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Research Goals

1. Developing fundamental algorithms for processing massive data

• Massive high-dimensional data

• High-speed dynamic streaming data

• Massive sparse data

2. Applying these algorithms to data analytics and visualization

• Scalable visualization algorithms.

• Scalable Machine Learning algorithms.

• Real-time network flow measurement algorithms.

3. Training Graduate/Undergraduate students

Some of the research goals were not included in the original proposal.

Additional funding will be sought from other sources.
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The Era of Modern Massive Data

• There is no data like more data (Mercer at Arden House, 1985)

• More data is more important than better algorithms (Banko & Brill, ACL 2001)
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Workshop on Algorithms for Modern Massive Data Sets

Highly successful workshop Funded by NSF and Yahoo!

• MMDS 2006, June, Stanford University

Ping Li, Trevor Hastie,

Efficient L2 and L1 dimension reduction in massive databases

• MMDS 2008, June, Stanford University

Ping Li,

Compressed Counting and Stable Random Projections
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The Data Matrix

Data matrix A ∈ R
n×D : n rows and D columns.

1
2
3

1    2    3     4    5    6    7    8    D

n
5
4

Examples: Term-doc matrix, Image-pixel matrix, etc.
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Characteristics of Modern Data Matrix

• Massive eg, both n, D ≈ 1010

• Dynamic eg, high-speed data streams

• Often Sparse eg, text data



FODAVA, Efficient Data Reduction and Summarization, September 16, 2008 8

Massive Data Summarization and Some Challenges

Summarization is fundamental in learning, visualization, and linear algebra.

• Summary statistics of individual rows (or columns)

eg, αth moment
∑

D

i=1 |ui|
α, entropy, etc.

• Summary statistics between rows (or columns)

eg, dot products, αth distance
∑D

i=1 |ui − vi|
α, χ2 distance, etc.

Some challenges

• Memory intensive Loading A ∈ R
n×D may be infeasible.

Loading all pairwise (eg, n2) distances of A can be easily infeasible.

• CPU intensive

• Dynamic updating



FODAVA, Efficient Data Reduction and Summarization, September 16, 2008 9

From Exact Answers to Approximations

(Good) Approximate summary statistics (eg distances) often suffice

• Visualization systems only need a certain resolution.

• Good (robust) algorithms are stable even using approximate inputs.

Simple random sampling (eg using a few columns) is not enough

• Not accurate.

• Not suitable for sparse data.
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Three Basic Approximation Techniques

1. Symmetric Stable Random Projections

Computing αth distances (0 < α ≤ 2) of data matrix.

α = 2: Euclidean distance. α = 0: Hamming distance.

Applicable to dynamic streaming data in Turnstile model.

2. Compressed Counting (CC) (Skewed Stable Random Projections)

Computing αth moments (0 < α ≤ 2) of data stream in strict-Turnstile model.

3. Conditional Random Sampling (CRS) One-sketch-for-all

Computing any type of distances or moments

Applicable to more general dynamic data

Only works well in sparse data
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Symmetric Stable Random Projections

A                  R   =   B

• Original data matrix A ∈ R
n×D : n rows and D columns,

Massive, eg, both n, D = O
(

1010
)

.

Possibly dynamic, according to the Turnstile model.

• Projection matrix R ∈ R
D×k: D rows and k columns, k ≪ n, D

Entries are samples of a symmetric α-stable distribution.

α = 2: Normal distribution. α = 1: Cauchy distribution.

• Projected matrix B ∈ R
n×k : n rows and k columns

Viewed as a sketch of A, which may be discarded.
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Symmetric α-Stable Distributions

Denoted by S(α, d), where 0 < α ≤ 2.

Two random variables Z1 ∼ S(α, 1) and Z2 ∼ S(α, 1).

For any constants C1 and C2

Z = C1 × Z1 + C2 × Z2 ∼ S (α, |C1|
α + |C2|

α)

For example, weighted sum of normals is also normal (α = 2).
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A                  R   =   B

Therefore, the projected matrix B contains information about

1. αth moment,
∑

D

i=1 |ui|
α, of each row of A.

2. αth distance,
∑D

i=1 |ui − vi|
α, between any two rows of A.
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Applications of Symmetric Stable Random Projections

• Data visualization algorithms

Multi-dimensional scaling (MDS) requires a pairwise similarity matrix.

• Machine Learning algorithms

SVM (support vector machine) requires a O(n2) pairwise distance matrix.

• Information retrieval

Finding (filtering) nearly duplicate docs (often measured by distance)

• Databases

Estimating join sizes (dot products) for optimizing query execution.

• Dynamic data stream computations

Estimating summary statistics for visualizing/detecting anomaly real-time
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An incomplete list of references:

• Vempala 2004. A monograph focused on α = 2.

• Alon, Matias, and Szegedy, 1996, STOC

• Indyk, 2006, JACM

• Li, Hastie, and Church, 2006, KDD

• Li, Hastie, and Church, 2006, COLT

• Li, 2007, KDD

• Li, Hastie, and Church, 2007, COLT

• Li and Hastie, 2008, NIPS

• Li, 2008, SODA
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A lot have been done, and a lot more to do!

1. Theory

• Statistically optimal recovery (estimation) methods

• Computationally efficient estimation methods.

2. Applications

• Building scalable data visualization algorithms (eg, MDS).

• Building scalable machine learning algorithms (eg, SVM).

3. Connection to Compressed Sensing (CS)

CS uses α = 2 (normal) random projections.

Can we use general αth projections for sparse signal recovery?
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Compressed Counting (CC)

A new methodology recently invented

• Preliminary results: Li, Compressed Counting, SODA 2009.

• Based on skewed stable random projections.

• Applicable to dynamic data streams following strict-Turnstile model.

• Achieving an “infinite” improvement over symmetric projections when α ≈ 1.

• Applications in estimating entropy real-time for network anomaly detections.
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Turnstile Data Stream Model

At time t, an incoming element : at = (it, It)

it ∈ [1, D] index, It: increment/decrement.

Updating rule : At[it] = At−1[it] + It

Goal : Count αth moment F(α) =
∑

D

i=1 At[i]
α

Strict-Turnstile model : At[i] ≥ 0 always, suffices for almost all applications.
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For example, the strict-Turnstile model for an online bookstore

t=1            arriving stream  =  (3,  10  ) 

.... 

IP 1 IP 2 IP 3 IP 4 IP D....

0 0 0 0 0 0 0

t=0

.... 

IP 1 IP 2 IP 3 IP 4 IP D....

0 0 0 0 010

t=2            arriving stream  =  (1,  5  ) 

.... 

IP 1 IP 2 IP 3 IP 4 IP D....

0 0 0 0 0

t=3            arriving stream  =  (3,  −8  ) 

.... 

IP 1 IP 2 IP 3 IP 4 IP D....

0 0 0 0 0 0

user  3  ordered 10 books

user 1 ordered 5 books

user 3 cancelled 8 books

5 2

5

10
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Counting: Trivial if α = 1, but Non-trivial in General

Goal : Count F(α) =
∑

D

i=1 At[i]
α, where At[it] = At−1[it] + It .

When α 6= 1, counting F(α) exactly requires D counters. (but D can be 264)

When α = 1, however, counting the sum is trivial, using a simple counter.

F(1) =
D

∑

i=1

At[i] =
t

∑

s=1

Is,

Compressed Counting (CC) captures this intuition

Symmetric stable random projections totally ignore this fact.
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Dramatic Improvement of CC, in Terms of Variances
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Skewed α-Stable Distributions

Denoted by S(α, β, d). β = 0: symmetric, β = 1, maximally-skewed.

Two random variables Z1 ∼ S(α, β, 1) and Z2 ∼ S(α, β, 1).

For any constants C1 ≥ 0 and C2 ≥ 0

Z = C1 × Z1 + C2 × Z2 ∼ S (α, β, Cα

1 + Cα

2 )

CC works only for strict-Turnstile model.
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One Application of CC: Entropy Measurement

The Shannon entropy:

• An extremely useful measurement in network data flow.

Monitoring/visualizing network anomaly.

• Real-time measure is critical.

• It can be approximated by functions of αth moments with α → 1.

• Therefore, CC becomes very useful.
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Research Topics for Compressed Counting

1. Theory

• Improved estimation methods with better convergence rate as α → 1.

• Computationally efficient estimation methods.

• Computationally efficient methods for sampling skewed distributions.

2. Applications

eg, practically efficient entropy estimation.

3. Connection to Compressed Sensing (CS)

CC has recently attracted attention in CS community.
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Limitations of Random Projections

1. Ignoring data sparsity

eg, text data, histogram-based data

2. Applicable only to a particular αth moment.

Different projections for different α’s.

3. Not applicable to many other summary statistics

eg χ2 distance.

4. Applicable only to Turnstile data stream model At[i] = At−1[i] + It

but real-world may need nonlinear updating rules.

Conditional Random Sampling (CRS) provides a fix and works well in sparse data.
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Conditional Random Sampling (CRS): Progress

• Li and Church, EMNLP, 2005

• Li and Church, Computational Linguistics, 2007

• Li, Church, and Hastie, NIPS, 2007

• Li, Church, and Hastie, NIPS, 2009
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Th Sketching Procedure of CRS

Sparse Data Matrix Random Permutation on Columns

1
2
3

1    2    3     4    5    6    7    8    D

n
5
4

1
2
3

1    2    3     4    5    6    7    8    D

n
5
4

Inverted Index (Nonzeros) Sketches (Front of inverted index)
1    2    3     4    5    6    7    8    D

n
5
4
3
2
1 1

2

1    2    

n
5
4
3
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From Sketches to Random Coordinate Samples (Pairwise)

Sketches for binary (0/1) data: front of inverted index

 Words

1

4

3

2

n=5

1    4    5    7    11   13   15

2    4    7    8    10   11   13

1    3    4    5    6     9    12

2    4    6    8   10    13

1    2    3    4    5     6     7    8    9    11   12   13   14   15

Represent sketches in the (permuted) matrix

1    0    0    1    1    0    1    0    0    0     1    0     1    0    1

1    0    1    1    1    1    0    0    1    0     0    1     0    0    0

1    1    1    1    1    1    1    1    1    0     1    1     1    1    1

0    1    0    1    0    0    1    1    0    1     1    0     1    0    0

Document IDs

 Words

1

4

3

2

1    2    3    4    5    6    7    8    9   10   11  12   13   14  15=D

n=5

0    1    0    1    0    1    0    1    0    1     0    0     1    0    0

Small sketches =⇒ many columns =⇒ random samples pairwise (?)
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Research Topics of CRS

1. Theory

• The current algorithm is basically a (very good) heuristic.

The exact solution is a difficult classical statistical problem.

• Improved estimation methods using side information.

2. Applications

• Scalable data visualization algorithms.

• Scalable machine learning algorithms.

• Maintaining multi-way histograms.

• General data stream applications.

3. Combining CRS with random projections
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How Will This Influence FODAVA? Broader Impact?

Possibly all data analytics and visualization techniques need to address

• How to feasibly store massive data in a compact format?

• How to update the data in dynamic settings?

• How to compute summary statistics (distances) efficiently or real-time?

Broader Impact:

• Scalable machine learning

• Databases and information retrieval

• Network measurement

• (Possibly) sparse signal recovery (compressed sensing)
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Plans for Helping the Development of FODAVA

• Attending conferences in visualization and massive data sets

eg, IEEE VAST, DHS NVAC, MMDS 2010 (?)

• Introducing the basic problems/solutions to traditional statistics community

• Introducing statistical techniques to Computer Science community

• Publishing in CS conferences and statistical journals

• Collaborating with other FODAVA research teams.


