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ABSTRACT

The increasing availability of motion sensors and video cameras in
living spaces has made possible the analysis of motion patterns and
collective behavior in a number of situations. The visualization of
this movement data, however, remains a challenge. Although main-
taining the actual layout of the data space is often desirable, direct
visualization of movement traces becomes cluttered and confusing
as the spatial distribution of traces may be disparate and uneven.
We present proximity-based visualization as a novel approach to
the visualization of movement traces in an abstract space rather than
the given spatial layout. This abstract space is obtained by consid-
ering proximity data, which is computed as the distance between
entities and some number of important locations. These important
locations can range from a single fixed point, to a moving point,
several points, or even the proximities between the entities them-
selves. This creates a continuum of proximity spaces, ranging from
the fixed absolute reference frame to completely relative reference
frames. By combining these abstracted views with the concrete spa-
tial views, we provide a way to mentally map the abstract spaces
back to the real space. We demonstrate the effectiveness of this
approach, and its applicability to visual analytics problems such as
hazard prevention, migration patterns, and behavioral studies.

Keywords: Spatio-temporal visualization, proximity, linked
views, principal component analysis, temporal trajectories, move-
ment patterns.

1 INTRODUCTION

The visualization of movement traces in time is a challenging prob-
lem. Traditional approaches to the problem map 2D and 3D space
directly and use time as either an extra dimension, with coordi-
nated views, or animation. However, since the spatial distribution
of traces may be uneven, static representations become cluttered
and difficult to understand in regions of high density. Although
maintaining the original spatial layout is often desirable, certain ap-
plications may consider the proximity of entities to a set of points
of interest to be more important than their spatial coordinates in
a given fixed frame. For example, the analysis of movement data
in emergency situations may benefit from a visualization that high-
lights the distance of each entity to the epicenter of an event. Evac-
uation drills and procedures can be analyzed by considering the dis-
tance of moving entities with respect to the exits. Although spatial
context information is lost, relative motion events, such as conver-
gence or divergence of movement, or the appearance of trends and
fluctuations, can still be visualized using derived quantities such as
proximity. Other global patterns, such as congestion, symmetry,
flocking, and repetitions, may be observable as well.

In this paper, we present the notion of proximity-based visualiza-
tion, which attempts to improve the visualization of spatio-temporal
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data where relative motion patterns are important. These visualiza-
tions differ from traditional approaches in that we derive a multi-
dimensional data set consisting of proximity values, then map the
derived data to an abstract space rather than the given spatial lay-
out. This abstract space helps to prevent clutter and to disambiguate
overlapping traces in high density areas. Since we want to preserve
global trajectories as well, we require that the abstract space is con-
tinuous. That is, a path followed by an entity in the actual given
space will result in a continuous path in the proximity space.

We present several visualization spaces, depicted as 2D plots.
The first one projects the proximity data to a single dimension,
while the other dimension represents time. These visualizations can
represent the entire spatio-temporal data set in a single view. The
second type of plot provides a richer spatial visualization, at the ex-
pense of losing the time dimension, which is represented as traces.
This plot type is useful for representing proximity data with respect
to multiple points, and uses affine and projective transformations
(such as PCA) to map proximity data to a 2D abstract space.

The visualization of proximity data enables us to discover enti-
ties that exhibit interesting behaviors, such as suspects, witnesses
or casualties. Furthermore, it provides a better space for describing
the evacuation procedure and patterns such as congestion, density,
and dispersion. To test our approach, we use an evacuation data set
obtained from the VAST 2008 challenge [13] and the Elk habitat
data set [25], and we discuss the strengths and limitations of each
technique and how different patterns can be observed in an abstract
space.

2 RELATED WORK

The main challenge when visualizing movement traces is the simul-
taneous depiction of temporal and spatial data. Despite the long
history and ubiquity of maps as visual representations, the effective
representation of time remains a challenge [23]. Initial attempts
often enhance maps with arrows and lines [30] or using anima-
tion, such as the pioneering work by Moellering [22], and recent
approaches as surveyed by Harrower [11] and MacEachrean [21].
More sophisticated approaches use the space-time cube metaphor,
where two dimensions represent spatial coordinates while the third
dimension represents time. Movement traces are therefore repre-
sented as line strips in a three-dimensional space [1, 17]. The ability
to manipulate the parameters of the visualization and the variables
mapped to the 2D map has enabled a myriad of new visualizations
of geospatial data [19]. Tominski et al. extend the notion of space-
time cube with 3D icons to represent multivariate time dependent
data [27].

One of the problems of the above visualizations is the clutter
that may occur due to the asymmetry of the spatial data. Some
have dealt with this problem with abstraction [1], aggregation [27],
and clustering [10] of the spatio-temporal data. As an alternative to
the added complexity, Ivanov et al. decompose the spatio-temporal
nature of data into several synchronized views. One view presents
spatial information as traces, and a timeline view shows temporal
information [15].

All of the above keep the spatial layout given by the data. How-
ever, most of these data can be visualized in an abstract space, using
multi-variate visualization techniques [10]. These include scatter-
plot matrices [5], parallel coordinates [14], star coordinates [16],
radial layouts [26] and circle segments [2]. Although the origi-
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nal spatial structure is lost, these visualizations allow the depiction
of additional variables in a single 2D image, time included, and
scale better to large data sets. Given the increasing complexity
of high-dimensional data, these visualizations often combine data
transformations to reduce the complexity, such as clustering [3], or
to reduce the dimensionality to 2D, such as projections, principal
component analysis [6] and self-organizing maps [18].

The advantages of abstract spaces have been exploited to repre-
sent time. Early hand-made illustrations of timelines and graphs
[28] have inspired visual metaphors such as lifelines [24], the The-
meRiver [12], and History Flow[31] where curved lines of vary-
ing thickness depict a varying quantity over time. For spatio-
temporal visualization, however, line graphs remain the predomi-
nant metaphor.

In our paper, we use line graphs to represent time on an abstract
space rather than the given spatial layout. We aim to preserve the
spatial relationships within the data as much as possible, while har-
nessing the scalability and expressive power of abstract representa-
tions. We therefore turn to proximity data, which quantifies the dis-
tance among entities of interest rather than the spatial coordinates
in a fixed frame. The collection of these proximities is a multi-
variate data set that can be visualized in an abstract space, and help
formulate questions about the relative motion of entities, regarding
their patterns, the appearance of bottlenecks and the detection of
suspicious activities. We make use of principal component analysis
and affine transformations [9] to reduce the dimensionality of this
space.

Distance-based statistics and weighting has been explored to
augment geographical visualization using secondary visual vari-
ables, such as color [8, 29]. The visualization of relative motion
was explored by Laube et al. [20], who use pixel maps to depict the
motion of entities over time. Weaver extended this idea to scatter-
plots, allowing the user to visualize different properties of relative
motion such as time, azimuth, and speed [32]. Although these help
the user discover motion patterns such as flocking, they may not
represent global trajectories in an intuitive manner. In our paper,
we show that global trajectories can be visualized in an abstract
space while highlighting relative motion patterns and proximity in-
formation. In a recent article [7], Dodge et al. describe a taxonomy
of movement patterns in terms of derived quantities from spatio-
temporal data. Our paper explores one such derivative, namely the
use of proximity or distance to reveal spatio-temporal patterns.

3 PROXIMITY-BASED VISUALIZATION

Traces can be defined as a representation of an object’s movement
through time. In general, the visualization of traces defines a direct
mapping from the coordinates in a given reference frame to 2D or
3D coordinates in the visualization space. An example is shown in
Figure 1(a), a visualization of a crowd simulation during an evac-
uation procedure following an incident (an explosion in one of the
rooms). Squares represent the location of people, while lines repre-
sent the traces of movement over time.

A proximity-based visualization is an abstraction of the move-
ment data by deriving relative information and using that informa-
tion to obtain a novel view on the data. In particular, we consider
distances as the derived data. Distance can be defined between
moving entities and a fixed location, e.g. locations of doors or stair-
ways in an office building. Distances can also be defined to entire
regions, such as the distance to the closest road or water source
when analyzing animal movement in the wild. In other cases, dis-
tances can represent abstract data, such as the similarity of two doc-
uments. Two documents are said to be “close” when they share a
certain number of words or terms.

The advantage of using distance is an immediate reduction of di-
mensionality, that allows us to explore other dimensions, such as
time, in a single 2D image. An example is shown in Figure 1(b),

(a) Direct visualization of traces over time

(b) Proximity to a point of interest versus time

Figure 1: (a) Traditional visualization of the simulation of an evacua-
tion in an office building after the detonation of an explosive in one of
the rooms. Since time is not represented as its own dimension, it is
not possible to understand what aspects of the event occurred con-
currently. (b) Proximity-based visualization where traces are plotted
as distance to the explosion (y-axis) vs. time (x-axis). Now, we can
see the entire event at a glance. For example, we notice the motion
of some entities before the detonation of the explosive, suggesting
possible suspects and/or witnesses to the event.

where we plot the same information in Figure 1(a). In this case,
each line is a movement trace that plots distance to the location
of an explosion in a building (y-axis) versus time (x-axis). While
traditional visualization of traces requires animation or switching
between intervals to represent time, this variable is directly repre-
sented as its own dimension in proximity space. In this case, we can
detect the moment when the evacuation occurs and identify entities
that moved before the incident (highlighted in blue). Because we
plot distance to an explosion, we can easily identify people that pre-
sumably died in the explosion or soon after, shown as steady lines
near the x-axis.

In general, proximity-based visualizations are not limited to a
single distance dimension. In many cases, it may be of interest to
analyze the distance to multiple points of reference. Later on, we
describe some of the resulting visualizations of multi-dimensional
proximities.
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(a) Spatial concentration (b) Co-incidence

(c) Concurrence (d) Trends

(e) Fluctuation (f) Convergence

(g) Meet (h) Divergence

Figure 2: Transition from normal movement data to proximity data.
Each pattern is shown in absolute coordinates and mapped to a rel-
ative coordinate versus to time.

3.1 Movement patterns

One of the advantages of proximity-based visualizations is that they
retain the general patterns in the data. As described by Dodge et
al. [7], patterns emerge depending on the relative change of po-
sitions and velocities among moving patterns. Therefore, most of
these are invariant to the frame of referenced used to define the mo-
tion, and can be identified (sometimes more easily) in proximity
space. Figure 2 shows examples of movement patterns in a tra-
ditional visualization and their corresponding “signature” in prox-
imity space.Should be noted, that this list is not a comprehensive,
these pattern were chosen because they are common in proximity
data and provide an example how patterns translate from one space
to the other.

Movement patterns are generally any recognizable spatial and
temporal regularity or any interesting relationship in a set of move-
ment data. Spatial concentration is the concentration of moving
entities at a certain instance in time. In proximity data, this is rep-
resented as entities that are near each other. For instance, people
standing in the same room generates a spatial concentration pat-
tern. Co-incidence is when two entities have the same positions in
the same time or lag in time. In proximity data, this can be viewed
as two lines that meet and coincide for a period of time. Concur-
rence is a set of entities exhibiting synchronous movement or at
least similar motions, regardless of their relative speed. In proxim-
ity space, these tend to appear as curves that remain parallel. Trends
are consistent changes in movement that can be predicted, while
fluctuations are irregular changes in the movement. These patterns
are retained in both spaces, because they relate to the derivatives of
movement and not the frame of reference. The speed of a moving
entity, and an overall trend, can be judged by the slope of its trajec-
tory in proximity space. The higher the slope, the faster the entity
moves. Convergence refers to the movement of a group of entities
into the same location. In proximity data, this can be seen as tracks
coming together to a point and possibly intersecting. A ”meet” pat-
tern is an extension of convergence, where after converging the en-
tities stay together for some time. In proximity space, this pattern
appears as the convergence pattern, but the converging point be-

comes a line. Divergence is the opposite of convergence and refers
to the pattern formed when entities disperse from a common loca-
tion.

3.2 Proximity continuum

When we consider proximities for visualizing movement data, we
can imagine a continuum, spanning from the traditional represen-
tation in absolute coordinates, to visualizations that map the entire
space in a relative frame of reference, i.e., proximity values. The
continuum can also seen as a transition between a spatial frame of
reference, where the visualization and the data spaces are mapped
one to one, and an abstract space, where the visualization space is
the result of a transformation from the data space, in this case, a
transformation that derives proximity. Examples of these two ex-
tremes are the visualizations described in Figures 1(a) and 1(b). In
between, we find visualizations that progressively trade elements in
absolute coordinates to proximity. First, we have single point ab-
straction, where the locus of proximity is defined at a given point,
without changing the actual locations of points. An example is
shown in Figure 3, where we retain the map in absolute coordi-
nates, but add views of the rest of the data relative to single points.
We can see, in their respective plots, what characterizes the move-
ment in their own proximity. For example, the entity on the left
was closer to the bottleneck that lead towards the exit marked in
green, and relatively far from the blue and red exit areas, which
were closer to the zone where the incident occurred. Conversely,
on the right, we see that most people ended up far from it, and a
single entity seems to exit through the same area (blue line at the
bottom). This type of proximity visualization enables the analyst to
form hypotheses about individual behavior.

Next, we obtain visualizations that abstract entire regions. This
enables the analyst to answer questions regarding crowd behavior
and environmental factors in the movement of entities in physical
regions. An example is shown in Figure 4, where we provide prox-
imity visualizations for two hallways in the evacuation data set. We
see that, for most part, people in these regions evacuated to the
same area (green). However, we see one trajectory in the region to
the right that evacuated to a different zone (marked up in red). In
fact, we see that this trajectory is from a person that moved before
the event occurred, and can be considered a suspect. Notice also
the magnitude of the congestion in the hallway to the left compared
to the hallway in the right.

4 PROXIMITY BASED VISUAL TECHNIQUES

We developed several techniques to visualize proximity informa-
tion. One of them, as seen above, plots a single proximity quantity
versus time. Proximity, is in general, a multi-dimensional collec-
tion of data. For this reason, we also present two techniques that
handle multi-dimensional proximity in a 2D visualization. The ef-
fective visual analysis of these visualizations requires a series of
operations, such as annotation and selection of entities and time, as
described in the following sections.

4.1 1D and 2D Proximity Visualization

The traditional approach to dealing with movement data is to di-
rectly map the coordinates to space, as in Figure 1(a). One of the
limitations of this approach is the inefficient use of space, which
does not convey time very well. Even when trails are added, a
static glance at the visualization does not explain concurrent events
nor causal relationships. To get a good perspective of temporal pat-
terns, the analyst must resort to back-and-forth interaction, with in-
creasing cognitive load. Therefore, it becomes evident that map-
ping movement data to a one-dimensional proximity enables us to
use an extra dimension as time.

Adding more proximities demand the use of visual representa-
tions for an extra dimension. When two proximities are visualized,
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Figure 3: Object instancing. We can select an individual person and
find the relative distance of everyone else with respect to him. In this
case, we selected two people, the one on the right is a person near
the event and the one on the left is a random individual chosen for
comparison. To be able to discern the individual lines, the exits were
colored.

one can use color to represent the second distance, while retaining
the x-coordinate as time. This approach, however, does not extend
to multi-dimensional proximities. For a general solution to the case
of multiple proximities, we turn to projections.

4.2 Multi-dimensional proximity visualization

When we want to visualize the proximity of moving entities with
respect to several points, we cannot longer rely on representing each
proximity as its own spatial dimension. If we limit ourselves to 2D
visualization spaces, we have two options. One, project a multi-
dimensional proximity data point to a single dimension, and retain
the other dimension for time. Two, project the proximity data point
to a 2D point, and use time as traces. We explore these two in the
following sections.

4.2.1 An Interpolation-based Technique

This mechanism projects a multi-dimensional proximity to a 2D
point, and represents time as traces. Unlike traditional movement
data visualizations, we can arrange the loci of proximities in ab-
stract space and let the data points be arranged around these points.
This can be obtained via a parameterization of the space so that the
loci of proximity can be arranged freely in 2D. To do this, we turn
to mean value coordinates, which parameterizes a data point as a
function of the distance to a set of proximity centers, that is, for a
data point p, the new point q in proximity space can be computed
as:

q =
∑i wiĉi

∑i wi
(1)

where ĉi are the positions of the proximity centers in the abstract
space, and the weights are defined as

wi =
tan(αi−1/2)+ tan(αi/2)

||p− ci||
(2)

Figure 4: Region instancing. The application allows a region to be se-
lected to be abstracted. In this example, we select two hallways and
obtain proximity visualizations to compare the evacuation behavior in
different regions. In this case, we see a much bigger congestion on
the hallway in the left.

and αi is the angle between the line segments pci−1 and pci [9],
where ci are the original positions of the proximity centers in the
physical space.

Then, a 2D plot is obtained by arranging the proximity points
in the abstract space. This allows the user to “stretch” or “com-
press” entire regions to gain access to detail information that may
be hidden due to clutter.

4.2.2 A PCA-Based Technique

Although the previous approach is intuitive, it requires user inter-
vention to make efficient use of the 2D space. A general approach
uses Principal Component Analysis (PCA) to reduce the dimen-
sionality of the proximity data while guaranteeing maximum vari-
ance in their projections. Principal Component Analysis is a linear
transformation that takes a set of n proximity vectors of m dimen-
sions Vi, where 1 ≤ i ≤ n, and calculates a new set of basis vectors
B j where 1≤ j ≤m. These basis vectors have the property that they
are sorted according to which vectors point in the direction that the
data has the most variance. That is, the projection of the data onto
the first basis vector will have higher variance than the projection
of the data onto the second basis vector. Therefore, to reduce di-
mensionality while preserving the maximum variance, we project
the vectors Vi onto the first k basis vectors, where k is the number
of dimensions available.

One alternative is to reduce the multi-dimensional proximity
vector to a point in a single dimension, and retain time as another
dimension in a 2D plot. The resulting plot is similar to the one-
dimensional proximity, but the y-axis, instead of representing a dis-
tance to a single point, represents the projection of multiple prox-
imities, such that variance is maximized.

Another alternative is to project the proximity data into 2D
space, and trade the time dimension for traces. The result is similar
to the visualization in absolute coordinates, but PCA ensures that
the data points exhibit the largest variance in those two dimensions.
This is important for avoiding excessive clutter and inefficient use
of the 2D space. Because of the generality of this approach, we
are not bound by a small number of proximity centers, but can also
visualize the relative distance between every pair of entities, along
with a number of fixed points of interest.

An example of 2D proximity visualizations is shown in Figure 5
for a number of trajectories of free-range animals, such as elk and
deer [25]. On the left, we see the traditional visualization of deer
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(a) Original (b) Proximity Interpolation (c) Proximity PCA

Figure 5: 2D proximity visualization. (a) Points of interest (blue circles) are placed on the physical space. (b) Proximity visualization with respect
to the blue circles using interpolation. The user can “stretch” any part of the abstract space to highlight the trajectories of small regions. In this
case, we see three trajectories merging. From (b), it is more clear that one of the three came from the left when merging. This is difficult to see in
a traditional space due to the small size of this region (c) PCA-based proximity visualization. In this case, PCA automatically finds a dispersion of
the 2D proximity data so that the overall variance is maximized, in the hopes of a better screen use. Here, a larger part of the screen is devoted
to the trajectories, especially noticed for the regions in the middle. Compare this to the density in (a)

movement. We follow three trajectories, highlighted with orange,
yellow and red. We can see that the particular region is small and
the nature of the movement is difficult to see. In the middle, the data
is plotted relative to a number of proximity centers representing
water springs and other topographical features. Using interpolation,
we map this data in a more space-efficient way. By distributing the
proximity points, we see a more detailed view of the trajectories
of interest. We see that the three trajectories merge, one of them
(red) coming from the left, while the other two seem to coincide for
a long period of time, suggesting some herding behavior. On the
right, we plot the proximities using principal component analysis.
When we use PCA, the trajectories are automatically arranged such
that the space is better utilized in general. In this case, we can see
more clearly the trajectories in the middle of the plot, which in 2D
space clutter around small regions.

4.3 Annotation and selection

To aid in understanding the data in proximity space, we have built a
prototype application that uses coordinates views of proximity and
physical space, and provides coherent operations on both spaces, as
described below:

Abstraction Selection. The user can select any level of ab-
straction for the proximity visualization. This idea builds upon the
continuum of representations we have derived. In the most basic
abstraction, the user selects a number of entities and enhances their
representation with proximity plots. An example is shown in Fig-
ure 3 for an evacuation simulation. Here, we see two entities with
their own proximity plots (as magnified at the bottom). We see that,
for the entity on the left, most people exit through the same route
this entity took and assembled in a region with people that evacu-
ated through a different door (green traces). The entity on the right,
however, took a route only shared by a single person (blue trace),
away from what the majority of people did. Another selection is
the proximity visualization of entire regions. In this case, the user
“draws” a region of interest in the physical space and a new visu-
alization is created that summarizes the proximity data within that
region. An example is shown in Figure 4.

Region Annotation. Although distances are defined in 1D

proximity plots in the y-axis, they may not be as intuitive in the
2D visualizations. To overcome this problem, we introduce prox-
imity rings, which define concentric proximity regions from a point
of interest in both the physical and abstract spaces. In proximity
space, these rings appear as distorted regions, but they still convey
the notion of proximity required to obtain accurate measures on the
data, as seen in Figure 5.

Entity Annotation. We also let the analyst tag individual en-
tities based on certain characteristics. For example, an analysis of
the velocity of movement helps annotate those entities that stopped
moving. In proximity space vs. time, these appear as traces that flat-
line. This type of tagging proved helpful to indicate the casualties
in the evacuation simulation and identify any patterns surrounding
those deaths.

Another tool is the annotation of entities based on the proximity,
inclusion or intersection with a region in space. We let the analyst
annotate regions in physical space with different colors and tag the
traces (in both proximity and physical space) that are included in
that region (so the color “shines” through the object), or that at some
point in the past intersected that region (so the color is “stained” on
the entity, as proposed by Bouvier and Oates [4]). Examples of this
annotation are seen in Figures 3 and 4, where we tag some of the
entities based on the exit they took out of the building.

Time Selection. We let the user select any time interval in the
data, via an interactive timeline. The timeline itself also represents
the trajectories as the first principal component of proximity against
time.

5 CASE STUDIES

In order to demonstrate these techniques, we apply them to the
evacuation data set from the VAST 2008 contest, consisting of a se-
ries of traces from a crowd simulation [13], and the Starkey habitat
database for Ungulate research, consisting of traces of free-range
animals in a small forest in northeast Oregon [25, 33].

5.1 VAST Evacuation Data

The VAST 2008 contest data set is a collection of traces from a
simulation of an evacuation subsequent to an explosive in an of-

15



Figure 6: Proximity-visualization of evacuation simulation from the
VAST 2008 data set [13]. Here we plot distance to the main event
(explosion) vs. time. The green line denotes the main suspect. High-
lighted (thicker) lines denote people of interest as they moved before
the incident. The clutter in the upper side of the plot illustrates a con-
gestion as lines converge (to one of the exits), and final divergence
(yellow lines as they left the building). Red lines denote casualties.
We see that most of the later deaths are from people that did not
evacuate towards their nearest exit.

fice building. The simulation tracks the movement of 82 people
for about 15 minutes. One of the questions when analyzing these
data set is to figure out where the bomb was believe to be detonated
and characterize the events that unfolded afterwards, including the
identification of any casualties, witnesses and suspects. To analyze
this data, we turn to both traditional and proximity visualizations.
The location of the bomb, a very specific detail, was first obtained
by analyzing the traces in a traditional 2D animation. However,
discovering patterns and tracking individuals became increasingly
difficult by looking at the animation. We attribute this difficulty to
the need to track multiple targets, which is known to be increasingly
difficult as the number of targets increases (typically beyond 3 or 4
targets). Although some behavior is evident from the animation,
such as a couple of casualties following the explosion, it is difficult
to account for all behaviors that may have ensued. For this reason,
we turn to proximity visualization. In this case, we plot distance to
the explosion versus time. The result is seen in Figure 6. We see
one person, identified as the main suspect, approaching the location
of the bomb (presumably planting it) and then leaving (green line).

(a) Elk93 Data set

(b) Deer93 Data set

(c) Cattle95 Data set

Figure 7: Visualization of free-range animal movement [25], relative
to distance to a water source, and separated per species.(a) Elk,
showing convergence patterns. (b) Deer, showing a predominant
territoriality, (c) Cattle, exhibiting herd behavior.

We can see when the evacuation takes place as most of the lines are
still (horizontal lines) and then begin to disperse towards the near-
est exit. This visualization steers our attention to three more lines,
which exhibit movement prior to the event, which may suggest wit-
nesses or suspects. By tagging the exit areas (two in yellow and
one in teal, for the exit used by the prime suspect), we can get a
glimpse of the overall evacuation procedure. We also detect those
people that did not exit the building, here identified as casualties
(red lines). From the distance of the red lines to the x-axis, we can
formulate hypotheses about the cause of death. The nearer ones
possibly due to the explosion, while the lines farther away corre-
spond to deaths caused by smoke or fire.

By looking at the proximity plot we find a collection of conver-
gence patterns that correspond to bottlenecks in one of the hallways.
Within this bottleneck, we notice a red line, which seem to corre-
spond to a person that could not get out the nearest exist (notice a
congestion in the upper side of the plot), and dies when attempting
to find another evacuation route. Except for this person, everyone
who evacuated through this route made it safely to the outside. The
same cannot be said about the upper exit, shown as yellow lines in
the middle of the proximity plot. In this region we see a number of
red lines, corresponding to casualties. We notice that some of them
come from the upper size of the plot, suggesting that they did not
pick the nearest exit for evacuation, resulting in death. As a static
representation, a number of behaviors can be inferred by looking at
proximity that cannot be inferred from the 2D traditional visualiza-
tion due to the inability to depict time.

5.2 Free-range Animal Data

This data set consists of a series of movement tracks of elk, deer and
cattle in a region in northeast Oregon [25]. The data set tracks in-
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dividual animals using GIS (geographic information systems) and
comprises a series of variables associated with vegetation, water,
soils and roads. The goal of this data base is to develop models
that help understand the behavior of free-range data in relation to
the management of the habitat such as the effects of open roads
through the environment. To analyze the behavior of individual
groups of animals, we use a proximity visualization that plots dis-
tance to one of the water sources vs. time. Three examples can
be seen in Figure 7, where we plot three subsets of the data, corre-
sponding to elk movement in 1993 (Elk93), deer movement in 1993
(Deer93) and cattle movement in 1995 (Cattle95). We can see from
these plots a series of typical behaviors for each species. Elk ap-
pear to roam through the entire reserve, as seen from the fluctuation
in movement. We see a number of convergence patterns towards
the middle of the time span, suggesting mating behavior, and diver-
gence patterns towards the end. Deer, in contrast, do not roam and
they appear more territorial. We can see this in the apparent con-
stancy of their distances to the proximity locus. Cattle, on the other
hand, exhibit a herd behavior, as seen by the concentration patterns
and group trends in their movement. We also see a meet patterns,
indicating a convergence point when cattle is herded from place to
another, which coincided with a passage through one of the streams
in the forest. Overall, proximity plots help us discover global pat-
terns associated with each species, and steer our attention towards
local details such as mating and grouping.

As suggested in one of their own studies, the researchers of this
habitat found that elk and deer behave differently in relation to the
vehicular traffic through the open roads that cross the reserve [33].
We can visualize this too with proximity plots. In this case, the
distance metric is not with respect to a point, but to entire regions,
such as open roads. This is depicted in Figure 8, where we show
the map of the forest color coded with respect to distance to open
roads (black is closest and yellow to white for farthest from the
road). When we plot the proximity of elk (top) and deer (bottom)
to roads, we see a predominance of elk to stay far from the roads,
while deer seem to remain close. We even see a trend where elk
move away to less trafficked areas that seems to coincide with a
movement of deer towards the trafficked areas. At a glance, this
visualization provides us global knowledge about the entire time,
while still providing individual detail in the form of traces. This
behavior was explained as disturbance competition, which suggests
that the mere presence of population in a region (the elk away from
traffic) annoys another population into leaving the area (the deer,
who have no choice but to move towards the traffic areas) [33].

6 DISCUSSION AND FUTURE WORK

Exploring proximity based spaces has led to some interesting ob-
servations. We found that mapping points in a two dimensional
space into an n-dimensional proximity space and back down to a
two dimensional space did not necessarily reveal much new infor-
mation. This is because the resulting visualization still requires to
track movements in a 2D space, while time is only represented tac-
itly as traces. In fact, the visualization of proximity (or projections
of proximity) vs. time seems the most effective. The gain in this
new metaphor can be explained thanks to the cognitive shift that im-
plies this new type of visualization. Freeing one dimension allows
us to plot directly time in a single image, which does not require
tracking moving patterns anymore. Therefore, the analyst is not
bound to follow a reduced amount of targets, but can formulate hy-
potheses about a larger number of targets and the entire population.
A natural extension, of course, is to extend a 2D proximity plot in a
third dimension to account for time. However this implies a differ-
ent cognitive load that prevent us from transferring the same skills
used in a 2D visualization to 3D. For example, users now resort to
rotation to disambiguate overlapping trajectories in space and time.

Coordinated views are also fundamental to deploy our tech-

niques into current analysis tools. The traditional visualization in
absolute coordinates is a needed view that retains the context of
the data. Operations that demand accuracy in terms of the original
frame of reference (such as latitude and longitude for time of day
or climate changes in a geographical data set), are more effective in
their original space. Proximity-based tools, on the other hand, are
more effective for operations that are invariant to the frame of ref-
erence, such as movement patterns, derivatives (velocity and accel-
eration) or the local impact of the environment (such as topography,
proximity to vegetation, food sources or water).

One aspect of the use of proximity data is the pre-computation
time. When the proximity loci are known, this transformation is
negligible as it consists of a constant number of operations. A more
costly operation is when we must compute the proximity of each
pair of points, which requires O(n2) operations, where n is the num-
ber of data points. In addition to the cost of computing the prox-
imity, PCA introduces an additional cost. For extremely large data
sets, this may become prohibitive. One alternative is to explore the
proximity continuum to find projections locally in regions of inter-
est (in both space and time), without requiring to analyze the entire
collection of points.

While we have applied the techniques in this paper to the track-
ing of people or animals, our techniques can be generalized to ab-
stract motion. For example, we can define an abstract space for the
organization of documents, such that documents lie near each other
if they have some topic or context in common. The more similar
two documents are, the closer they appear in this abstract space.
Movement tracks can be associated with changes to the document.
Therefore, emerging patterns in proximity space reveal trends in the
evolution of a document collection.

7 CONCLUSION

We have presented a general notion of proximity-based visualiza-
tion for the analysis of movement data. We have shown that de-
rived quantities, such as proximity to a point or region, implies a
dimensionality reduction that allows us to incorporate time as an-
other dimension in a 2D plot, revealing global and local patterns
difficult to see through traditional means. Through a number of ex-
amples we see that, despite exhibiting interesting patterns in space-
time, proximity-based visualizations imply a change in the frame of
reference, which may be difficult to comprehend in isolation. For
this reason, we believe that these metaphors are better deployed
in redundant coordinated views, where annotations and operations
in proximity-space should be reflected in the original view of the
physical space, and vice versa. The abstraction of spatio-temporal
data into proximities proves to be a potential tool for discovering
patterns that may be missed by looking at an animation, or that
may be obscured due to clutter. Other derivative information, such
as velocity and acceleration, are some of the dimensions that can
complement proximities towards more effective analysis.
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