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Areas of Research

Probabilistic and statistical models, algorithms:

Probabilistic graphical models: Bayesian networks, ...
Inference: Diagnosis, prognosis, ...
Machine learning

Interactive visualization:

Network visualization
Multi-view, Multi-focus, ...

Stochastic and randomized algorithms:

Stochastic local search
Evolutionary algorithms

Applications and demonstrations:

Challenging and large-scale applications, multi-media data sets, ...
Scalability of algorithms, visualizations, user interactions, ...
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Research Directions

Fast Belief Propagation Using GPU Understanding Scalability of
Parallelization in Junction Trees Bayesian Network Computation
using Junction Tree Growth
Electrical Power System O——O curves
Diagnosis using Probabilistic o e
Computation Q e le+6 T

5e+5

Multi-Fisheye, Multi-View for
Interactive Visualization of
Large Networks

Stochastic Search for
Computing Most Probable
Explanations in Bayesian
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Bayesian Network Inference

- Bayesian network inference answers these
gueries.
— Marginal/MLV: Given evidence at some nodes, infer
posterior probability/most likely value (MLV) over one node

— Most probable explanation (MPE): Given evidence, find
explanation with greatest probability over remaining nodes

— Maximum aposteriori probability (MAP): Given evidence,
find explanation with greatest probability over

« Computational hardness [Cooper, 1990; Shimony,
1994; Roth 1996]:

— Care is needed, in modeling, machine learning, and
inference

 Inference algorithms:
— Exact: Clique tree propagatlon [Lauritzen & Spiegelhalter,
1988]; Arithmetic circuit evaluation [Darwiche, 2003; Darwiche
& Chavira, 2007]; .

— Approximate: Stochastic local search [Kask & Dechter, 1999;
Mengshoel, 1999; Mengshoel 2008]; Variational inference; ...

o
14
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Need for Resilient Operations and
System Health Management

On September 2, 1998, Swissair 111 crashed
Into the Atlantic Ocean, killing all 229
people onboard. Probably, wires short-
circuited and led to a fire.

A battery failure occurred on the Mars Global
Surveyor on November 2, 2006. A software
error caused the battery to overheat due to
over-exposure to sunlight.

In 1999, the Mars Polar Lander crashed into
the surface of Mars, most likely due to a
premature engine shutdown because of
spurious lander leg signals.

For the Mars rover SPIRIT, a full on-board file
system caused reboot-loop after landing.

On June 4, 1996, software on the Ariane V
rocket, reused from Ariane IV, overflowed
and lead to its destruction.
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Multi-View OV@fVlew+Deta11 for Networks
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Visual encoding of data T wizs Lerast l
properties (E) coi17a NetEx visualization tool: (D) overview Ievel (E)

* Overview + detall network level; (B) & (C); and (A) anchoring of
* data level to the network view with allows low-

« Multi-focus + context : : :
. bbl hori q level focused analysis and comparison while
Bubbles anchoring node preserving network structure.

information to the network RESULTS
In experiments with data from an electrical power network we
demonstrated how NetEx makes fault diagnosis easier.
Results from a user study with 25 subjects suggests that
NetEx enables more accurate isolation of faults in multi-fault
situations.
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Multi-View Focus+Context for Networks

OBJECTIVE

Improve the applicability of multi-fisheye to
exploration of labeled networks, including Bayesian
network (BN) problem instances. Focus on large-
scale but in-memory networks.

DESCRIPTION

A focus+context visualization tool that supports
visualization of multiple fisheye distortions in
network (Bayesian networks, for example).
Voronoi edges separate the fisheyes, and data
boxes with details (such as Bayesian network
conditional probability tables) are created for
fisheyes and their neighboring nodes.

RESULTS

The tool supports interactive and simultaneous
creation of up to 10-20 readable node labels by
means of fisheye distortion in large-scale
(Bayesian) networks. Node context, including
network edge connection patterns and relative
location, is preserved.
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Belief Propagation by Fast GPU Message

Passing in Junction Trees
OBJECTIVE RESULTS

Speed up Bayesian network computation Analytical and experimental speed up — best
when junction trees are being used; use experimental speed up result to date is 918%.

graphics processing units (GPUSs). | |
Zi ZkENE(Ci)(‘@Xi‘ + ‘@X}; D

Speedup = SACA—
DESCRIPTION Pee = - D74 T Yoo EEITT

An algorithm in which message passing in |95
performed in parallel, benefiting situations

with large cliques and large separators
10°
T 5
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Bayesian Methods for Diagnostics (1)

: Tackle system health

jement and diagnostic challenges:
& complex systems; Hybrid

s (discrete & continuous

jor); Hard diagnostic problems;
me requirements.

: Develop probabilistic diagnosis
ach, ProDiagnose: Auto-generation of e T :>:>
sian network; Compilation of B

sian networks to real-time arithmetic

Offline
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Bayesian Methods for Diagnostics (2)

. ADAPT - Electrical power

. Two conditions:

estbed at NASA ARC. sum (CUSUM)
or (ii) disabled.
i CUSUM
T [ Metric Enabled | Disabled
Detection Accuracy 92.31% | 46.15%
False Positives Rate 0% 0%
Y False Negatives Rate 8.82% 61.76%
e Mean Time To Detect | 17.97 s 28.36 s
Mean Time To Isolate | 72.27 s 51.14 s

@@@

in time < 1 ms.

Carnegie Mellon University
Silicon Valley

Bayesian Reasoning for Diagnostics:
Operates in a state space of size > 259




GPUs for Speeding up Bayesian
Network Computation
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Parallel and Distributed Computing

Graphics processing units (GPUs): Promise to
dramatically up the performance of processing in the
cloud and on the mobile device.

Speed up performance of processing in the cloud —
Integration with analytics software.

GPUs are moving onto mobile devices, and within the
next year or two we expect them to be programmable
through CUDA or other programming languages.
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Motivation and Approach

- Belief propagation in junction trees may @ °
be computationally intensive due to:
o The topology and connectedness of Bayesian \

networks
o High cardinality of one or more nodes in cliques @
with sufficiently high number of nodes

 Observations: @

o During message passing, computations
associated with different separator tables are
independent

» ! hread 1

o Some junction trees contain large cliques and —hread 2
separators .

« Qur approach:
o Compute each message in parallel

o Substantial parallelism opportunity when
neighboring cligues and separators are large

o Non-invasive embedding in original junction tree
message passing algorithms

n
»1Nread N
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Fast Message Passing

Index mapping from right clique to separator

Clique

BC

Step 1: Marginalization

Ps,, = Z dx;

Xi/Sik

Step 2: Scattering

" PSiy
¢Xk — ¢Xk
Cbsik
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GPU Message Computation and Speedup

Algorithm 1 Message_Passing(ox,, dx,, ¢s,,)

Input: ¢x,, 0x, . 0s,, -
for j =1 to |¢s,, | in parallel do
sep_star=0;
for n = 1to |y, s, | do
sepstar[j] = sep_star(j|+ox, (p1x,,s, (1))

end for
for n =1 to |px,,s,| do
(-—'T}Xk (f""Xk,Sj [HD — Seq?jtT;][J] Px (H‘Xk,sj [?1)
end for
end for
Di 2 keneen ¢ 1)
Speedup = Vel

(|® 1|+|J) i‘-|) .
2(n — D1+ >, ZkeNe(Ci) X|<.'Dsif|x’
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GPU Parallelization: Experiments

Dataset Mildew | Diabetes Barley Pigs | Munin2 | Munin3 | Munind | Water

# of JT nodes 28 337 36 368 860 904 872 20
Max. CPT size | 4,372,480 190,080 | 7,257,600 || 177,147 | 504,000 | 156,800 | 784,000 | 995,328
Min. CPT size 336 495 216 27 4 4 4 9

Ave. CPT size 341,651 32,443 512,044 1,927 5,653 3,443 16,444 | 173,297
Max. SPT size 71,680 11,880 907,200 || 59,049 72,000 22,400 | 112,000 | 147.456

Min. SPT size 72 16 7 3 2 2 2 3
Ave. SPT size 9,273 1,845 39,318 339 713 253 2,099 26,065
BP on GPU |ms] 53 94 106 5 125 104 342 52
BP on CPU [ms] 355 397 974 51 210 137 473 120
Speedup 6.70 4.22 0.19 0.68 1.68 1.32 1.38 2.31
w0 Barley
10 1 Xz‘eog gm
—— Flops g
| - & — speedup /’0 B -
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| | 8"
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System Health Management using
Bayesian Networks
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Architecture using Bayesian Networks

Bayesian network _ _ _ Arithmetic circuit

Each health variable . \\. o T,
= ¥ T R
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one, two, or more N S S
aults. A NN e N\
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Currentl  :sensorCurrent : 0.0005 : Wirel; | Generation Compilationy
Breakerl : breaker :0.0005 : Wirel; | N |
Status1 :sensorTouch  :0.0005 : Breakerl;
Wire2 : wire : 0.0000 : Breakerl; |
Relayl : relay : 0.0005 : Wire2; I
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' Independent faults
— Abrupt

Permanent

Intermittent

| _ _~_Dnit(incipient) _
Dependent faults
— Common caus

— Cascading

Bayesian
networks in
general

Fault Types

Continuous drift fault

Continuous (parametric)

I
I
I
I
Discrete I
I
I
I

Problem-1 (DP1) and
Problem-2 (DP2) of
diagnostics challenge

4.7
> 465 A
IS
‘= 46 M — |T267
S ﬂ
£ 455
3 SNV

4.5

4.45

Time

Continuous abrupt (offset) fault

Voltage

22.65
22.6
22.55
225
22.45
224
22.35

223 |

22.25
22.2

- E240

Time
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Cumulative Sum (CUSUM)

Mathematical definition of CUSUM:
0p(t) = [sp(t) — sp(t — 1) +0p(t — 1)

Graph illustrating CUSUM on

current readings:
*The blue and plots represent
the raw sensor readings (span of 4
minutes)
*The red and plots represent the
CUSUM values of these respective
raw sensor readings
*The vertical dotted line represents the
time of fault injection.
*Benefit of CUSUM: It and

signals of

Current

20

15

Fault Injection

== [T240 RAW

== [T240 CUSUM
IT267 RAW

==|T267 CUSUM

v(0)
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CUSUM — Continuous Offset Faults

Nominal case

health_voltage_sensor F au It CaS e
I 98.77% - healthy
health_battery [10.00% - offsetToLo
I 99 42% - healthy | change battery 1 \[11.23% - offsetToHi
[ 10.58% - degraded L ew;lence =nominal | |—0.00% - offsetToMax
[10.00% - disabled | C@* [10.00% - stuck
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i / health_battery |[C10.00% - offsetTolLo
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i | Y Il 159 42% - degraded [10.01% - offsetToMax
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7 T
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A S) S )
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! evul:Ience £| t\l ~ evidence = cloeed
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(@) <(4) vv\@ o §

&C
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S
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[ Health Nodes i ewTence Igl t
(A) A) (A c?f
NG '\J N BN
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Experimental Bayesian Network

Load Bank 2
eryCabinet o INV @ — N — .
CB262 2 CBI6E LI
BAT2 —5 }l/@ ([t 120\::» ADAPT DPl
o ‘@ {l oo L2H
=g | .
The Bayesian
network model of
ADAPT DP1

=]
L=

=]

Summary Statistics: Hypothesis: Similar networks can be constructed
*DP1 Bayesian network:

Nodes: 148 (by expert, machine learning, or combination) to
“Edges: 176 detect, diagnose, predict, and mitigate in a broad

«Cardinality: [2, 10] range of systems.
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Experiments, Simulated ADAPT Data

ACE is the
Inference MPE Marginals J aﬁggg"’}‘;“
Time (ms) VE ACE JTP ACE T _Probiagnose
Minimum 19.30 | 0.2235 | 9.792 | 0.5721
Maximum | 40.21 | 2.5411 | 65.34 | 5.9228

Median 19.81-1-0.2260 | 10.52 -/-0-60Q06
Mean (20.13 | 0.26251[C11.01 | 0.7854
St. Dev. 1354-F 6.2028 | 4.T01 =|-6:6970 |

Comparison between Arithmetic Circuit Evaluation (ACE), Variable
Elimination (VE) and Clique Tree Propagation (CTP)

Main conclusions:

—All three inference algorithms are quite efficient, thanks to auto-generation
algorithm

—ACE outperforms VE (for MPE) and CTP (for marginals), both in Mean
and St. Dev.

Carnegie Mellon University
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Experiments, ADAPT Power System

Results summary (CUSUM enabled):

*DXC-10 training set

Detection accuracy doubled
*False negative rate greatly improved
sImprovement in average detection time

*Average isolation time increased
*The DX competition specifies that no
isolation time be recorded for an

CUSUM
Metric Enabled | Disabled
Detection Accuracy 92.31% 46.15%
False Positives Rate 0% 0%
False Negatives Rate 8.82% 61.76%
Mean Time To Detect 17.97 s 28.36 s
Mean Time To Isolate | 72.27 s 51.14 s

Incorrect mis-diagnosis.

1 _ _ _ ADAPT DXC Tier 1 1 _ _ _ _ADAPT DXC Tier 2
Metric i| ProADAPT ['RODON | HyDE-S,| ProADAPT | Stanford | RODON
False positives (FP) rate I 0.0333 | 0.0645 0.2000 1 0.0732 | 0.3256 05417
False negatives (FN) rate I 0.0313 || 0.0968 0.07411 0.1392 |,  0.0519 0.0972
Detection accuracy I 0.9677 | 09194 0.8548 | 0.8833 |}  0.8500 0.7250
Classification errors I 2.0 i 10.0 26.01! 76.0 |  110.5 84.1
Mean time to detect T'; (ms) : 1,392 i 218 130: 5081 || 3946 3490
Mean time to isolate T'; (ms) 4084 I 7.205 653 | 12,486 || 14.103 36,331
Mean CPU time T'. (ms) : 1,601 | 11,766 513, 3,416 | 963 8.0261
Mean peak memory usage (kb) | 1,680 ! 26.679 5,795 6,539 ! 5912 29 878
Score I 72807 ], 5985 59501 8320 | 8150 70.50
Rank I I 2 31 1| 2 3

9 competitors in Tier 1.

6 competitors in Tier 2.

Carnegie Mellon University
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Scalability of Bayesian Network
Computation
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Bipartite Bayesian Networks

Root nodes are estimated
(output nodes): represent
whether components or systems
are working or failing; type of
user behavior (fraudulent or
legitimate); etc.

Leaf nodes are observed
(input nodes): represent
detectors / sensors /
observables / tests

The number of sensors in mobile devices and infrastructure have
iIncreased dramatically. Are we taking full advantage of them, to

understand the behavior of users as well as the communication
and computation infrastructure?

Carnegie Mellon University
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Clique Tree Clustering

Moral graph

Bayesian
network

Tree clustering: a major
approach to BN inference

Tree clustering algorithms
employ two phases:

Compilation: generate clique tree
B8’” from BN 8 Clique tree

Propagation: do belief revision @ @ @
(MPEs) or belief updating @ ‘
(marginals) by propagation of @@@@

evidence in 8"
Details in [Lauritzen & Spiegelhalter, 88].

Carnegie Mellon University

Sili(:OIiValley



Gompertz Growth Curves

-0.3x

Gompertz growth curve:

g(x) = g()e™= "

g(X) “ gl(x) _ 2206—59

d,(x) to g4(x): Shift growth curve
to right by increasing ¢ from C =
5to ¢ =15.

0,(x) to g,(x): Decrease maximal
growth rate by decreasing y from
y=03toy=0.2
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Growth of Bayesian Networks

Number of sensors - Bayesian network leaf nodes

() (v (v QICICICENCICICIC
v [> (R o> [> LRE I
Q@ Q@@@ GG@Q@@

Total Gompertz growth curve for BPART(V, C, P, S):
_/p X
g:(X)=S"e* +xS""
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Comparing Growth Curves

Clique tree growth as function of moral edges BNs of varying
1.E+09 hardness
8 1.E+08 - /&/g generated with
2 1 E+07 - parameters
@) = = -
= L0624 06200 - ;/nc:l3 (\)/af ir? ’ F(): >
; = 74.062e™ :
8 105 {7 & ying
» &
O 1 E+04 - x  Sample means
g O Gompertz
0 1.E+03 A A Logistic
g i = Complementary
@) 1.E+02 §§ — Expon. (Sample means)
1.E+01 T . T . . .
0 50 100 150 200 250 300 350
Expected number of moral edges
30
Gompertz g(x) = 2% xexp(—19.14 x exp (—0.005874x))

growth curve:
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Current and Planned Work

Analytics:

— Improve Expectation Maximization (EM) algorithms for Bayesian network
parameter estimation — exploit parallelism in modern hardware and software

architectures

— Approach 1: Develop EM layer "on top of” improved GPU-based approach to
junction tree propagation

— Approach 2: Use MapReduce to explore data parallelism in Bayesian network
parameter

Visualization:
— Improvements to current multi-focus, multi-view network visualizations
— Integration of novel and existing of analytics and visualization techniques

Experiments, demonstrations, and software:
— ADAPT datasets and Bayesian networks
— Synthetic Bayesian networks (“similar to ADAPT”) and other Bayesian networks

— Other network data sets: VAST challenge; disaster and emergency
management, social network data, ...

— Hardening and distribution of Java software

Carnegie Mellon University
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