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Figure 3: Toy example of anomaly detection with GMRA, as described in the section 3.2. Top row, 3 figures left
to right: an anomaly, in the form of a small cusp, “grows off” the manifold. Bottom row, first 3 figures: likelihood,
according to each models constructed at each scale, of the points seen at time t. Small values of the likelihood appear,
and one can verify that they correspond to the points in the anomaly. As the anomaly grows, coarser and coarser
scales detect it. Last column, top and bottom: spectra in two hyper spectral images projected onto the top 3 principal
components. Top: HSI spectra of a desert scene, projected onto they top 3 principal component. A rough manifold-
like structure, approximately 2-dimensional emerges. Bottom: spectra of the same scene during a chemical release.
Note the extra piece of a manifold, creating essentially a self-intersection of the manifold. This suggests that real
data is intrinsically low-dimensional and important changes can be of a geometric nature, not too much unlike our toy
examples. The gas is not visible by naked eye in the picture, hyper-spectral information is needed for detection (not
shown).

In the language of section 3.1, for each j we choose Λ = Λj := {Cj,k}k∈Γj
associated with the GMRA at

scale j, and the family of local models FCj,k
includes Gaussian mixtures supported on the subspace spanned

by Φj,k and {Ψj+1,k′}k′ child of k translated by cj,k, i.e. on the local scaling function and wavelet planes Let
µj be the probability measure estimated in this fashion. At time t we use µj to estimate the likelihood of
seeing the points sampled fromMt: subsets of points compatible with µj (i.e. with the manifold structure)
will have large likelihood, while subsets not compatible with µj (such as the anomaly) will have very small
likelihood. We present this in a table where rows index scale (top row=coarsest scale, bottom row=finest
scale) and columns index point, with entry (j, x) colored by the likelihood that the model at scale j as-
signs to the points in the GMRA plane at scale j containing x (bottom row). corresponding to Cj,k. Small
values of the likelihood appear, and one can verify that they correspond to the points in the anomaly. As
the anomaly grows, coarser and coarser scales detect it. This is similar to what happens in the multiscale
analysis of singularities in wavelet analysis, except here we are performing this on an intrinsically low di-
mensional point cloud in high dimensions, without any coordinates, and given only random samples on it.
Also, the construction of the GMRA and all the models, as well as their testing, takes only seconds per data
cube, in Matlab, without any code optimization. Finally, we consider very preliminary on real HSI data
provided by JHU, of a desert scene where a HSI data cube is collected every 8 seconds, and a chemical
release occurs after several seconds from the beginning of this HSI movie. For simplicity, we compute the
mean and top 3 principal components of the spectra of the first data cube, and project all the data cubes
(after subtraction of the that mean) onto these 3 components. In figure 3 we represent such a projected point
cloud, each point being a spectrum projected as described above, for two data cubes, one before and one
during the chemical release. We note from these low-dimensional projections that the data seems intrin-
sically very low-dimensional, roughly manifold-like, and that during the chemical release a branch of the
manifold is extended, leading to a self-intersection of the manifold. This suggests that the type of geometric
density estimation, as well as topological methods, we described before may be very effective in this type
of situations.
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