
Fig. 19. Left: A random subset of the 2414 face images (38 human subjects in front
pose under 65 illumination conditions); Right: the entire data set shown in top three
PCA dimensions.

and 95% of the variance, respectively, at the nonleaf and leaf nodes when
constructing scaling functions. Note that both the magnitudes of the wavelet
coefficients and the approximation errors have similar patterns with those for
the MNIST digits (see Fig. ??), indicating again a lack of manifold structure
in this data set. We also fix an image and show in Fig. ?? its reconstructed
coordinates at all scales and the corresponding wavelet bases (all of which are
also images).

5.2.3 Comparison with SVD

In this section we compare our algorithm with Singular Value Decomposition
(SVD) in terms of encoding cost for various precisions. We may think of the
SVD, being a global analysis, as providing a sort of Fourier geometric analysis
of the data, to be contrasted with our GMRA, a multiscale wavelet analysis.
We use the two real data sets above, together with a new data set, the Science
News (source and description?). For GMRA, we now consider three different
versions: (1) the regular GMRA, but with the optimization stratigies discussed
in Secs. ?? and ?? (2) the orthogonal GMRA (in Sec. ??) and (3) the pruning
GMRA (in Sec. ??). For each version of the GMRA, we threshold the wavelet
coefficients to study the rates of change of the approximation errors and en-
coding costs. We present three different costs: one for encoding the wavelet
coefficients, one for the dictionary, and one for both (see Fig. ??).

We compare these curves with those of SVD, which is applied in two ways:
first, we compute the SVD costs and errors using all possible PCA dimensions;
second, we gradually threshold the full SVD coefficients and correspondingly
compress the dictionary (i.e., discard those multiplying identically zero coeffi-
cients). The curves are superposed in the same plots (see the black curves in
Fig. ??).
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