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Overview 
Mathematical Foundations 

- Probabilistic Soft Logic (PSL) 
- http://psl.umiacs.umd.edu/ 

 Visual Analytics for Model Comparison 
- G-Pare 
- http://www.cs.umd.edu/projects/linqs/gpare 
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PSL Foundations 
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• Declarative language based on logic to express 
collective probabilistic inference problems 

• Probabilistic Model 
 Undirected graphical model 
 Constrained Continuous Markov Random Field (CCMRF) 

• Key distinctions 
 Continuous-valued random variables 
 Efficiently compute similarity & propagate similarity 
 Ability to efficiently reason about sets and aggregates 



What is PSL Good for? 
 Specifying probabilistic models for: 

- Information Alignment 
- Information Fusion 
- Information Diffusion 

 Some examples: 
- Entity resolution 
- Link prediction 
- Collective Classification 
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     

Example Voter Opinion Modeling 

  

        

drive(B,M) ∧ popular-car(M,P) vote(B,P) : 0.7 

vote(A,P) ∧ friend(B,A)  vote(B,P) : 0.8 
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PSL Rules 

 Atoms are real valued [0,1] 
 Value of rule given by Lukasiewicz t-norm 

- a ˅ b  = min(1, a + b) 
- a ᴧ b  = max(0, a + b -1)  

 Every ground rule in a PSL program is a feature 
in a CCMRF 
 Each rule associated with a weight (parameter 

of CCMRF) 

B1 ^ B2 ^... ^ Bn ⇒ H1 v…v Hm  
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Constrained Continuous MRF (CCMRF) 
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PSL Inference 
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 CCMRF translates to a conic program in which: 
 MAP inference is tractable (O(n3.5)) using off-the-shelf 

interior point methods (IPM) optimization packages 
[Broecheler et al. UAI 2010] 

 Margin inference is based on sampling algorithms 
adapted from computational geometry methods for 
volume computation in high dimensional polytopes 
[Broecheler & Getoor, NIPS 2010] 

 While a naïve approach is tractable, it still suffers from 
problems of scalability 
 IPMs operate on matrices. These matrices become large 

and dense when many variables are all interdependent, 
such as is common in alignment problems.  

 Scaling to large data requires an alternative to forming 
and operating on such matrices 



Partitioned IPM 

 Iteratively approximates the search direction by 
partitioning the problem into subproblems. 
- Partitioning the problem decreases the density of 

the matrices, dramatically reducing the 
computation and memory required. 

- Subproblems are also independent and solved in 
parallel at each iteration. 

 Convergence guarantees based on the # of 
dependencies in the probabilistic model the 
partitions cut. 
- Simon P. Schurr et. al., ̀ `A Polynomial-Time Interior-Point Method for 

Conic Optimization, with Inexact Barrier Evaluations," SIAM Journal on 
Optimization, 20:1 (2009) 548-571.  

 



Preliminary Results 
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PSL Implementation 
 Implemented in Java / Groovy 
Declarative model definition and 
imperative model interaction 
~40k LOC 
Performance oriented 
-Database backend 
-Memory efficient data structures 
-High performance solver integration 



In
pu

t 
D

at
a 

RDBMS 

Probabilistic 
Soft Logic 

System Overview 

Rules 
A≈B  similarID(A.name,B.name) 
{A.subClass}≈{B.subClass}  A≈B 
 

Constraints 
Partial functional: ≈ 
 

Similarity Functions 
similarID(A,B) = new SimFun(){} 
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Comparative Visual Analytics 



Motivation 
 
 

0.2 
0.8 

0.65 
0.35 

0.82 
0.18 

0.52 
0.48 

0.33 
0.67 

Predicting political affiliation… 



0.7 
0.3 

0.92 
0.08 

0.42 
0.58 

0.49 
0.51 

0.38 
0.62 

0.2 
0.8 

0.65 
0.35 

0.82 
0.18 

0.52 
0.48 

0.33 
0.67 

Motivation 



0.7 
0.3 

0.92 
0.08 

0.42 
0.58 

0.38 
0.62 

0.49 
0.51 

0.2 
0.8 

0.65 
0.35 

0.82 
0.18 

0.52 
0.48 

0.33 
0.67 

Motivation 

0.38 
0.62 

0.33 
0.67 

0.92 
0.08 

0.65 
0.35 

0.7 
0.3 

0.42 
0.58 

0.2 
0.8 

0.82 
0.18 

0.49 
0.51 

0.52 
0.48 

0.76 
0.24 

0.17 
0.83 

0.42 
0.58 

0.48 
0.52 

0.13 
0.87 

0.04 
0.96 

0.63 
0.37 

0.91 
0.09 



G-Pare 

A visual analytic tool that: 
 

- Supports the comparison of uncertain graphs 
 

- Integrates three coordinated views that enable 
users to visualize the output at different 
abstraction levels 

 
- Incorporates an adaptive exploration framework 

for identifying the models’ commonalities and 
differences 

 



Document Classification 

 Domain: Citation Network 

 
 Task: Predicting publication’s topic 

 
Models: Content-based vs. 

Neighborhood-based 
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G-Pare 

Tabular View 

Matrix View 

Network View 



Network View 

 Node-link diagram of the 
data 
 

 Information panel displays 
attributes of selected nodes 
 

 Visual controls and filters for 
controlling the nodes’ 
appearance 



Color Coding Predicted Label 

Fill Area Prediction Confidence 

Eccentricity KL-Divergence 

Border Highlighting 
Ground Truth 

(Prediction Accuracy) 

High  
Confidence 

Moderate  
Confidence 

Low  
Confidence 

Theory 
Neural Networks Agree Disagree 

Model2 Model1 

• Model 1 prediction: “Neural Networks”  
Model 2 prediction: “Theory” 
 

• Model 1 is more confident in its prediction than 
Model 2 
 

• Distributions of the two models vary significantly 
 

• Model 1’s prediction matches the ground truth 

Node Visualization 
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Visual Filters 

 Highlights areas of the network 
 
 Manual Node Selection 

 
 Coordinated View Selection 

 
 Accuracy-based Filters 



 Side-by-side comparison of the models’ predictions  
- The predicted label by each model 
- The probability distribution over the node labels by each model 
- KL-divergence between the two distributions 

 

Tabular View 

 
 

 
 

 
 

 
 
 
 

 
 
 
 



 Global view highlights where the models agree/disagree 

- Heat map visualization of the confusion matrix 

- Histogram showing the predictive accuracy of each model  

- Interactive cell filtering 

Matrix View 



Interactive Exploration 

 
 Ego-network Expansion 

 
 
 Path-Following 



Case Study: Citation Network 

 Data set from Citeseer digital Library 
- 2120 publications with 3757 citation links 
- 3703 word vocabulary 
- Label indicating the topic of a paper 

 
 Comparing two models for predicting the 

publication’s topic 
- Model 1 (SVM) using only document content 
- Model 2 (Majority) using neighboring nodes’ topics 

 



 Observations 
- Tabular view shows Model 2’s predictions are 

skewed towards two topics 
- Network view shows large areas where the 

nodes are two-tone, where Model 2 is making 
the same incorrect prediction 

 
 By filtering cases where Model 1 is correct  

and Model 2 is incorrect, we discover 
areas of flooding (propagation of error) 

 

Case Study: Citation Network 



Summary 
Mathematical Foundations 

- Probabilistic Soft Logic (PSL) 
- http://psl.umiacs.umd.edu/ 

 Visual Analytics for Model Comparison 
- G-Pare 
- http://www.cs.umd.edu/projects/linqs/gpare 

 Supporting publications: UAI2010, NIPS2010, NIPS 
WS 2010, Invited Talk NIPS WS on Challenges in Data 
Visualization, VAST 2011 
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Thanks! 
Questions?  
Comments? 
Come to poster! 
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