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Research Goals

• Sparse Recovery and Feature Selection in Machine

Learning

• Manifold Learning and Nonlinear Dimension Reduction



Manifold Learning

• Spectral theory of empirical graph laplacians;

• Regularized estimators of spectral characteristics of

Laplace-Beltrami operator based on manifold data;

• Data-driven choice of regularization parameters;

• Penalized empirical risk minimization in manifold

learning problems



Prediction Problem

(X,Y ) a random couple

The risk of prediction rule f :

L(f) := Eℓ(Y ; f(X)),

where ℓ is a loss function.

Target Function: Optimal Prediction Rule

f∗ := argminf :S 7→R
L(f)

Special Cases

• regression

• large margin classification: boosting, kernel machines



Sparse Recovery Problem

h1, . . . , hN : S 7→ R a dictionary;

fλ :=
∑N

j=1
λjhj, λ ∈ R

N

Suppose there exists a sparse vector λ such that fλ is a

good approximation of the target function f∗.

• How to recover this sparse approximating function

based on the training data?

• How to find the subset of the dictionary needed to

approximate f∗ (”feature selection”)?



Examples of Dictionaries

• the union of several orthonormal systems used to

approximate the target function f∗ (Fourier basis,

wavelet bases, etc);

• a set of features defined on an image;

• a set of statistical estimates of the target function to be

aggregated in a more complex estimate with a better

generalization performance.



Penalized Empirical Risk Minimization

(X1, Y1), . . . , (Xn, Yn) training data (consists of i.i.d.

random couples);

Λ ⊂ R
N is a convex set;

p(λ) a convex complexity penalty;

ε > 0 a regularization parameter;

ℓ a convex loss function;

Ln(f) := n−1
∑n

j=1
ℓ(Yj, f(Xj)) empirical risk.

λ̂ε := argminλ∈Λ

[

Ln(fλ) + εp(λ)

]



Examples of Complexity Penalties in Sparse

Recovery

• LASSO: p(λ) = ‖λ‖ℓ1 , Λ = R
N ;

• ℓp : p(λ) = ‖λ‖p
ℓp

, p > 1, p close to 1, Λ = R
N ;

• entropy: p(λ) =
∑N

j=1
λj log λj,

Λ :=

{

λ ∈ R
N : λj ≥ 0,

N
∑

j=1

λj = 1

}



Typical Mathematical Results

• sparsity inequalities show that in “sparse” problems the

empirical solution λ̂ε is “approximately sparse” with a

high probability and its “sparsity pattern” mimicks the

sparsity pattern of “sparse oracles”;

• oracle inequalities show that, with a high probability,

the empirical solution λ̂ε provides the same

approximation of the target function f∗ as optimal

“sparse oracles” up to an error term that depends on the

degree of sparsity of the problem.



Oracle Inequalities

Bunea, Tsybakov and Wegkamp (2007), Koltchinskii

(2008), van de Geer (2008)

With a high probability,

L(fλ̂ε) − L(f∗) ≤ C inf
λ∈Λ

[

L(fλ) − L(f∗) + B(λ)d(λ)ε2

]

,

where

d(λ) = card(supp(λ))

and B(λ) is a quantity that characterizes geometric

properties of the dictionary.



Other Methods of Sparse Recovery

• Dantzig Selector (Candes and Tao (2007))

• Greedy Approximation

More General Models of Sparse Recovery

• sparse additive models;

• sparse recovery in large ensembles of kernel machines

(Koltchinskii and Yuan (2008));

• sparse recovery in linear spans or convex hulls (“sparse

mixtures”) of infinite dictionaries (Koltchinskii and

Minsker, in progress)


