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Research topics
• Using di↵usion processes on graphs for (inter)active learning.

• Perform multiscale analysis on graphs: construction of graph-adaptive

multiscale analysis, for graph visualization and exploration, and (inter)active

learning.

• Sparse learning w.r.t. multiscale dictionaries on graphs.

• Construct data-adaptive dictionaries for data-modeling and exploration.

• Construct intrinsically low-dimensional models for data, in particular im-

ages and text documents.

• Exploiting the last two for clustering and classification tasks.

• Use this type of multiscale analysis to introduce new metrics between

graphs, in particular for analysis of time series of graphs.
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Random walks on data & graphs
• One may connect data points to form a graph, with edges weighted

by the similarity of data points.

• One can then construct a random on the data points, which may be
used for a variety of tasks:

– dimension reduction

– clustering, classification, regression, etc..

– di↵use information (e.g. labels) on data

– study geometric properties of data
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Few labelled 
points

Predict 
(diffusion)

Label a ``well-chosen’’ 
new point

Active Learning
Given: full data set, (expensive) queries to an expert.

Goal: label all data points.

Proceed iteratively, querying labels at points with highly uncertain predictions

+ well-distributed on the data (multiscale)
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Cost: # of labeled 
points
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predictions
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Example: text documents
Use dictionaries on graphs for sparse classification/regression. E.g.: N docu-

ments in RD
, compute multiscale dictionary � (D ⇥M) on the D words. If f

maps documents to their topic, write f = X�� + ⌘ and find � by

argmin� ||f �X��||22 + �||{2�j��j,k}||1 ,

which is a form of sparse regression. (�, �) are determined by cross-validation.

With J. Guinney, S. 
Mukherjee and P. Febbo

Application to gene 
array data (prostate 
c a n c e r ) . N o t o n l y 
better predictions, but 
more in terpretab le 
results as our multiscale 
genelets better related 
to relevant pathways 
than eigengenes.

Source of data: Nakagawa T, Kollmeyer T, Morlan B, Anderson, S, Bergstralh E, et al, (2008) 
A tissue biomarker panel predicting systemic progression after PSA recurrence post-definitive prostate cancer therapy, Plos One 3:e2318.
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Geometric Wavelets, simple example
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Fig. 10. Geometric wavelet transform of an swiss-roll-shaped manifold, from which
10000 points are randomly sampled, precision ε set to 10−4. Left: the reconstructed
manifold M5 at scale 5. Right: the reconstructed manifold M10 at scale 10.
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y=   −2.2711 x − 0.59076

Fig. 11. Left: Geometric wavelet representation of the data. The x-axis indexes the
points, and the y axis indexes the wavelet coefficients as in (4.6), with the coarsest
scale at the top and the finest scale at the bottom. The wavelet subspaces have
dimension at most 2, and in fact numerically their dimension is, up to two digits of
accuracy, 1. About 70% of the entries are below 10−1. Right: Error Erel

j,∞ (as defined
in (5.1)) decreasing quadratically as a function of scale.
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Fig. 12. We threshold the wavelet coefficients at η = 10−1 at prune the tree accord-
ingly. Left: the pruned tree, obtained by eliminating scaling functions and wavelets
not needed after the thresholding of the coefficients. Right: picture of the thresh-
olded coefficients on the pruned tree.

the samples into the first 120 dimensions by SVD. We apply the algorithm to
construct the geometric wavelets and show the reconstructions of the data and
the wavelet coefficients at all scales in Figure 15. We observe that the mag-
nitudes of the coefficients stops decaying after a certain scale. This indicates
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20 Guangliang Chen, Anna V. Little, Mauro Maggioni, and Lorenzo Rosasco

4.2.2 A data set

We next consider a data set of images from the MNIST data set 3. We consider the
handwritten digit 7. Each image has size 28× 28. We randomly sample 5000 such
images from the database and then project the samples into the first 120 dimensions
by SVD. We apply the algorithm to construct the geometric wavelets and show the
reconstructions of the data and the wavelet coefficients at all scales in Figure 12. We
observe that the magnitudes of the coefficients stops decaying after a certain scale.
This indicates that the data is not on a smooth manifold. We expect optimization of
the tree and of the dimension of the wavelet in future work to lead to an efficient
representation also in this case.
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Fig. 12 Geometric wavelet representation of the data for the images of handwritten 7’s. This matrix
is less sparse than what we would expect for a manifold. This is an artifact of the construction
of geometric wavelets we presented here, in which the dimension of the planes 〈Φ j,k〉 is chosen
independent of j,k. This constraint is not necessary and is removed in [2], which allows one to tune
this dimension, as well as the dimension of the wavelet spaces, to the local (in space and scale)
properties of the data.

We then fix two data points (i.e. two images) and show in Figure 13 and 14 their
reconstructed approximations at all scales and the corresponding wavelet bases (all
of which are also images). We see that at every scale we have a handwritten digit,
an approximation to the fixed image, and those digits are refined successively to
approximate the original data point. The elements of the dictionary quickly fix the
orientation and the thickness, and then they add other distinguishing features of the
image being approximated.

3 available, together with detailed description and state-of-art results, at
http://yann.lecun.com/exdb/mnist/.

−1 −0.5 0 0.5 1
−1

0

1

2

−1

−0.5

0

0.5

1

1.5

−1 −0.5 0 0.5 1
0

0.5
1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 10. Geometric wavelet transform of an swiss-roll-shaped manifold, from which
10000 points are randomly sampled, precision ε set to 10−4. Left: the reconstructed
manifold M5 at scale 5. Right: the reconstructed manifold M10 at scale 10.
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Yale Faces database
Multiscale approximation with GWT for one data point (face, 640x480)
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y=   −1.0326 x − 4.5912

Fig. 20. Top left: magnitudes of the wavelet coefficients of the cropped faces (2414
images) arranged in a tree. Top right: dimensions of the wavelet subspaces. Bottom:
magnitude of coefficients (left) and reconstruction error (right) as functions of scale.
The red lines are fitted omitting the first and last points (in each plot) in order to
more closely approximate the linear part of the curve.
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Fig. 21. Left: in images 1-9 we plot coarse-to-fine geometric wavelet approximations
of the projection and the original data point (represented in the last two images).
Right: elements of the wavelet dictionary (ordered from coarse to fine in 1-9) used
in the expansion above.
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Fig. 19. Left: A random subset of the 2414 face images (38 human subjects in front
pose under 65 illumination conditions); Right: the entire data set shown in top three
PCA dimensions.

and 95% of the variance, respectively, at the nonleaf and leaf nodes when
constructing scaling functions. Note that both the magnitudes of the wavelet
coefficients and the approximation errors have similar patterns with those for
the MNIST digits (see Fig. ??), indicating again a lack of manifold structure
in this data set. We also fix an image and show in Fig. ?? its reconstructed
coordinates at all scales and the corresponding wavelet bases (all of which are
also images).

5.2.3 Comparison with SVD

In this section we compare our algorithm with Singular Value Decomposition
(SVD) in terms of encoding cost for various precisions. We may think of the
SVD, being a global analysis, as providing a sort of Fourier geometric analysis
of the data, to be contrasted with our GMRA, a multiscale wavelet analysis.
We use the two real data sets above, together with a new data set, the Science
News (source and description?). For GMRA, we now consider three different
versions: (1) the regular GMRA, but with the optimization stratigies discussed
in Secs. ?? and ?? (2) the orthogonal GMRA (in Sec. ??) and (3) the pruning
GMRA (in Sec. ??). For each version of the GMRA, we threshold the wavelet
coefficients to study the rates of change of the approximation errors and en-
coding costs. We present three different costs: one for encoding the wavelet
coefficients, one for the dictionary, and one for both (see Fig. ??).

We compare these curves with those of SVD, which is applied in two ways:
first, we compute the SVD costs and errors using all possible PCA dimensions;
second, we gradually threshold the full SVD coefficients and correspondingly
compress the dictionary (i.e., discard those multiplying identically zero coeffi-
cients). The curves are superposed in the same plots (see the black curves in
Fig. ??).
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UI for Geometric Multi-Resolution
With E. Monson, R. 

Brady, G. Chen,
Data Representation and 

Exploration with 
Geometric Wavelets,  

VAST, 2010

POSTER & DEMO 
TONIGHT
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Multiscale Geometric and Spectral Analysis of Plane 
Arrangements

With G. Chen, Multiscale Geometric and Spectral 
Analysis of Plane Arrangements, CVPR 2011

Model data by using K low-dimensional planes. Problem: estimate K and the

planes, given noisy points. Classification: assign points to nearest plane.

We introduce a novel fast algorithm with strong guarantees.
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Figure 3. Results obtained by MAPA on sequences 1 and 3 (first
two rows) and by ALC on sequence 2 (last row) of the Kanatani
dataset. MAPA achieves perfect result on sequence 2 (not shown).

Elements of the Matrix A

 

 

100 200 300 400 500 600

100

200

300

400

500

600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.4

0.5

0.6

0.7

0.8

0.9

Top Singular Values of L

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

100

200

300

400

500

600

700

800

900

1000

Final Model: K = 10, dk = 3  3  3  3  3  3  2  2  2  3

K

e(
K)

5.07 5.072 5.074 5.076 5.078 5.08 5.082

x 106

−5000

0

5000

−6000

−4000

−2000

0

2000

4000

6000

Final Clusters

Figure 4. Results obtained by MAPA (with n0 = N ) on all 10
subjects in the Yale database using only their frontal face images.
MAPA determined the best model to be 10 planes of mixed dimen-
sions 2 and 3, and achieved zero clustering error.
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Multiscale Geometric and Spectral Analysis of Plane Arrangements

Guangliang Chen1 and Mauro Maggioni1,2

Departments of Mathematics1 and Computer Science2, Duke University, P.O. Box 90320, Durham, NC 27708

Abstract

Modeling data by multiple low-dimensional planes
is an important problem in many applications such
as computer vision and pattern recognition. In
the most general setting where only coordinates of
the data are given, the problem asks to determine
the optimal model parameters, estimate the model
planes, and cluster the data accordingly. Though
many algorithms have been proposed, most of them
need to assume prior knowledge of the model pa-
rameters and thus address only the last two com-
ponents of the problem. In this paper we propose
an accurate and efficient algorithm based on multi-
scale SVD analysis and spectral methods to tackle
the problem.

Problem Definition

We formulate two separate problems:

Problem 1. (Model Selection) Given data
x1, . . . ,xN ∈ RD sampled around a collection of
(unknown) K planes π1, . . . , πK of dimensions
d1, . . . , dK, determine the model parameters K,
(dk)Kk=1 and {πk}Kk=1.

Problem 2. (Subspace Clustering) With the
same data as in Problem 1 and prior knowledge
on the model parameters K, (dk)Kk=1, cluster the
data into K groups corresponding to the (un-
known) model planes {πk}Kk=1.

Remarks:

•Problem 1 has a different complexity than 2.

•Current literature focuses on Problem 2.

Methodology

Our approach (MAPA) has two stages:
(I) Geometric Analysis. Multiscale SVD is
applied to the data for estimating local dimensions
d̂j, planes π̂j, errors ε̂j, and optimal scales.
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(II) Spectral Analysis. Points are embedded
twice, first using the local planes:

Aij := e− dist2(xi,π̂j)/2ε̂2j

and then by SVD, before applying Kmeans.

Elements of the Matrix A

 

 

10 20 30 40 50

50

100

150

200

250

300

350

400

450

500

550

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

−0.9
−0.8

−0.7
−0.6

−0.5

−0.8−0.6−0.4−0.200.20.4

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Clusters in V Space (obtained by Kmeans)

−1

−0.5

0

0.5

1 −0.6−0.4−0.200.20.40.6

−0.5

0

0.5

Final Clusters in Original Space

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Final Model: K = 3, dk = 1  1  2

K

e(
K)

Theorem. Given upper bounds Kmax, dmax and
by accessing O(dmaxKmax logKmax log dmax) sam-
ples, the MAPA algorithm returns w.h.p. the
correct model parameters (K; d1, ..., dK), and
accurate approximations to {πk}Kk=1, in time
O(DKmaxdmax(dmax +Kmax) logKmax log dmax).

Applications

The algorithm could be applied to problems wher-
ever one needs to model data using a union of sub-
spaces. In this paper, we study the following two:
(I) Motion segmentation with affine cam-
era models.

Three Kanatani motion sequences (only first and last frames shown in each column).
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(II) Clustering of facial images in fixed
pose under varying illumination angles.

Yale Face Database B. 10 subjects, frontal pose, 64 illumination angles.
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• Using di↵usion processes on graphs for (inter)active learning.

• Perform multiscale analysis on graphs: construction of graph-adaptive

multiscale analysis, for graph visualization and exploration, and (inter)active

learning.

• Sparse learning w.r.t. multiscale dictionaries on graphs.

• Construct data-adaptive dictionaries for data-modeling and exploration.

• Construct intrinsically low-dimensional models for data, in particular im-

ages and text documents.

• Exploiting the last two for clustering and classification tasks.

• Use this type of multiscale analysis to introduce new metrics between

graphs, in particular for analysis of time series of graphs.

Research topics
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Dynamic Graphs

Let T = D�
1
2 WD�

1
2 as above be the L2-normalized symmetric “random

walk”.
The eigenvalues of T and its powers “typically” look like this:

Given: time series of graphs Gt. Objective: to analyze this time series. Desider-
ata:

. Sensitive to large and small significative changes in the network, and to
their location.

. Should capture both topological and quantitative geometric changes.

. Should yield measures of change: want to do analysis, statistics...

. Robust to “noisy” perturbations of the network.

J. Lee, MM. See J. Lee’s Thesis, 2010,
Proc. SampTA, 2011

We have introduced a framework, based on multiscale analysis on graphs, that

enabled us to introduce distance measures on graphs satisfying and quantifying

the above.

Basic idea: produce a multiscale decomposition of the graph Gt, match the

pieces to those inGt�1, and quantify change in terms of a measure of (multiscale)

connectivity among the pieces. Yields a sort of “wavelet-like” analysis for time

series of graphs, quantifying changes at di↵erent scales and locations.

Thursday, December 8, 11



Simulated “attacks” on blog network

Let T = D�
1
2 WD�

1
2 as above be the L2-normalized symmetric “random

walk”.
The eigenvalues of T and its powers “typically” look like this:
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L. A. Adamic and N. Glance, "The political blogosphere and the 2004 US Election", in Proceedings of the WWW-2005 Workshop on the Weblogging Ecosystem (2005)

Network of political blogs, 1400 nodes and 19000 edges. We simulate two
attacks: a DDOS attack at time 4, when one random vertex is connected to 100
random vertices, till time 6, and then a wormhole attack at time 8, when the
two farthest vertices are connected by a heavy edge.

Sim. DDOS attack

Sim. wormhole attack
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Open problems & future dir.’s
• Bi-clustering and two-way matrix analysis with geometric methods, 

relationships with Bayesian methods; density estimation and anomaly detection.
• Interactivity and human-in-the-loop in the above.
• First two toolboxes (GMRA and MAPA) just released.
• Dynamic graphs and networks: scaling up, more refined approaches (and 

toolbox coming soon).
• Integration of our clustering and data reduction methods with J. Stasko’s 

Jigsaw

Collaborators: Eric Monson, Rachael Brady (Duke C.S.); Guangliang Chen (Duke 
Math); Anna V. Little, Prakash Balachandrian (Math grad, Duke), Jason Lee (Math 
undergrad, Duke).

www.math.duke.edu/~mauro
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