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Focus on networks, including probabilistic 

graphical models (Bayesian networks) -  

and electrical power networks  

Bayesian network representations are 

natural and useful in computation, 

visualization, and human-computer 

interaction 

Difficulty for humans to reason under 

uncertainty, especially under time 

pressure and stress - benefit 

probabilistic graphical models 

Most current visualization and analytical 

methods for probabilistic reasoning 

target domains with “few” random 

variables, small data set, and non-

interactive use 

Zoomed-out view.  

Now I don’t see the 

details. 

Zoomed-in view.  

Now I lost the 

context.  

Project Background 



Project Accomplishments 
Fast Belief Propagation in Junction 

Trees: GPU Parallelization 

Multi-Fisheye, Multi-View for 

Interactive Visualization of 

Large Graphs 

Formalization of Stochastic  Local 

Search 
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Understanding Scalability of 

Bayesian Network Computation 

using Junction Tree Growth Curves 
Speeding up Computation for 

Bayesian Networks 

Feedback Control for Bayesian 

Networks Computation 



Multi-Fisheye, Multi-View for 

Interactive Visualization of Large Graphs 

• P. K. Sundararajan, O. J. Mengshoel, and T. Selker.  “Multi-Focus and Multi-

Window Techniques for Interactive Network Exploration.” In Proc. of 

Visualization and Data Analysis (VDA 2013), San Francisco, Feb 2013.  

• M. Cossalter, O. J. Mengshoel, and T. Selker. “Multi-Focus and Multi-Level 

Techniques for Visualization and Analysis of Networks with Thematic Data.” In 

Proc. of Visualization and Data Analysis (VDA 2013), San Francisco, Feb 2013. 



 Exploration of large graphs 

 Context loss while zooming or scrolling 

 Limitations of traditional fisheye: 

 Only one focus 

  Distorting whole layout 

 Often no displaying of information 

(e.g., Bayesian network) along with the 

underlying data set (e.g., time series) or 

thematic data  

 Need to perform visual search to 

locate thematic data or data set 
 Ex: Relationship between a node and its 

conditional probability table 

Network Visualization Challenges 



OBJECTIVE 
Improve the applicability of multi-fisheye to 

exploration of networks, including Bayesian 

network (BN)  problem instances. Focus on 

large-scale but in-memory networks.  

DESCRIPTION & FEATURES 

A focus+context visualization tool that supports 

the interactive creation of multiple fisheyes 

(Bayesian network nodes, for example) with 

corresponding distortions.  Voronoi edges 

separate the fisheyes, and multiple windows 

with details (such as Bayesian network 

conditional probability tables) are created for 

fisheyes and their neighboring nodes.   

RESULTS 

The tool supports interactive and simultaneous  

creation of up to 10-20 readable node labels by 

means of fisheye distortion in networks. Node 

context, including  network  edge connection 

patterns and relative location, is preserved.  

 

Focus+Context: Multi-Fisheye and Multi-

Window Visualization for Networks 



OBJECTIVE 
Making multiple and multi-step comparisons across 

different parts of a data corpus and across multiple 

representational levels in a complex data set. 

DESCRIPTION 
Two network visualization and analysis tool, NetEx and 

NetEy, that enrich the traditional node-edge 

visualization of networks by providing easy access to 

other aspects of data that can not be directly 

encapsulated in the graph structure. 

 

FEATURES OF NetEx TOOL: 
Visual encoding of data properties 

Overview + detail 

Multi-focus + context 

Bubbles anchoring node information to the network 

 

RESULTS 
In experiments with data from an electrical power 

network we demonstrated how NetEx makes fault 

diagnosis easier.  Results from a user study with 25 

subjects suggests that NetEx enables more accurate 

isolation of faults in multi-fault situations 

 

 

Multi-Focus, Multi-Window User Study 



Speeding up Bayesian Network 

Computation using Parallel and 

Distributed Methods 

•  A. Basak, I. Brinster, X. Ma and O. J. Mengshoel. “Accelerating Bayesian 

Network Parameter Learning Using Hadoop and MapReduce.” In Proc. 1st 

International Workshop on Big Data, Streams and Heterogeneous Source 

Mining @ KDD-12, Beijing, China, August 2012.  

•  A. Saluja, P. Sundararajan,  and O. J. Mengshoel.  “Age-Layered Expectation 

Maximization for Parameter Learning in Bayesian Networks.” In Proc.  Artificial 

Intelligence & Statistics (AIStats), La Palma, Spain, April 2012.  

•  L. Zheng, O. J. Mengshoel, and J. Chong. “Belief Propagation by Message 

Passing in Junction Trees: Computing Each Message Faster Using GPU 

Parallelization.” In Proc. Uncertainty in Artificial Intelligence (UAI-11), Barcelona, 

Spain, July 2011. 



• Belief propagation in junction trees may 
be computationally intensive due to: 
o The topology and connectedness of Bayesian 

networks  

o High cardinality of one or more nodes in cliques 
with sufficiently high number of nodes  

• Observations:  
o During message passing, computations 

associated with different separator tables are 
independent 

o Some junction trees contain large cliques and 
separators 

• Our approach: 
o Compute each message in parallel  

o Substantial parallelism opportunity when 
neighboring cliques and separators are large 

o Non-invasive embedding in original junction tree 
message passing algorithms 

Motivation and Approach - GPU 



Step 1: Marginalization 

Step 2: Scattering 

Parallel Message Passing, Junction Trees 



GPU Message Computation and Speedup 

Message passing is 

performed in parallel, 

benefiting situations 

with large cliques and 

large separators 

Speed up Bayesian network 

computation when junction 

trees are being used; exploit 

many-core parallelism such 

as  graphics processing 

units (GPUs).  



GPU Parallelization: Experiments  

Best published 

experimental speed up 

result to date is 918%.  
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Problems of EM Algorithm 

Time consuming:  
• Computing E-step 

• Problem of local maxima 
• Multiple random starting points 

• Large number of iterations 

• Big Data 



Age-Layered Search Space 
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 Objective: Speed up convergence 

Starting EM runs 

LL = 100 

LL= 50 

  
1. EM runs are allotted ages (number  

of iterations). 

2. Each layer has an age limit allotted 
to it. 

3. When an EM run reaches the 
maximum age for that layer, it may 
need to competes (log-likelihood - 
LL) with runs in the next layer.  

    

Age-Layered Expectation Maximization 



Bayesian Network Learning using 

MapReduce 

Motivation:  

• Computational cost of parameter learning increases with 
network complexity and data set size. 

• Additional bottlenecks for incomplete data:    
• Junction tree inference (E-step) 

• Iteration 

• Local optima 

Approach:  

• Formulate BN machine learning algorithms within 
MapReduce (MR)  

• Implement algorithms using Hadoop 

 

 

    



Curve fits, of the form (An + B)/(Cn + D):  

MR BN Learning: Incomplete Data 

Experimental 
Bayesian 
networks  



Integration of Bayesian Network 

Computation and Feedback Control 

• E. Reed, A. Ishihara, and O. J. Mengshoel. "Adaptive Control Of Bayesian 

Network Computation." In Proc. of the International Symposium of Resilient 

Control Systems (ISRCS-12), Salt Lake City, Utah, August 2012.  

• O. J. Mengshoel, A. Ishihara, and E. Reed. "Reactive Bayesian Network 

Computation using Feedback Control: An Empirical Study." In Proc. of 

Bayesian Modelling Applications Workshop (BMAW-12) @ UAI-12, Catalina, 

CA, August 2012.  

 



Motivation and Approach 
• The power of “analytics  
technologies” is steadily improving  
• Many BN inference algorithms, 
with varying resource requirements 
and performance:  

• likelihood weighting (LW)  

• junction tree propagation (JTP) 
• loopy belief propagation (LBP) 
• Pearl’s belief propagation (PBP) 
• variable elimination (VE) 

• BN inference in unpredictable SW 
and HW environments 
• User behavior varies substantially  
• Need for reactive computation 

• “soft real-time” 

Approach: 
“middleware” 
supporting a 
range of 
reactive 
applications – 
based on 
feedback 
control 



Feedback Control Architecture 
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Types of processes:  
• High-criticality: BN diagnosis 
• Medium-criticality: Undisturbed 
• Low-criticality: Subject to control 

 
Low-criticality processes are 
controlled – currently terminated – 
when BN computation time y(k) 
exceeds a set point r(k).  

A Linear Controller is given by the 
following z-transfer function: 

 



Electrical Power System 

• We used data from ADAPT (above), an electrical power 
system testbed, and a BN model of ADAPT  
• During each simulation timestep, the posterior P(H | e) over 
ADAPT’s health nodes H is calculated, based on evidence e  
• We varied:  

• BN inference algorithms: JTP, LW, LBP, PBP, VE 

• Computer and OS: See paper 

• Low criticality processes: generated using Poisson process 
• CPU-intensive, executing math operations in tight loop 



Actual Computation Time as a Function of 

Actual Number of Processes 

Actual number of low-

criticality processes 

Actual 

computation 

time, high-

criticality (BN) 

process 



Estimation of Model Parameters 

Open loop model fitting with first order 
least squares using this model: 

      321 11ˆˆ ctuctycty 

where:  
• Parameters C1, C2, C3 are estimated  
• u(t) is the max number of low-criticality 

processes  
• A random square-wave is used for u(t) to ensure 

sufficient excitation for parameter estimation 
 



Experiments - Summary 

Fix Change 

Fix 

Change 

Algorithm 

Set-
point 

(A) 

(B) 

(C) 

(D) 



(A) Control: Fixed Setpoint, Fixed BN 

Inference Algorithm 



• Setpoint is changed 
midway through a 
simulation 

• The controller 
reacts and 
increases the 
maximum number 
of low-criticality 
processes. 

(B) Control: Change of Setpoint 



(C) Control: Change of BN  Inference 

Algorithm 

• Controller reacts to an 
inference algorithm 
change from junction 
tree propagation (JTP) 
to likelihood weighting 
(LW) midway through a 
simulation 

• This results in a change 
of maximum number of 
low-criticality processes 

• Tracking not as good 
after change 



Adaptive Control: Online System 

Identification 

Realtime system identification with linear least squares 

(LS), recursive least squares (RLS), and 2nd order 

recursive least squares (RLS2) using the model: 

         212ˆ1ˆˆ
2121  tubtubtyatyaty



Adaptive Control: Results 

• Adaptive 
parameters with 
minimum degree 
pole placement is 
used [Reed et al., 
2012]  

• Here uc(t) is the 
setpoint. The 2nd 
order RLS model 
was used. 
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• Organizer/Tutorials: 

• VisWeek BoF:  Scalable Interactive 
Visualizations for Visual Analytics 

• AAAI Workshop: Scalable Integration of 
Analytics and Visualization 

• GTC Tutorial: Speeding up Computation 
in Probabilistic Graphical Models using 
GPGPUs 

Extensions and Outreach 

• Participation: AAAI, AISTATS, CHI, KDD, NIPS, PHM, UAI, VAC meeting, VDA, 
VisWeek/VAST, …  

• Competitions:  VAST dataset, DX dataset (ADAPT)  

• New Graduate Level Class: 

• Visual Analytics, Summer 2011 & Summer 2012  

• Software:  NetEx, NetEy, …  

• Follow-on Projects:  ARPA-E, Industry 
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