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Research topics

e Using diffusion processes on graphs for (inter)active learning.

e Perform multiscale analysis on graphs: construction of graph-adaptive
multiscale analysis, for graph visualization and exploration, and (inter)active
learning.

e Sparse learning w.r.t. multiscale dictionaries on graphs.
e Construct data-adaptive dictionaries for data-modeling and exploration.

e Construct intrinsically low-dimensional models for data, in particular im-
ages and text documents.

e Exploiting the last two for clustering and classification tasks.

e Use this type of multiscale analysis to introduce new metrics between
ographs, in particular for analysis of time series of graphs.

Thursday, December 8, 11



Research topics

e Using diffusion processes on graphs for (inter)active learning.

e Perform multiscale analysis on graphs: construction of graph-adaptive
multiscale analysis, for graph visualization and exploration, and (inter)active
learning.

e Sparse learning w.r.t. multiscale dictionaries on graphs.
e Construct data-adaptive dictionaries for data-modeling and exploration.

e Construct intrinsically low-dimensional models for data, in particular im-
ages and text documents.

e Exploiting the last two for clustering and classification tasks.

e Use this type of multiscale analysis to introduce new metrics between
ographs, in particular for analysis of time series of graphs.

Thursday, December 8, 11



Random walks on data & graphs

e One may connect data points to form a graph, with edges weighted
by the similarity of data points.

e One can then construct a random on the data points, which may be
used for a variety of tasks:
— dimension reduction
— clustering, classification, regression, etc..
— diffuse information (e.g. labels) on data

— study geometric properties of data
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Active [Learning

Given: full data set, (expensive) queries to an expert.

Goal: label all data points.

Proceed iteratively, querying labels at points with highly uncertain predictions
+ well-distributed on the data (multiscale)
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Example: text documents _ 3 Glina

Mukherjee and P. Febbo
Use dictionaries on graphs for sparse classification/regression. E.g.: N docu-

ments in R, compute multiscale dictionary ® (D x M) on the D words. If f
maps documents to their topic, write f = X®3 4+ n and find 38 by

argming||f — X®B8||53 + A|[{27778;,6 Hl1

which is a form of sparse regression. (A, ~) are determined by cross-validation.

Application to gene
array data (prostate
cancer). Not only
better predictions, but
more Iinterpretable
results as our multiscale
genelets better related
to relevant pathways
than eigengenes.

Source of data: Nakagawa T, Kollmeyer T, Morlan B, Anderson, S, Bergstralh E, et al, (2008)
A tissue biomarker panel predicting systemic progression after PSA recurrence post-definitive prostate cancer therapy, Plos One 3:e2318.
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Geometric Wavelets, ssmple example

With W.K. Allard and G. Chen,

125 Geometric Multi-Resolution Analyss, ACHA, 2011
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Yale Faces database

Multiscale approximation with GWT for one data point (face, 640x480)

9 projection original
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Wavelet axis images
control current
plot coordinates

Center image
of current node

Scatterplot of wavelet
coeffs for current node

Mouse hover
data overview

Icicle view of binary tree
with wavelet coefficent

Current node matrix overlay

Detail view of wavelet axes
for current image with coeff
magnitude mapped to opacity

Tree
navigation

Multi-s, ale SVD

Selections linked

between views Scrollable view of all images
selected in scatter & parallel

Parallel coordinates plot of coordinates plots (red) with
wavelet coeffs at all scales individual selected (blue)

for all data in current node

UI for Geometric Multi-Resolution

With E. Monson, R.
Brady, G. Chen,

Data Representation and
Exeploration with
Geometric Wavelets,
VAST, 2010

POSTER & DEMO
TONIGHT
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UI for Geometric Multi-Resolution
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Multiscale Geometric and Spectral Analysis of Plane

Model data by using K low-dimensional planes.

Arrangements

With G. Chen, Multiscale Geometric and Spectral

Analysis of Plane Arrangements, CVPR 2011
Problem: estimate K and the

planes, given noisy points. Classification: assign points to nearest plane.

We introduce a novel fast algorithm with strong guarantees.
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Dynamic Graphs

J. Lee, MM. See J. Lee’s Thesis, 2010,
Proc. SampTA, 2011

Given: time series of graphs GG;. Objective: to analyze this time series. Desider-
ata:

. Sensitive to large and small significative changes in the network, and to
their location.

. Should capture both topological and quantitative geometric changes.
. Should yield measures of change: want to do analysis, statistics...

. Robust to “noisy” perturbations of the network.

We have introduced a framework, based on multiscale analysis on graphs, that
enabled us to introduce distance measures on graphs satistying and quantitying
the above.

Basic idea: produce a multiscale decomposition of the graph G;, match the
pieces to those in GG;_1, and quantify change in terms of a measure of (multiscale)
connectivity among the pieces. Yields a sort of “wavelet-like” analysis for time
series of graphs, quantifying changes at different scales and locations.
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Simulated “attacks” on blog network

Network of political blogs, 1400 nodes and 19000 edges. We simulate two
attacks: a DDOS attack at time 4, when one random vertex is connected to 100
random vertices, till time 6, and then a wormhole attack at time 8, when the
two farthest vertices are connected by a heavy edge.
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L. A. Adamic and N. Glance, "The political blogosphere and the 2004 US Election", in Proceedings of the WWW-2005 Workshop on the Weblogging Ecosystem (2005)
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Open problems & future dir.’s

* Bi-clustering and two-way matrix analysis with geometric methods,
relationships with Bayesian methods; density estimation and anomaly detection.

* Interactivity and human-in-the-loop in the above.

* First two toolboxes (GMRA and MAPA) just released.

* Dynamic graphs and networks: scaling up, more refined approaches (and
toolbox coming soon).

* Integration of our clustering and data reduction methods with J. Stasko’s
Jigsaw

Collaborators: Eric Monson, Rachael Brady (Duke C.S.); Guanghang Chen (Duke
Math); Anna V. Little, Prakash Balachandrian (Math grad, Duke), Jason Lee (Math
undergrad, Duke).

www.math.duke.edu/~mauro
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