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Goals

* Develop theories and algorithms for revealing prominent
geometric features of mixture density.

* Develop approaches to clustering, dimension reduction,
and variable selection based on the geometry of mixture
density.

* Develop interactive visualization systems empowered by
a suite of statistical learning tools.

* Apply the statistical methods and visualization paradigm
to meteorology data for weather prediction and
engineering design data




Our Work

* Theories and algorithms
Modal EM algorithm for solving modes of mixture density.
Clustering methods based on mode association.
Variable selection based on the geometry of mixture
density.
Two-way mixture model for high dimensional data.

* Visualization system design
A work-centered visual analytics model

Explored applications to meteorology data and engineering

design data.
Preliminary evaluation: engineering design case

* Parallelization of data clustering algorithms




Model EM (MEM)

* Let a mixture density be f(x) = Zle Tife(X).
x € R
Tk is the prior probability of mixture component |
fi(X) is the density of component k.

* Given any initial value xOMEM solves a local
maximum of the mixture by alternating two steps.




Mode Association Clustering (MAC)

* The MAC Algorithm
. Form kernel density f(x | S.02) =37, 2o(x | xi, D(0?)), where
S={x1,x0, ..., Xn}

- Use 7(x|S.0?) as the density function. Use each x;, i = 1,2,..., n,
as the initial value in the MEM algorithm to find a mode of
f(x|S.0?). Let the mode identified by starting from x; be M, (x;).

. Extract distinctive values from the set { M,(x;),i =1,2,...,n} to
form a set G. Label the elements in G from 1 to |G]|.

- If M, (x;) equals the kth element in G, x; is put in the kth cluster.




Hierarchical Mode Association
Clustering (HMAC)

* Gradually increase kernel bandwidth:
01 < 0Op < 03+ "
* Kernel density at level j: f(x | S, g?)
o; 1—noother density, fewer modes

* Starting points at level j are the modes acquired at the
previous level j - 1.

* The hierarchy by design:
Xji — MOH(XI') — MJ2(MJ1 (Xf')) o




Geometry of Mixture Models

Clustering result at level 2

Clustering result at level 3 At level 4, merge the modes from level 3




Cloud Map Segmentation




A Work-Centered Model for
Visual Analytics

Derivative
Structures

Data Models
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Visual Analytics System: LIVE
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Evaluation:
Conceptual Ship Design

Design input variables: Constraints:
Length (L), Beam (B), Depth (D), Draft (7), L/B > 6;
Block Coeff (C;), and Speed (V). L/D < 15;
L/T<19;
Design output variables : F,<0.32;
Transportation Cost (TC), Light Ship Weight (LSM) 25,000 < DWT < 50,000;
and Annual Cargo (AC). Const_1=T-0.45DWT°31<0;
Const 2=T—-(0.7D+0.7)<0;
Goal Const_3=0.07B-GM; £0;

Minimize TC, minimize LSM, and maximize AC.




Preliminary Result

* Our system can facilitate an iterative design optimization
process.
Use our algorithm to indentify similar design alternatives

Use our algorithm to discover the values of design inputs based

on desired outputs

Control the process of data clustering and classification
Step-by-step vs. batch
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Preliminary Result

* Challenges

Knowledge about clustering algorithms by domain experts
Validation

Speed of clustering algorithms
Real-time interaction




Parallelization of HMAC

Hadoop
MPI
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More Results
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Project Accomplishments

* Algorithms

Downloadable from our project website

* Visualization design
A work-centered model for visual analytics
A system prototype to support engineering design
Plan to build a system for meteorology data analysis
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Impact

* Training Ph.D. students

Three Ph.D. dissertations
Statistics, CSE, Information Sciences and Technology

Two other Ph.D. students involved

* Led to new projects

Health informatics (NSF —SHB, NIH)
Spatial-temporal data analysis (Industrial collaboration)

* OQutreach

Invited session in Joint Statistical Meetings (JSM), 2010 (J. Li)

Invited panelist on the Panel of Visualization in the Annual Workshop
of Human-Computer Interaction Consortium, 2010 (X. Zhang)
Invited talks
Institute of Software at Chinese Academy of Sciences, 2011 (X. Zhang)
Xerox Research Center Europe, 2012 (X. Zhang)
NSF EarthCube Workshop, 2012 (X. Zhang)






