to define the L<sup>∞</sup> norm topology
  - Composite Hyper-rectangular Description Regions (CHDRs) – capture large-scale structure
  - 3-operator algebra on CHDRs add, remove, restrict
  - Generate set-wise rules using gestures in the exploratory GUI
  - Log the rules and apply them to a test set

#### **Visual Classifier**



#### Benefits

- Simple specification of neighborhoods
  - Visual brushing operations are translated into rules built from basic algebra on intervals
- Simple expressions to specify complex geometric objects – union of CHDRs



# Challenges

- Can we build a classifier that is more than a black box – allows for insights into variables (unlike random forests, neural nets, SVMs, etc.)?
- How far can we go with the human eye can we compete with best classifiers out there?
- How trained does a user have to be?
- How to select a "good" subset of dimensions to view when the number of dimensions is large?

# How will this influence FODAVA?

#### Exploration

- what aspects of our data should we examine before we build a model?
- Anomaly Detection
  - can we detect more than just outliers?
- Guided Search
  - what is interesting to an analyst?

## Plans for developing FODAVA?

- Proselytize visual models that are motivated by
  - vision (the capabilities of the visual system motivate our models)
  - data (real data motivate our models)