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Abstract

We introduce a new discontinuous Galerkin approach for time integration. Based on
the method of weighted residual, numerical quadratures are employed in the finite element
time discretization to account for general nonlinear ordinary differential equations. Many
different conditions, including explicit, implicit, and symplectic conditions, are enforced for
the test functions in the variational analysis in order to obtain desirable features of the
resulting time-stepping scheme. The proposed discontinuous Galerkin approach provides
a unified framework to derive various time-stepping schemes, such as low order one-step
methods, high order Runge-Kutta methods, and multistep methods. Based on the proposed
framework, various novel explicit Runge-Kutta methods of different orders are constructed.
The derivation of symplectic Runge-Kutta methods has also been realized. The proposed
framework allows the optimization of new schemes in terms of several characteristics, such
as accuracy, sparseness and stability. The accuracy optimization is performed based on
an analytical form of the error estimation function for a linear test initial value problem.
Schemes with higher formal order of accuracy are found to provide more accurate solu-
tions. We have also explored the optimization potential of sparseness, which is related
to the general compressive sensing in signal/imaging processing. Two critical dimensions
of the stability region, i.e., maximal intervals along the imaginary and negative real axes,
are employed as the criteria for stability optimization. This gives the largest Courant-
Friedrichs-Lewy (CFL) time steps in solving hyperbolic and parabolic partial differential
equations, respectively. Numerical benchmarking experiments are conducted to validate
the proposed optimal Runge-Kutta schemes.

1 Introduction

As a dominant approach for solving partial differential equations, the finite element method
can also be used for solving ordinary differential equations in time. Early developments on
variational formulation for time integration have been introduced by Argyris and Scharpf [1],
and Fried [16] in 1969. Since then, various finite element methods in time have been proposed
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in the literature and the majority of recent approaches are based on the discontinuous Galerkin
(DG) finite element method. The first DG method was introduced by Reed and Hill [32] in
1973 as a technique to solve neutron transport equation. The first error analysis of the DG
method was carried out in 1974 by LeSaint and Raviart [28]. In their work [28], the first
application of the DG method for time stepping has also been considered and the connection
between the DG time method and certain Runge-Kutta schemes of Gauss-Radau type has been
established. Comparing with the usual finite element method, the DG method has a compact
formulation, i.e., the solution within each element is weakly connected to neighboring elements.
Such a feature is of the same spirit of the one-step time-stepping methods for solving ordinary
differential equations. This perhaps explains the popularity of the DG methods in time.

A discontinuous approximation is usually assumed at time steps tn in the DG time dis-
cretizations. A α-averaging DG method for time stepping was proposed by Delfour, Hager and
Trochu [10]. In their DG method, the approximated solution U at tn is taken as an average
across the jump: αnU (t−n ) + (1− αn)U (t+n ). By choosing special α values, one can obtain
the original DG scheme of LeSaint and Raviart [28] and Euler’s explicit, improved, and im-
plicit schemes. The use of Gauss quadratures is discussed and implicit Runge-Kutta schemes
of Gauss-Legendre, Gauss-Radau, and Gauss-Lobatto types are derived [10]. A more general
framework was introduced by Delfour and Dubeau [11]. In such a DG variational formula-
tion, one-step methods such as implicit Runge-Kutta and Crank-Nicholson schemes, multistep
methods, such as Adams-Bashforth and Adams-Moulton schemes, and hybrid methods can be
attained. A priori error estimates for a class of implicit one-step methods generated by the
DG time discretization were given by Johnson [23]. Quasi-optimal a priori error bound and
posterior error bound of the DG time stepping were studied by Estep [14]. Based on error
analysis, both Johnson [23] and Estep [14] considered automatic step-size control and global
error control. A finite element variational approach has been suggested for solving time ordi-
nary differential equations via the application of Hamilton’s law for dynamics [4]. Nevertheless,
such a method is essentially equivalent to the DG time scheme as noticed in [4].

The derivation of implicit Runge-Kutta methods based on the DG formulation has been
considered by many authors. In general, the DG approximations are not equivalent to any
standard difference scheme. Only after some appropriate quadratures are chosen, the Runge-
Kutta schemes can be derived based on the DG approximation. Such a connection has been
initially explored in the classical work [28, 10, 11] and has been further studied in the recent
work [5, 15]. In Ref. [5], discontinuous approximations are permitted at either tn or both ends
for each time interval [tn, tn+1]. The corresponding DG methods are referred to as singly dis-
continuous and bi-discontinuous DG approaches. For both DG approaches, after a quadrature
is chosen, shortcut expressions for computing the resulting Runge-Kutta schemes are derived
by Bottasso [5]. Moreover, by selecting the Gauss quadrature in the bi-discontinuous DG ap-
proach, the classical Gauss-Legendre Runge-Kutta schemes can be produced. Such schemes
are known to be symplectic when applied to the Hamiltonian problems. Estep and Stuart
considered two types of quadratures to the DG formulation [15]. The regular one that approx-
imates the integral is referred to as an external quadrature. They also discussed the internal
quadrature, in which a polynomial approximation is introduced to the integrand and one can
integrate the integral consequently. Runge-Kutta schemes obtained from both quadratures are
considered. Moreover, these authors showed that the choice of quadrature can have a strong
effect on the dissipativity properties of the resulting difference schemes and discussed how to
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preserve desired dissipativity properties [15].
Various DG methods of different scopes have been proposed for time integration. Although

each DG method may be able to generate only a few time stepping schemes, the combination of
different DG methods has led to the derivations of most standard time integration schemes in
numerical analysis, including explicit Euler, implicit Euler, improved Euler, Crank-Nicholson,
leapfrog, Guass-Legendre Runge-Kutta, Guass-Radau Runge-Kutta, Gauss-Lobatto Runge-
Kutta, symplectic Runge-Kutta, Adams-Bashforth and Adams-Moulton multistep methods,
and hybrid multistep-multistage methods. Nevertheless, we note that all explicit Runge-Kutta
schemes do not fit into any existing DG formulation. Clearly, there is a pressing need to have
a unified framework that is able to render standard time integration schemes that have been
derived by different DG formulations. The construction of such a unified framework enables a
better understanding of the structure and capability of DG methods. Academically, it is more
attractive to endow a DG framework with the ability to derive standard explicit Runge-Kutta
schemes that have not been derived by other existing DG approaches. Such a new capability
is certainly a progress in the enrichment of the DG formalism. Finially, what would be the
most desirable DG framework is the one that is empowered with the creation of new time
integration schemes.

Generally speaking, the construction of new time integration schemes is still an active
topic of the numerical analysis, even though many standard procedures are available. There
is a constant drive from real applications to develop new schemes with optimized features
in either accuracy, stability, or efficiency. For example, it is well known that the generation
of ultra high order Runge-Kutta methods is algebraically formidable, because the number of
order conditions increases exponentially. Deferred correction Runge-Kutta methods have been
developed to bypass this difficulty [13, 8, 9]. Arbitrarily high order Runge-Kutta methods
can be efficiently generated with exact coefficients via a deferred correction procedure which
involves an integral form of the error equation [8, 9]. Instead of pushing the algebraic orders,
an alternative approach to optimize the accuracy is to minimize the dispersive and dissipative
errors in the Fourier space for low wavenumbers [39, 29, 3, 36]. However, Mead and Renaut
noted that the maximizations of orders of dissipation and dispersion are competing processes,
i.e., maximizing one may minimize the other [29].

Additionally, the optimization of time integration stability is another major theme in de-
veloping new time discretization methods. Based on eigenvalue analysis, the optimization
in the complex domain to extend the stability region has been advanced by many researchers
[38, 7, 31, 29, 37]. The resulting optimized methods usually permit a larger Courant-Friedrichs-
Lewy (CFL) number for certain problems so that the time integration can be more efficient.
Another stability concern is the preservation of the symplectic structure of a Hamiltonian
system in the time discretization. Being able to preserve the canonical or symplectic map
of the discretized phase flow after a long time integration, the symplectic time integrators
[33, 27, 34, 35, 30] are commonly used for Hamiltonian systems, dynamical dynamics and
other systems that are integrable in the Liouville sense. A closely related approach in solv-
ing partial differential equations (PDEs) is the time splitting method [40] which is frequently
employed as a means to construct higher order symplectic integrators in both spatial and tem-
poral domains. In solving the Maxwell’s equations with discontinuous coefficients or material
interfaces, the temporal stability is often controlled by the spatial discretization as analyzed
in an earlier work [41]. In solving PDEs with discontinuous solutions, a stronger measure of
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stability is usually required. For instance, a class of strong stability preserving (SSP) time
discretization schemes [18, 19, 20, 25] have been developed for the time integration of semi-
discretizations of hyperbolic conservation law equations. The SSP schemes are also known as
the total variation diminishing (TVD), contractivity preserving, or monotonicity preserving
methods. These schemes preserve any convex functional bound (such as positivity) as the
forward Euler scheme does. However, the forward Euler scheme is of first-order in accuracy,
while SSP schemes are usually higher-order accurate numerical methods. When solving the
elliptic and parabolic PDEs by the finite difference method, the stability constrain may be
removed or loosen by using the alternating-direction implicit (ADI) type methods [12, 2].

Finnaly, there are other issues in developing optimized time integration schemes, such as
low storage requirement and sparseness. In discretizations of PDEs by the method of lines,
fast memory for temporary storage is often a limiting factor of computation. This motivates
the development of various minimum storage methods since 1950 [17]. The reader is referred
to some major achievements in the last decade [24, 6, 26] and references therein for this field.
In constructing multistage time integration methods, when possible, we prefer to a choice such
that the resulting coefficient matrix being as sparse as possible. This is somehow related to
the compressive sensing problem in signal/imaging processing. We will further explore the
sparseness issue in the present paper.

The objective of the present paper is threefold. First, we introduce a discontinuous Galerkin
(DG) procedure as a unified framework to reconstruct all standard time stepping schemes that
have been derived by a combinatiion of many DG approaches. Additionally, we utilize the
unified framework to reproduce many standard explicit Runge-Kutta methods that have not
been derived by any existing DG approach. Finally, based on the proposed DG framework, we
further explore its utility of constructing new time integration schemes. Various optimization
criteria are considered for this purpose. Benchmark numerical tests are carried out to validate
the newly developed time stepping schemes.

The rest of this paper is organized as the follows. In Section 2, the mathematical for-
mulation of the DG time discretization is laid out and the controllable modeling features of
the proposed DG formulation are elaborated. Extensive examples are considered in Section
3 to demonstrate that the proposed DG approach offers a unified framework for deriving all
classical one-step, multistep, and multistage time integration schemes. In Section 4, we show
for the first time how to derive explicit Runge-Kutta methods based on the DG variational
analysis. Meanwhile, novel explicit Runge-Kutta schemes of various stages are developed.
Section 5 is devoted to the generation of novel symplectic Runge-Kutta methods. In Section
6, the optimization of explicit DG based Runge-Kutta methods is carried out. Both three
stage and fourth stage Runge-Kutta methods are examined. Different criteria such as accu-
racy, sparseness, and stability are investigated to develop some new optimized Runge-Kutta
schemes. These schemes are validated numerically in Section 7. Finally, this paper ends with
some concluding remarks.
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2 A novel discontinuous Galerkin approach

In this section, we develop a novel discontinuous Galerkin approach for solving the following
initial value problem of a nonlinear differential equation{

u̇(t) = f(u(t), t), 0 < t ≤ T,
u(0) = u0.

(1)

Consider a partition of a closed interval [0, T ]: 0 = t0 < t1 < · · · < tN = T . Let denote In an
open interval In := (tn, tn+1) and hn its length hn := tn+1 − tn.

2.1 Discontinuous Galerkin variational formulation

We first establish a general discontinuous Galerkin (DG) finite element formulation for (1).
Denote P (q)(In) the space of polynomials of degree q or less on the interval In. We define the
finite element space containing the piecewise polynomials to be U = {U : U |In ∈ P (q)(In)}. In
the DG method, the trial function or finite element solution U(t) ∈ U is continuous within each
time element In, but can be discontinuous across the interface of the elements, i.e., at time
instants t1, . . . , tN−1. Denote the restriction of U(t) as Un(t) = U |In for n = 0, 1, . . . , N − 1,
which is continuous in time element In = (tn, tn+1). At each node tn, the limiting values
of finite element approximations from the left (Un−1(t+n )) and the right (Un(t−n )) are usually
different. The jump is denoted as [U ]n = Un(t+n )− Un−1(t−n ).

The problem of global variational formulation of (1) is given as: find U ∈ U and N trace
values un ∈ R such that{ ∫ T

0 U̇(t)w(t) dt =
∫ T

0 f(U(t), t)w(t) dt,
U0(t+0 ) = u0 = u0 and some additional conditions on Un(t)

(2)

for all w(t) ∈ U and n = 1, . . . , N . Since U(t) is piecewisely continuous, its time derivative
at a point of discontinuity is an appropriately scaled delta function. Thus U solves the global
problem

N−1∑
n=0

∫
In

U̇(t)w(t) dt+
N−1∑
n=0

[U ]n+1w(tn+1) =

N−1∑
n=0

∫
In

f(U(t), t)w(t) dt (3)

for all w(t) ∈ U. In practice, U can be computed locally for each interval∫
In

U̇n(t)w(t) dt+ Un+1(t+n+1)w(tn+1) = Un(t−n+1)w(tn+1) +

∫
In

f(Un(t), t)w(t) dt (4)

for n = 0, 1, 2, . . .. Moreover, Un(t) should satisfy some additional conditions that relate time
node values Un(ti) with nearby trace values ui, i = n, n±1, n±2, . . .. These conditions also are
called as boundary conditions for Un(t), and we assume the total number of such conditions
being L. Finally, by using the integration by parts, we have the following local variational
problem: to find Un(t) ∈ P (q)(In) such that{

Un+1(t+n+1)w(tn+1) = Un(t+n )w(tn) +
∫
In
Un(t)ẇ(t) dt+

∫
In
f(Un(t), t)w(t) dt

L additional conditions on Un(t)
(5)

for all w(t) ∈ P (q)(In) and n = 1, . . . , N .
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2.2 Three controllable components in the DG formulation

There are three controllable components in the DG formulation (5). First, appropriate L
additional conditions need to be imposed for Un(t) in (5). Second, a numerical quadrature
is required to discretize the integrals involved in (5). Finally, a set of test functions w(t)
should to be specified in the practical computation of (5). By considering different choices of
these components, one derives different time stepping schemes. In the following, we will first
make some comments on each component’s role in the DG formulation. We then present our
choices of these components for the proposed DG framework. These special choices facilitate
our derivation of explicit Runge-Kutta methods.

• L boundary conditions

We note that depending on a different choice of L additional conditions, one attains
different families of approximation schemes. When L = 0, we obtain the so-called com-
pletely discontinuous DG method [11] or doubly discontinuous DG method [5], i.e., the
trace values at two ends of In are distinct from the values assumed by Un(t) at tn and
tn+1. Most DG methods in time usually employ L = 1. In such a case, while an ob-
vious choice is to set un to be either Un−1(t−n ) or Un(t+n ), an α-weighted scheme with
un = αnUn−1(t−n ) + (1 − αn)Un(t+n ) has also been considered [10]. If one enforces two
boundary conditions of the form: Un(tn) = un and Un(tn+1) = un+1, one actually deals
with a continuous finite element method instead of a DG method, while L > 2 is essential
for deriving multistep methods [11].

In the proposed DG framework, our default choice regarding to L conditions is as the
follows: we take L = 1 in Eq. (5) and specify one additional condition for Un(t). In
particular, we set Un(tn) = un but leave value of Un(tn+1) open so that in general
Un(tn+1) 6= un+1. In other words, we enforce initial conditions rigorously and permit a
jump “in the future value”. Nevertheless, we note that Un+1(tn+1) = un+1 is the initial
condition for the next time element. Consequently, the local variational equation further
reduces to

un+1w(tn+1) = unw(tn) +

∫
In

Un(t)ẇ(t) dt+

∫
In

f(Un(t), t)w(t) dt (6)

for all w(t) ∈ P (q)(In) and n = 1, . . . , N .

• Numerical quadrature

In order to convert the DG time integration equation (6) into a commonly used time-
advancing scheme, which is typically of collocation nature, a numerical quadrature is
essential. When f(u, t) is linear and simple, Eq. (6) may be evaluated analytically after
specifying particular expansion basis for both trial function Un(t) and test function w(t).
However, for general applications, we have f(u, t) being a nonlinear function. Thus,
the last integral of Eq. (6), i.e.,

∫
In
f(U(t), t)w(t) dt, can not be integrated analytically

in practice. Consequently, numerical approximation involving quadratures has to be
introduced at this point as in the literature. Both internal and external quadratures
have been considered by Estep and Stuart [15] to this end.

In the present study, we employ a regular external quadrature for both integrals in
Eq. (6). We often utilize Newton-Cotes quadrature rules generated via the Lagrange
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polynomials. To illustrate the idea, we consider here a quadrature rule with s abscissae
cj and weights bj ∫

In

g(t) dt ≈ hn
s∑
j=1

bjg(tn + cjhn). (7)

Without the loss of generality, we assume bj 6= 0 for j = 1, 2, . . . , s in the quadrature
rule. By using such a quadrature rule, Eq. (6) is approximated to be

un+1w(tn+1) = unw(tn) + hn

s∑
j=1

bjUn(tn + cjhn)ẇ(tn + cjhn)

+hn

s∑
j=1

bjf(Un(tn + cjhn), tn + cjhn)w(tn + cjhn) (8)

To simplify notation, we denote U j := Un(tn + cjhn). This gives rise to

un+1w(tn+1) = unw(tn)+hn

s∑
j=1

bjU
jẇ(tn+cjhn)+hn

s∑
j=1

bjf(U j , tn+cjhn)w(tn+cjhn)

(9)

• Test function

It is obvious that by selecting a different test function w(t) in Eq. (9), a different time-
stepping scheme can be derived. Thus, the test function w(t) plays a important role in the
proposed DG variational approach for time integration. As the guideline for calculating
w(t), we will propose various different conditions for w(t) so that the desired new schemes
can be attained. A particular example for Runge-Kutta methods is discussed in the next
subsection.

2.3 Runge-Kutta methods and their DG formulation

We present in this subsection a general procedure for deriving Runge-Kutta methods based
on the proposed DG framework through appropriately choosing the L boundary conditions,
numerical quadrature, and test functions. In numerical analysis, a general s-stage Runge-Kutta
method can be given by

un+1 = un + hn

s∑
j=1

bjf(yj , tn + cjhn), (10)

yj = un + hn

s∑
k=1

ajkf(yk, tn + ckhn), k = 1, . . . , s, (11)

where yi are internal stages. It has become customary to represent the free parameters of the
Runge-Kutta method by using a Butcher tableau, consisting of an s × s matrix A and two
s× 1 vectors b and c

c1 a11 . . . a1s
...

...
. . .

...
cs as1 . . . ass

b1 . . . bs
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Here bi and ci are the weights and abscissae of the method, respectively. A Runge-Kutta
method is said to be irreducible [22], if bj 6= 0, j = 1, . . . , s. We assume the irreducibility in
this work.

We choose the three controllable components of the proposed DG framework as the follows:
First, we make use of the default choice of boundary conditions, i.e., L = 1 and Un(tn) = un.
Second, the choice of numerical quadrature is very natural. To derive a targeted Runge-Kutta
method, one can simply take ci and bi given in the Butcher tableau as the numerical quadrature
rule. Alternatively, if one desires to derive a unknown Runge-Kutta method, a Newton-Cotes
quadrature rule could be utilized. Finally, since the Runge-Kutta methods are multistage time
integration schemes, a different test function w(t) has to be chosen in different stage so that
the different updating equation can be attained. In other words, multiple test functions shall
be employed in deriving one-step multistage methods.

We propose the following rules in selecting test function w(t) so that a Runge-Kutta method
can be constructed. The trivial choice w(t) = 1 will always be assumed. In particular, by taking
w(t) = 1 in Eq. (9), we have

un+1 = un + hn

s∑
j=1

bjf(U j , tn + cjhn), (12)

which obviously becomes (10) provided U i = yi. Moreover, in order to determine U i in the
present DG method, we shall consider s independent test functions wi(t), i = 1, . . . , s, for Eq.
(9). Furthermore, for simplicity, we assume throughout wi(tn+1) = 0. This gives rise to s
algebraic equations

unwi(tn)+hn

s∑
j=1

bjU
jẇi(tn+cjhn)+hn

s∑
j=1

bjf(U j , tn+cjhn)wi(tn+cjhn) = 0, i = 1, . . . , s.

(13)
By symbolically solving U i from these equations, we have

U i = αiu
n + hn

s∑
j=1

βijf(U j , tn + cjhn), i = 1, . . . , s, (14)

where the coefficients αi and βij depend on quadrature and time node values of wi(t) and
ẇi(t). As in the Runge-Kutta literature, we refer two conditions

αi = 1, for i = 1, . . . s (15)
s∑
j=1

βij = ci, for i = 1, . . . s (16)

as the consistent conditions.
Remark If two consistent conditions (15) and (16) are satisfied in the proposed DG frame-
work, Eqs. (12) and (14) represent a novel Runge-Kutta method. We note that in general such
a DG deduced Runge-Kutta method is different from the Runge-Kutta method given by Eqs.
(11) and (10), even though they have the same weights bi and abscissae ci. However, under a
special choice of wi(t) with i = 1, . . . , s, such two Runge-Kutta methods could be identical.
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3 A unified framework

In this section, we illustrate the unified feature of the proposed DG formulation. Various
classical one-step, multistep and multistage schemes will be studied.

3.1 Euler and Crank-Nicholson schemes

Euler and Crank-Nicholson schemes can be derived by using a simple choice of w(t) = 1 in the
proposed DG formulation. With w(t) = 1, Eq. (9) reduces to

un+1 = un + hn

s∑
j=1

bjf(U j , tn + cjhn). (17)

By using a one-point support quadrature with c1 = 0 and b1 = 1 in Eq. (17), we have
particularly

un+1 = un + hnf(U1, tn), (18)

where U1 = Un(tn + c1hn) = Un(tn) = un. This gives rise to the explicit Euler scheme

un+1 = un + hnf(un, tn). (19)

By considering different boundary conditions, the implicit Euler scheme,

un+1 = un + hnf(un+1, tn+1), (20)

and the Crank-Nicholson scheme

un+1 = un +
hn
2
f(un, tn) +

hn
2
f(un+1, tn+1), (21)

can be similarly derived from Eq. (17). See Appendix A.1 for more details.

3.2 Multistep and hybrid schemes

Delfour and Dubeau [11] proposed a general DG framework for deriving multistep and hybrid
methods. These schemes can be derived based on the present DG model as well, after adopting
two extensions as in the original work [11], i.e., additional conditions with L > 2 and non-
standard quadrature with some abscissae cj outside of the integral interval (0, 1).

For instance, let us consider the Adams-Moulton scheme of order 3

un+1 = un +
h

12
[−f(un−1, tn−1) + 8f(un, tn) + 5f(un+1, tn+1)], (22)

where for simplicity, we take h = hn−1 = hn. Since this scheme refers to time node tn−1, the
abscissae are chosen as c1 = −1, c2 = 0, and c3 = 1. Computational formulas of corresponding
weights bj are given in the appendix of Ref [11]: b1 = − 1

12 , b2 = 2
3 , and b3 = 5

12 . This is
actually a generalized Newton-Cotes rule. By taking L = 3, additional conditions for Un(t) are
imposed as Un(tn−1) = un−1 = U1, Un(tn) = un = U2, and Un(tn+1) = un+1 = U3. Again, by
taking w(t) = 1, one obtains Eq. (17), which further reduces to the Adams-Moulton scheme
(22). Other Adams-Moulton schemes, Adams-Bashforth schemes, and hybrid schemes can be
similarly derived by taking w(t) = 1.
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3.3 Leapfrog scheme

For the time stepping schemes derived so far in this section, only two components of our DG
framework, i.e., L additional constraints and numerical quadrature, play the essential role in
the derivation. The third component is fixed to be trivially w(t) = 1. Here, we demonstrate a
case that requires the use of a nontrivial test function w(t).

Consider the leapfrog multistep scheme

un+1 = un−1 + 2hf(un, tn). (23)

Similar to the Adams-Moulton scheme of order 3, the quadrature shall be naturally chosen as
(c1, c2, c3) = (−1, 0, 1) and (b1, b2, b3) =

(
− 1

12 ,
2
3 ,

5
12

)
. Also, additional conditions with L = 3

are Un(tn−1) = un−1 = U1, Un(tn) = un = U2, and Un(tn+1) = un+1 = U3. Now, Eq. (9)
takes a particular form

un+1w(tn+1) = unw(tn)− h

12
U1ẇ(tn−1) +

2h

3
U2ẇ(tn) +

5h

12
U3ẇ(tn+1) (24)

− h

12
f(U1, tn−1)w(tn−1) +

2h

3
f(U2, tn)w(tn) +

5h

12
f(U3, tn+1)w(tn+1).

We then set the test function to be

w(t) = −27

10

(t− tn)5

h5
+

9

5

(t− tn)4

h4
+

21

5

(t− tn)3

h3
− 14

5

(t− tn)2

h2
− 3

2

(t− tn)

h
+ 1

In fact, by noting that on time nodes, w(tn−1) = 0, w(tn) = 1, w(tn+1) = 0, ẇ(tn−1) = − 4
h ,

ẇ(tn) = − 3
2h , and ẇ(tn+1) = − 4

5h , it is easy to see that Eq. (24) becomes Eq. (23).

3.4 Special Runge-Kutta schemes

We consider the derivation of the midpoint rule

un+1 = un + hnf

(
un+1 + un

2
, tn +

hn
2

)
, (25)

and the improved Euler scheme or the predictor-corrector method

un+1 = un +
hn
2

[f(un, tn) + f(un + hnf(un, tn), tn+1)] . (26)

Instead of the compact form, both schemes can be rewritten as Runge-Kutta type methods.
For example, the midpoint rule is actually an implicit Runge-Kutta method with one stage

y1 = un +
hn
2
f

(
y1, tn +

hn
2

)
, (27)

un+1 = un + hnf

(
y1, tn +

hn
2

)
. (28)

Thus, both schemes can be derived based on the guidelines given in Section. 2.3. See Appendix
A.2 for more details.
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4 Developing new explicit Runge-Kutta methods

In this section, we will construct some new explicit Runge-Kutta schemes based on the proposed
DG framework. We note that no explicit Runge-Kutta scheme has been derived based on
discontinuous Galerkin finite element approach in the literature.
Remark Explicit Runge-Kutta methods can be obtained in the present DG framework if the
consistent conditions (15) and (16) and the following conditions are satisfied

wi(tn+1) = 0, wi(tn + cjhn) = 0, for j = i, . . . , s (29)

ẇi(tn + cjhn) = 0, for j = i+ 1, . . . , s. (30)

Moreover, the determination of wi(t) satisfying (15), (16), (29) and (30) is not mathematically
ill-posed.

In fact, by substituting explicit conditions (29) and (30) into Eq. (13), one can guarantee
that U i given in (14) only depends on the previously computed values so that the resulting
Runge-Kutta scheme is an explicit one. The proposed procedure is not mathematically ill-
posed. When i = 1, a concern is that the number of unknowns might be smaller than the
number of conditions. We study this issue by considering two cases: c1 = 0 and c1 6= 0. When
c1 = 0 in the abscissae, we actually do not need to impose any condition, but simply have that
U1 = Un(tn + c1hn) = Un(tn) = un. If c1 6= 0, the test function w1(t) satisfying Eqs. (29) and
(30) can still allow that w1(tn) 6= 0. Thus, Eq. (13) becomes

unw1(tn) + hnb1U
1ẇ1(tn + c1hn) = 0, (31)

The values of w1(tn) and ẇ1(tn + c1hn) can be uniquely determined by consistent conditions
(15) and (16). Consequently, we actually also have U1 = un. When i = 2, there are three
degree of freedom remaining after explicit conditions (29) and (30) being satisfied. Thus, the
scheme construction is well-posed when consistent conditions (15) and (16) are imposed. When
i > 2, one actually has far more unknowns than the conditions.

A systematic procedure is employed in the present study to derive explicit Runge-Kutta
schemes. For i ≥ 2, we propose to further reduce the degree of freedom by assuming that
nodal values of wi(t) to be a kronecker delta, i.e., instead of explicit condition (29), we impose
a stronger explicit condition

wi(tn+1) = 0, wi(tn + ci−1hn) = 1, and wi(tn + cjhn) = 0, if j 6= i− 1. (32)

In the following, we refer conditions (30) and (32) as the explicit conditions.
Remark Novel explicit Runge-Kutta methods will be developed in the proposed DG frame-
work by imposing consistent conditions (15) and (16) and explicit conditions (30) and (32) for
test function wi(t).

4.1 Two stage explicit Runge-Kutta methods

We consider two typical numerical quadratures with two points support:

RK2-1: (c1, c2, b1, b2) = (0, 1,
1

2
,
1

2
), RK2-2: (c1, c2, b1, b2) = (0,

2

3
,
1

4
,
3

4
),

11



Based on these quadratures, explicit Runge-Kutta methods can be uniquely generated by
enforcing conditions (15), (16), (30) and (32).

We consider the scheme RK2-1 here. We have first U1 = un since c1 = 0. We then consider
determine w(t) = w2(t) for U2. From the conditions, we have w(tn) = 1 and w(tn+1) = 0 due
to (32) and ẇ(tn) = − 1

hn
and ẇ(tn+1) = − 1

hn
due to (15) and (16). This uniquely determines

the test function w(t) = − 1
hn

(t− tn) + 1. By substituting such a w(t) into Eq. (9), one attains

0 = un + hn ·
(
− 1

hn

)
·
(

1

2
U1 +

1

2
U2

)
+ hn

1

2
f
(
U1, tn

)
.

By noting that U1 = un, this gives rise to

U2 = un + hnf(U1, tn)

With U1 and U2, un+1 is updated according to Eq. (12)

un+1 = un +
hn
2
f(U1, tn) +

hn
2
f(U2, tn+1).

We thus obtain a two stage explicit Runge-Kutta scheme, i.e., Scheme RK2-1, whose Butcher
tableau is given below.

Scheme RK2-1:

0
1 1

1
2

1
2

Scheme RK2-2:

0
2
3

2
3
1
4

3
4

Based on the other quadrature rule, the Scheme RK2-2 can be constructed, see Appendix A.3
for more details. These two schemes are some well known second order Runge-Kutta methods
[21].

4.2 Three stage explicit Runge-Kutta method

We next derive a novel three stage explicit Runge-Kutta method based on the Simpson’s rule
(c1, c2, c3) = (0, 1

2 , 1) and (b1, b2, b3) = (1
6 ,

2
3 ,

1
6). The enforcement of conditions (15), (16), (30)

and (32) will not uniquely determine the Runge-Kutta coefficients so that one free parameter
C (C 6= 0) will be presented in the final scheme (see Appendix A.4 for more details)

Scheme RK3:

0
1
2

1
2

1 C−4
C

4
C

1
6

2
3

1
6

Remark The classical third order Runge-Kutta scheme [21] is a special case of the propose
explicit RK3 scheme by taking C = 2. On the other hand, we note that the proposed RK3
scheme can be greatly simplified if we take C = 4. Other novel three stage Runge-Kutta
methods with optimal C values will be considered in Section 6.
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4.3 Four stage explicit Runge-Kutta methods

As one of the most commonly used four stage Runge-Kutta methods, the classical fourth
order Runge-Kutta method employs a non-standard quadrature [21], i.e., with the abscissae
(c1, c2, c3, c4) = (0, 1

2 ,
1
2 , 1) and weights (b1, b2, b3, b4) = (1

6 ,
1
3 ,

1
3 ,

1
6). We consider the derivation

of novel four stage Runge-Kutta methods based on such a quadrature.
A modified DG approach has to be utilized, because two collocation nodes involved in

the present quadrature are identical. To overcome this difficulty, we introduce an internal
discontinuity in U(t) at time instant tn+ 1

2
. Consequently, the integrand is discontinuous at the

same place. Taking g(t) as the general integrand to illustrate the idea, the integral should be
carried out piecewisely ∫ tn+1

tn

g(t) dt =

∫ t
n+1

2

tn

g(t) dt+

∫ tn+1

t
n+1

2

g(t) dt. (33)

Now, the present abscissae and weights can be regarded as composite quadrature rule for the
piecewise integrals:∫ t

n+1
2

tn

g(t) dt+

∫ tn+1

t
n+1

2

g(t) dt ≈ hn
6
g(tn) +

hn
3
g

(
t−
n+ 1

2

)
+
hn
3
g

(
t+
n+ 1

2

)
+
hn
6
g(tn+1). (34)

With an internal discontinuity, the DG framework should also be modified. Fortunately,
the DG method is a very flexible variational formulation so that this change can be easily
handled. In particular, Eq. (4) now becomes∫ t

n+1
2

tn

U̇(t)w−(t) dt+

∫ tn+1

t
n+1

2

U̇(t)w+(t) dt+ Un+1(t+n+1)w+(tn+1) + Un

(
t+
n+ 1

2

)
w+
(
tn+ 1

2

)
(35)

=

∫ t
n+1

2

tn

f(U(t), t)w−(t) dt+

∫ tn+1

t
n+1

2

f(U(t), t)w+(t) dt+ Un(t−n+1)w+(tn+1) + Un

(
t−
n+ 1

2

)
w−
(
tn+ 1

2

)
,

where a piecewise definition is assumed in this subsection

w(t) =

 w−(t), if t ∈
(
tn, tn+ 1

2

)
w+(t), if t ∈

(
tn+ 1

2
, tn+1

)
.

(36)

Similar to the original DG method, after applying the integration by parts, Eq. (6) is modified
to be

un+1w+(tn+1) = unw−(tn) +

∫ t
n+1

2

tn

U(t)ẇ−(t) dt+

∫ tn+1

t
n+1

2

U(t)ẇ+(t) dt (37)

+

∫ t
n+1

2

tn

f(U(t), t)w−(t) dt+

∫ tn+1

t
n+1

2

f(U(t), t)w+(t) dt.

Also, we still use the notation U j = U(tn + cjhn). Consequently, U1 = un, U2 = U

(
t−
n+ 1

2

)
,

U3 = U

(
t+
n+ 1

2

)
, and U4 = U(tn+1). The detailed derivation of U2, U3, and U4 in the proposed

Runge-Kutta scheme is given in Appendix A.5.
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Remark A new four stage explicit Runge-Kutta method is developed in the present DG
framework

Scheme RK4

0
1
2

1
2

1
2

C1−2
2C1

1
C1

1 1− 2
C3

+ 2C2
C1C3

− 2C2
C1C3

2
C3

1
6

1
3

1
3

1
6

The RK4 scheme involves three independent parameters. By taking C1 = 2, C2 = 0, and
C3 = 2, one attains the classical fourth order Runge-Kutta scheme. Other optimal choices of
parameters will be consider in Section 6.

5 Developing new symplectic Runge-Kutta methods

The first symplectic integrator was introduced by Ruth in 1983 for Hamiltonian systems of
differential equations [33]. Symplectic schemes are ideally-suited to long time integrations,
due to their ability in preserving the canonical or symplectic map of continuous systems in
discretizations. Around 1988, it has been discovered independently by several authors [27, 34]
that Runge-Kutta schemes could be symplectic if and only if the following condition is satisfied

biaij + bjaji − bibj = 0, i, j = 1, . . . , s, (38)

in the Butcher tableau. The classical Gauss-Legendre Runge-Kutta scheme is one example
satisfying condition (38) and symplectic Runge-Kutta schemes are all implicit [35]. A complete
list of symplectic Runge-Kutta methods with up to 6 stages is presented in [30].

5.1 Derivation procedure

To derive new symplectic Runge-Kutta schemes based on the proposed DG framework, a
different set of conditions for test function w(t) should be employed. We first note that the
Gaussian quadratures are typically employed to generate symplectic Runge-Kutta methods,
in which the starting point tn and ending point tn+1 are skipped in the abscissae. Thus,
we assume in this subsection that w(tn) = 1 and w(tn+1) = 0 for simplicity. Moreover, the
symplectic condition (38) originally implies s2 constrains for a Butcher matrix A. However, due
to symmetry, half of off-diagonal constrains can be dropped in (38). Therefore, in the present
DG formulation, only a lower triangular part (including diagonal) of (38) shall be enforced.
Finally, we note that explicit conditions (29), (30), or (32) should not be imposed, since
symplectic Runge-Kutta schemes are implicit. Instead, we propose to enforce the following
implicit condition:

ẇ(tn + cjhn) = 0, for j = 1, . . . , s j 6= i. (39)

Remark New symplectic Runge-Kutta methods can be obtained by using the consistence
conditions (15), (16), the symplectic condition (38), and the implicit condition (39) in the
present DG framework.
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5.2 Two stage symplectic Runge-Kutta method

We consider a two-points support Gaussian quadrature with c1 = 1
2 −

√
3

6 , c2 = 1
2 +

√
3

6 , b1 = 1
2 ,

and b2 = 1
2 . With w(tn) = 1 and w(tn+1) = 0 being fixed, we can have four undetermined

coefficients, i.e., nodal and derivative values of w(t) at tn + c1hn and tn + c2hn. They can be
uniquely determined according to conditions (15), (16), (38), and (39), see Appendix A.6 for
more details. The resulting symplectic Runge-Kutta method is a fourth order implicit method
[21]

Scheme SRK2:

1
2 −

√
3

6
1
4

1
4 −

√
3

6
1
2 +

√
3

6
1
4 +

√
3

6
1
4

1
2

1
2

5.3 Three stage symplectic Runge-Kutta method

We next derive a novel three stage symplectic Runge-Kutta method based on the Gaussian

quadrature with c1 = 1
2 −

1
2

√
3
5 , c2 = 1

2 , c3 = 1
2 + 1

2

√
3
5 , b1 = 5

18 , b2 = 4
9 , and b3 = 5

18 . The

enforcement of conditions (15), (16), (38) and (39) will not uniquely determine the Runge-
Kutta coefficients so that one free parameter A will be presented in the proposed scheme (see
Appendix A.7 for more details)

Scheme SRK3:

1
2 −

1
2

√
3
5

5
36

4A
9

5
18

13−18
√

3
5
−16A

10
1
2

5
18(1−A) 2

9
5
18A

1
2 + 1

2

√
3
5

5
18

16A+18
√

3
5
−3

10
4
9(1−A) 5

36
5
18

4
9

5
18 .

By taking A = 1
2 −

3
20

√
15, one attains the classical three stage six order symplectic Runge-

Kutta scheme [21]. Higher stage symplectic Runge-Kutta schemes can be similarly constructed
based on the present DG formulation and are not illustrated further.

6 Optimized Runge-Kutta methods

As presented previously, we have derived two novel explicit Runge-Kutta schemes

RK3:

0
1
2

1
2

1 C−4
C

4
C

1
6

2
3

1
6

(40)

RK4:

0
1
2

1
2

1
2

C1−2
2C1

1
C1

1 1− 2
C3

+ 2C2
C1C3

− 2C2
C1C3

2
C3

1
6

1
3

1
3

1
6 .

(41)
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In this section, we examine the optimization of these two DG deduced Runge-Kutta methods.
The development of optimized Runge-Kutta methods has attracted numerous research inter-
ests. Three major optimization criteria are studied in the present study, i.e., accuracy, stability
and sparseness. The optimization procedures proposed in the present work can be applied to
other DG deduced Runge-Kutta methods, and as well as non-DG based Runge-Kutta methods.

6.1 Optimized three stage explicit Runge-Kutta methods

6.1.1 Sparseness

Remark The sparsest RK3 scheme can be attained by taking C = 4 in (40).

6.1.2 Accuracy

Without of the loss of generality, we consider a linear system of ordinary differential equations
(ODEs) obtained via a semi-discretization process of a partial differential equation (PDE):

dy

dt
= Ay, (42)

where A is a n× n matrix. The general solution to (42) can be written symbolically as

y(t) =
n∑
i=1

Kie
λitξi, (43)

where λi are the eigenvalues, ξi are the corresponding eigenvectors, and Ki are expanding
coefficients. It is known that the accuracy and stability of a particular Runge-Kutta scheme
applied to (42) can be determined by its approximation to eigenvalues. Therefore, a scalar test
equation

u̇ = λu, u(0) = 1, λ ∈ C, (44)

is commonly used in the literature [29, 8] to investigate the accuracy and stability of Runge-
Kutta methods. This is equivalent to take f(u, t) = λu and u0 = 1 in the general ODE
(1).

To analyze the accuracy, we consider the integration of (44) from 0 to t by using only one
step, i.e., h = t. The RK3 scheme with a free parameter C is employed.

U1 = u0

U2 = u0 +
h

2
λu0 =

(
1 +

λh

2

)
u0

U3 = u0 +
C − 4

C
hλu0 +

4

C
hλ

(
1 +

λh

2

)
u0 =

(
1 + λh+

2

C
λ2h2

)
u0

u1 = u0 +
h

6
λu0 +

2h

3
λ

(
1 +

λh

2

)
u0 +

h

6
λ

(
1 + λh+

2

C
λ2h2

)
u0

=

(
1 + λh+

λ2h2

2
+
λ3h3

3C

)
u0 = 1 + λh+

λ2h2

2
+
λ3h3

3C
.

Here the initial condition u0 = u0 = 1 has been applied.
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Following Ref. [13], we analyze the accuracy of the RK3 numerical solution by investigating
the error function e(t) = u(t) − U(t), where u(t) is the analytical solution and U(t) is the
numerical solution. It is noted that we do not need to know the analytical solution u(t) in the
present analysis. Instead, an analytical form of the error function is utilized [8, 9]

e′(t) + ε(t) = f(U(t) + e(t), t)− f(U(t), t), (45)

where ε(t) = U ′(t)− f(U(t), t). In the present study, the numerical solution U(t) of the RK3

scheme can be given as U(t) = 1 + λt+ λ2t2

2 + λ3t3

3C . With such a U(t), we have

ε (t) =

(
1 + λt+

λ2t2

2
+
λ3t3

3C

)′
− λ

(
1 + λt+

λ2t2

2
+
λ3t3

3C

)
=

(
λ3

C
− λ3

2

)
t2 − λ4

3C
t3.

Consequently, Eq. (45) becomes

e′ (t)− λe (t) =
λ4

3C
t3 +

(
λ3

2
− λ3

C

)
t2. (46)

For the current scalar linear problem, the error equation (46) is analytically solvable, while
this is not true for general nonlinear problems [8, 9]. By solving (46) exactly, one obtains

e(t) =

∫ (
λ4

3C t
3 +

(
λ3

2 −
λ3

C

)
t2
)
e−λt dt+K

e−λt
= −1− λt− λ2t2

2
− λ3t3

3C
+Keλt. (47)

The arbitrary constant K can be fixed by noting the fact that e(0) = 0 initially. This gives
rise to K = 1. Therefore, the error of the RK3 scheme for the test ODE (44) is given as

e(t) = eλt − 1− λt− λ2t2

2
− λ3t3

3C
. (48)

The accuracy optimization problem can thus be formulated to be minimizing the the error e(t)
via choosing an optimal value of C. The C value such that e(t) = 0 is given to be

C =
λ3h3

3
· 1

eλh − 1− λh− λ2h2

2

, (49)

where we have set t = h. For a finite step size h, (49) gives a discretization dependent choice
of C to attain the best accuracy. A uniform, or discretization independent optimal C can be
obtained by passing the limit h→ 0. By using the L’Hôpital’s Rule, we have

C = lim
h→0

λ3h3

3
· 1

eλh − 1− λh− λ2h2

2

= 2. (50)

Remark Without resorting to the analytical solution, we have found the optimized C value
such that the error function e(t) = 0 or being minimized. By taking C = 2, the RK3 scheme
(40) actually achieves the highest possible order of accuracy, i.e., the third order.
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6.1.3 Stability

Dependent on different PDEs, the spectrum of the matrix A in (42) has different features. To
design a stable time stepping scheme, such features should be taken into account [29]. Without
the loss of generality, in the present study, we consider two types of one-dimensional PDEs,
i.e., a hyperbolic system

∂u

∂t
+
∂u

∂x
= 0, (51)

and a parabolic system
∂u

∂t
=
∂2u

∂x2
. (52)

The proposed stability optimization procedure can be generalized to other types of PDEs.
Mathematically, the analytical eigenvalues of the hyperbolic equation (51) are all pure

imaginary numbers, while those of the heat equation (52) are all negative real numbers [43]. In
the present study, the spatial derivatives in both equations are discretized using the standard
higher order central finite differences [43]. Due to the use of symmetrical spatial discretization,
the numerical spectra of the semi-discretized equations are also locate along the axes of the
corresponding spectra of the analytical operators, subject to a negligible roundoff error. How-
ever, we note that if a severe asymmetric approximation is involved, the discrete spectra might
significantly deviate from the analytical ones, giving rise to the so-called spurious modes. See
Ref. [42] for more details on the spurious solutions and how to suppress them numerically.

In the present study, we consider the optimization of the stability of the RK3 scheme (40)
for these two types of PDEs. As discussed previously, the stability of a particular Runge-Kutta
method in solving the semi-discretized ODEs (42) is essentially determined by the stability of
the same Runge-Kutta method applying to a single scalar ODE (44) with λ being an eigenvalue
of A. The stability of a Runge-Kutta method in solving (44) can be fully characterized by its
stability region. However, for more complicated PDEs, such as those involving discontinuous
coefficients, the discretization of the spatial operators also affect the stability analysis [41].
Definition The stability region of the RK3 scheme for solving (44) is defined to be the set
of all hλ ∈ C such that [29] ∣∣∣∣1 + λh+

λ2h2

2
+
λ3h3

3C

∣∣∣∣ ≤ 1. (53)

Moreover the boundary of the stability region is given by the set of all hλ ∈ C such that∣∣∣∣1 + λh+
λ2h2

2
+
λ3h3

3C

∣∣∣∣ = 1. (54)

Based on the above definition, the semi-discretized ODEs (42) are stable if all its eigenvalues
are within the stability region of the RK3 scheme. Thus, the special features of the spectral
of a PDE can be utilized as the criterion for optimizing the Runge-Kutta methods. Various
different types of such criteria have been studied in the literature [29, 37]. In present study,
we explore the optimization of the RK3 scheme for hyperbolic and parabolic equations, via
extending the stability region along the imaginary axis and negative real axis, respectively. To
simplify the notation, we let z = λh = a+bi. The stability regions of the RK3 scheme for C = 2
and C = 4 are depicted in Fig. 1 (a) and (b). It is clear that by using a different C, the interval
being covered on the imaginary axis varies. So does the interval on the negative real axis. We
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(a) (b)

(c) (d)

Figure 1: The stability region of the three stage explicit Runge-Kutta method. (a) C = 2; (b)
C = 4; (c) C = 4

3 ; (d) C = 16
3 .

denote the interval on the imaginary axis and negative real axis to be, respectively, [−βi, βi]
and [−α, 0]. For a given C, the α and β values can be analytically solved. In particular, by
setting a = 0 in (54), we have equation for the imaginary axis∣∣∣∣1 + bi+

(bi)2

2
+

(bi)3

3C

∣∣∣∣2 = 1 +
b4

4
− 2b4

3C
+

b6

9C2
= 1. (55)

When C = 2, the nonzero roots of (55) are ±
√

3, while when C = 4, there are no nonzero real
roots. Thus we have β =

√
3 and β = 0, respectively, for C = 2 and C = 4. Similarly, by

setting b = 0 in (54), we have equation for the real axis∣∣∣∣1 + a+
a2

2
+
a3

3C

∣∣∣∣2 = 1 + 2a+ 2a2 + a3 +
2a3

3C
+
a4

4
+

2a4

3C
+
a5

3C
+

a6

9C2
= 1. (56)

When C = 2, the only nonzero real root of (56) is −(4 +
√

17)1/3 + (4 +
√

17)−1/3 − 1, while
when C = 4, the only nonzero real root is −24/3 − 2. Thus, we have α = (4 +

√
17)1/3 − (4 +√

17)−1/3 + 1 ≈ 2.512745327 and α = 24/3 + 2 ≈ 4.519842100, respectively, for C = 2 and
C = 4.

We next consider the maximization of the imaginary interval [−βi, βi], i.e., we explore a
optimal C value such that β attains the maximum. Such a choice permits the largest Courant-
Friedrichs-Lewy (CFL) time step in solving the hyperbolic equation (51). For this purpose, we
solve (55) symbolically

b = ±1

2

√
24C − 9C2, (57)

and differentiate this function with respect to C

δb

δC
= ±1

4

24− 18C√
24C − 9C2

. (58)

The derivative in (58) is zero if C = 4
3 and is undefined at C = 0 and C = 8

3 . By plugging
the nonzero C values into (57), we have b = 2 and b = 0, respectively, for C = 4

3 and C = 8
3 .

Thus, when C = 4
3 , the RK3 scheme attains the maximal imaginary interval with β = 2. By

taking C = 4
3 in (56), we have α = 2 in the present case. See Fig. 1 (c).

We then consider the maximization of the real interval [−α, 0]. The maximal α value allows
the largest CFL time step in solving the parabolic equation (52). By solving (56) symbolically,
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(a) (b)

Figure 2: The perturbed stability region of the three stage explicit Runge-Kutta method with
C = 16

3 + ε. (a) ε = 0.001; (b) ε = −0.001.

we have three nonzero real roots

a1 = −3C

4
+

1

4

√
9c2 − 48C, a2 = −3C

4
− 1

4

√
9c2 − 48C

a3 =
1

2

(
6C2 − 24C − C3 + 2

√
−56C3 + 9C4 + 144C2

)1/3

− 2(C − C2/4)(
6C2 − 24C − C3 + 2

√
−56C3 + 9C4 + 144C2

)1/3
− C

2
.

Because the analytical forms are complicated, an alternative optimization procedure involving
both numerical and analytical arguments is conducted. We first solve the optimization problem
numerically. A search of local maximal α values is conducted by considering a sequence of
increasing C values with increment being 0.1. The numerical results indicate that the global
maximal value of α is achieved when C ≈ 5.3. We then confirm this result analytically by
noting that the derivatives of a1 and a2 with respective to C are undefined at C = 16

3 . By
taking C = 16

3 in (56), the maximal α value is

α =
2

3

(
46− 6

√
57
)2/3

+ 4 + 4
(
46− 6

√
57
)1/3(

46− 6
√

57
)1/3 ≈ 6.260790890.

Moreover, by taking C = 16
3 in (55), there is no nonzero real root. Thus, we have β = 0 for

C = 16
3 . See Fig. 1 (d).

We note that the boundary of stability region for the case C = 16
3 intersects itself at

the point (−4, 0), see Fig. 1 (d). Theoretically, a solution with negative real eigenvalues
located at that point has a unitary amplification factor so that the solution could be stable in
time integration. However, due to numerical roundoff errors, the actual boundary of stability
region might differ from the analytical one by a small perturbation. Such a situation can be
illustrated analytically by considering a small perturbation ε in C value too. For example, by
taking C = 16

3 + ε where we choose ε = 0.001, the perturbed stability region is shown in Fig.
2 (a). It can be seen that the stability regions disconnect at point (−4, 0) so that the scheme
is unstable if λh locates at that point. Instead if we choose ε = −0.001, the stability region
is well connected so that the negative real axis is fully covered, see Fig. 2 (b). Therefore,
numerically, instead of choosing C = 16

3 , we treat C = 16
3 − 0.001 as the maximum for the

extended negative real axis. The corresponding dimension of the stability region is calculated
to be α = −6.25941410 and β = 0.
Remark: The proposed three stage explicit Runge-Kutta schemes are listed in Table 1.
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Table 1: New three stage explicit Runge-Kutta schemes developed via optimizations. Here we
take ε = 0.001.

Criterion C α β

Highest order of accuracy 2 2.512745327
√

3

Sparsest 4 4.519842100 0

Max stability interval [βi, βi] 4
3 2 2

Max stability interval [−α, 0] 16
3 − ε 6.259414105 0

6.2 Optimized four stage explicit Runge-Kutta methods

We consider the optimization of the four stage explicit RK4 scheme (41), which involves three
parameters C1, C2, and C3. When taking C1 = 2, C2 = 0, and C3 = 2, one attains the classical
fourth order Runge-Kutta scheme.

6.2.1 Sparseness

Remark The sparsest RK4 scheme can be attained by taking C1 = 2, C2 = 0, and C3 = 2
in (41), i.e., the classical fourth order Runge-Kutta scheme.

6.2.2 Accuracy

For general values of C1, C2, and C3, the DG deduced RK4 schemes are at least second order
accurate. Through the solution the test equation (44) as discussed above for the RK3 schemes,
it can be similarly shown that the highest order of accuracy of the DG deduced RK4 schemes
can be achieved when C1 = 2, C2 = 0, and C3 = 2.
Remark The classical fourth order Runge-Kutta scheme is the most accurate DG deduced
RK4 scheme with C1 = 2, C2 = 0, and C3 = 2.

6.2.3 Stability

We consider the optimization of the stability by studying the extended real and imaginary
intervals. However, since we have three free parameters for the RK4 schemes, this allows
us to develop optimized RK4 schemes with combined criteria. In particular, we manage to
utilize three parameters to optimize three features, i.e., sparseness, accuracy and stability,
simultaneously.

We first consider the accuracy optimization by consuming only one degree of freedom. As
discussed above, we consider the integration of (44) from 0 to h by using the RK4 scheme with
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one step

U1 = u0

U2 = u0 +
h

2
λu0 =

(
1 +

λh

2

)
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2C1
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1
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(
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2

)
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λh

2
+
λ2h2
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+
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)
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(
1 +
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2
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=

(
1 + λh+
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λu0 +
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3
λ

(
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λh
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)
u0 +

h

3
λ

(
1 +

λh

2
+
λ2h2

2C1

)
u0

+
h

6
λ

(
1 + λh+

C1 − C2

C1C3
λ2h2 +

1

C1C3
λ3h3

)
u0

=

(
1 + λh+

λ2h2

2
+
C3 + C1 − C2

6C1C3
λ3h3 +

1

6C1C3
λ4h4

)
u0

= 1 + λh+
λ2h2

2
+
C3 + C1 − C2

6C1C3
λ3h3 +

1

6C1C3
λ4h4

Here the initial condition u0 = u0 = 1 has been applied. It is obvious that by exploiting only
one degree of freedom, the highest order of accuracy can be attained by the RK4 schemes is
three, which corresponds the choice of

C3 + C1 − C2

6C1C3
=

1

6
or C2 = C3 + C1 − C1C3. (59)

Remark By fixing one parameter to be C2 = C3 + C1 − C1C3, the optimized DG deduced
RK4 schemes are guaranteed to be the third order of accurate.

We next consider the sparseness. With a fixed C2 = C3 + C1 − C1C3, the RK4 scheme
becomes

RK4:

0
1
2

1
2

1
2

C1−2
2C1

1
C1

1 2−C1
C1

2C1C3−2C1−2C3
C1C3

2
C3

1
6

1
3

1
3

1
6

(60)

With C1 and C3 being finite, one cannot eliminate the diagonal line of the Butcher matrix.
Thus, at most, three lower triangular coefficients could be zero by considering different C1 and
C3 values. Thus, the optimized scheme in terms of the sparseness for the present RK4 methods
is obviously obtained by setting C1 = 2, because in doing so, one degree of freedom can be
exchanged for two zero coefficients in the Runge-Kutta matrix.
Remark The third order DG deduced RK4 schemes are as sparse as possible when taking
C1 = 2,

We finally consider the stability. With two free parameters being fixed, we have only one
degree of freedom left, i.e., C3. Alternatively, we introduce a new parameter D defined to be
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D = C1C3 = 2C3 for stability optimization. Based on the previous discussions, the stability
region of the RK4 schemes is given as:
Definition The stability region of the DG deduced RK4 scheme for solving (44) is defined
to be the set of all hλ ∈ C such that [29]∣∣∣∣1 + λh+

λ2h2

2
+
λ3h3

6
+
λ4h4

6D

∣∣∣∣ ≤ 1. (61)

Moreover the boundary of the stability region is given by the set of all hλ ∈ C such that∣∣∣∣1 + λh+
λ2h2

2
+
λ3h3

6
+
λ4h4

6D

∣∣∣∣ = 1. (62)

In the present notation, the classical fourth order Runge-Kutta method which has been
shown to be the most accurate and sparsest RK4 scheme, has D = 4. The corresponding
stability region is depicted in Fig. 3 (a). As usual, the dimension of the stability region can
be analytically solved. As discussed above, we take z = λh = a+ bi. By setting b = 0 in (62),
we have the equation for the real axis∣∣∣∣1 + a+

a2

2
+
a3

6
+

a4

6D

∣∣∣∣2 = 1, (63)

or equivalently

1 + 2a+ 2a2 +
4a3

3
+
a6

36
+

7a4

12
+
a5

6
+

a8

36D2
+

a7

18D
+

a5

3D
+

a4

3D
+

a6

6D
= 1. (64)

If we choosing D = 4, Eq. (64) reduces to

1 + 2a+ 2a2 +
4a3

3
+

2a4

3
+
a5

4
+

5a6

72
+
a7

72
+

a8

576
= 1. (65)

The only nonzero real root is

−α = −1

3

(
172 + 36

√
29
)1/3

+
20

3

(
172 + 36

√
29
)−1/3

− 4

3
≈ −2.785293563. (66)

By taking a = 0 in (62), we have equation for the imaginary axis∣∣∣∣1 + bi+
(bi)2

2
+

(bi)3

6
+

(bi)4

6D

∣∣∣∣2 = 1− b4

12
+
b6

36
− b6

6D
+

b8

36D2
+

b4

3D
= 1. (67)

With D = 4, (67) reduces to be 1− b6

72 + b8

576 = 1 and there are two nonzero real roots: ±2
√

2.

Thus, we have β = 2
√

2. There results are consistent with our previous study [43].
We next consider the maximal real stability interval [−α, 0]. The corresponding optimal D

value provides the largest CFL time step in solving the parabolic equation (52). To this end,
we first symbolically solve Eq. (64). The only nonzero root is given as

a = −D
3

+
1

6

(
108D2 − 648D − 8D3 + 36

√
−72D3 + 5D4 + 324D2

)1/3

−6(D − D2

9
)
(

108D2 − 648D − 8D3 + 36
√
−72D3 + 5D4 + 324D2

)−1/3
.
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(a) (b)

(c) (d)

Figure 3: The stability region of the fourth stage explicit Runge-Kutta method. (a) D = 4;
(b) D = 9; (c) D = 9.05; (d) D = 22/3 + 2.

Due to the complicated expression, a combined analytical and numerical optimization is con-
ducted. A search of local maximal α values is carried out by testing a sequence of increasing
D values with increment being 0.1. The numerical search indicates that the global maximal
value is assumed when D ≈ 9. We then confirm this result analytically by noting that D = 9
is the only nonzero root such that

108D2 − 648D − 8D3 + 36
√
−72D3 + 5D4 + 324D2 = 0.

Thus, such a D value renders the derivative of a with respect to D, δa
δD , undefined.

The stability region of the DG based RK4 scheme with D = 9 is plotted in Fig. 3 (b).
With D = 9, the analytical α value is α = 6, which is slightly less than that of the optimal
RK3 scheme. This means that the three stage Runge-Kutta method could provide a larger
CFL time step than the four stage Runge-Kutta method when solving the parabolic equation

(52). With D = 9, Eq. (67) has two nonzero real roots: ±1
2

√
−54 + 6

√
141. Thus we have

β = 1
2

√
−54 + 6

√
141 ≈ 2.076418342. Furthermore, it can be observed from Fig. 3 (b) that the

stability region has a tendency to be broken into to two separate regions when D is increasing.
We numerically confirm this by plotting the stability region for D = 9.05, see Fig. 3 (c).
Based on the shapes of the stability region in Fig. 3 (b) and (c), it is suspected that there
exists another critical number of δa

δD in the interval D ∈ [9, 9.05], such that at that value,
the boundary of the stability region intersects with itself as in Fig. 1 (d). However, should
we find such D value, we still had to adopt a perturbed value D − ε so that the numerical
optimal D value is very close to D = 9. The difference between them is negligible. Thus, in
the present study, we treat D = 9 as the optimal value such that the negative real axis achieves
the maximum.

We finally consider the maximization of the imaginary interval [−βi, βi]. Such a choice
allows the largest CFL time step in solving the hyperbolic equation (51). For this purpose, we
solve (67) analytically. This gives rise to four nonzero real roots

b1 =
1

2

√
−2D2 + 12D + 2

√
D4 − 12D3 + 48D2 − 48D, b2 = −b1

b3 =
1

2

√
−2D2 + 12D − 2

√
D4 − 12D3 + 48D2 − 48D, b4 = −b3.

Essentially, we need to test the critical numbers for b1 and b3, while those for b2 and b4 are
the same. We first consider the derivative of b3 with respect to D, δb3

δD . We have found

that δb3
δD is zero at two imaginary roots of D, while δb3

δD is undefined at D = 4 and D = 0.
Note again that with D = 4 the DG deduced RK4 scheme becomes the classical fourth order
Runge-Kutta scheme. On the other hand, the derivative of b1 with respect to D, δb1

δD , is zero
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(a) (b)

Figure 4: The boundary of stability region of the DG based RK4 method. (a) D = 4; (b)
D = 22/3 + 2.

Table 2: The optimized fourth stage explicit Runge-Kutta schemes.

Criterion D α β

Highest order of accuracy 4 2.785293563 2
√

2

Sparsest 4 2.785293563 2
√

2

Accuracy + Sparse + Max stability interval [βi, βi] 4 2.785293563 2
√

2

Accuracy + Sparse + Max stability interval [−α, 0] 9 6 2.076418342

if D = 22/3 + 2 and is undefined only when D = 0. Thus, overall, we find two nonzero
real critical numbers D = 4 and D = 22/3 + 2. As shown before, the β value for D = 4 is
β = 2

√
2 ≈ 2.828427124. By substituting D = 22/3 + 2 into b1, we have the corresponding

β to be β =
√

22/3 + 24/3 + 4 ≈ 2.847322102, see Fig. 3 (d). This seems to suggest that
D = 22/3 + 2 is the global maximum.

However, we have found that by using D = 22/3 + 2, the RK4 scheme is actually quite
unstable numerically. By comparing chart (a) and (d) in Fig. 3, D = 22/3 + 2 seems to give a
slight larger interval along the imaginary axis than D = 4 does. Nevertheless, if we look at the
coverage of eigenvalues along the imaginary axis, especially eigenvalues near 0, there is a loss
of coverage for some interval inside [−βi, βi], see Fig. 4. It can be seen that for D = 22/3 + 2,
a small deviation of the boundary of stability region towards left has been found. We note
that such a deviation is so small that one has to zoom in sufficiently to see the problem, while
in a normal scale, one has the impression that the boundaries of stability regions for both
D = 4 and D = 22/3 + 2 locate on the imaginary axis. Due to this loss of coverage, even
though D = 22/3 + 2 gives a larger β value, the corresponding RK4 scheme is unstable for
small eigenvalues. Thus, we have to treat the effective β for D = 22/3 + 2 to be β = 0 and
rule out this choice as our optimized scheme. Therefore, it turns out that the classical fourth
order Runge-Kutta scheme with D = 4 is again the winner for the maximal stability along the
imaginary axis.
Remark: The optimized fourth stage explicit Runge-Kutta schemes are list in Table 2. The
present study shows that the classical fourth order Runge-Kutta scheme is the best scheme in
three categories. This perhaps explains why this scheme is the most widely used method in
the Runge-Kutta family.

7 Numerical experiments

In this section, we numerically validate the proposed three stage and four stage explicit Runge-
Kutta schemes, i.e., RK3 and RK4 schemes, in terms of accuracy and stability. To this end,
two boundary initial value problems with analytical solutions are considered. The first one is
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a hyperbolic equation [43]

∂u

∂t
+
∂u

∂x
= 0, 0 ≤ x ≤ 1, t ≥ 0,

u(x, 0) = sin(2πx), (68)

u(0, t) = sin(2π(−t)), u(1, t) = sin(2π(1− t)).

with analytical solution u(x, t) = sin(2π(x− t)). The another one is a parabolic equation [43]

∂u

∂t
=

∂2u

∂x2
, 0 ≤ x ≤ 1, t ≥ 0,

u(x, 0) = C sinx, (69)

u(0, t) = 0,
∂u

∂x

∣∣∣∣
x=1

= C cos(1)e−t,

where C = e10. The analytical solution is u(x, t) = C sin(x)e−t. Since the optimized three
stage Runge-Kutta schemes are usually of second order of accuracy in time, we also consider
an explicit two stage second order Runge-Kutta, i.e., the RK2-1 scheme in Section 4, for a
comparison. Here we rename this scheme to be RK2 scheme. The dimension of the stability
region of this scheme is given as α = 2 and β = 0.

In both examples, we consider time integration on an interval t ∈ [0, T ] with a time in-
crement being h = ∆t. A uniform grid with N nodes is employed spatially. The spatial
discretization is carried out by using either the central finite difference (FD) or high order
central FD methods [43]. We denote the bandwidth of the high order central FD to be 2M+1.
The corresponding spatial order of accuracy for such a high order scheme is (2M)th order
in approximating first and second derivatives. With M = 1, one attains the regular central
difference with the order being two. Since we focus only on the temporal discretization in the
present study, the boundary closure of the FD discretization is simply treated by using the
analytical solutions. For real physical problems where analytical solution is unknown, some ad-
vanced boundary closure methods, such as the matched interface and boundary (MIB) method
[43], have to be employed to implement the high order central FD discretization. Denoting
uh as the numerical solution, we use the following measures to estimate errors in numerical
examples:

L∞ =
max |u− uh|

max |u|
, L2 =

√∑N
i=1 |u− uh|2∑N

i=1 |u|2
.

We first consider the hyperbolic problem. The order of convergence in time is first ex-
amined. A high order central FD with a large bandwidth M = 10 is employed for spatial
discretization. By using N = 51, this essentially guarantees the spatial error being negligible
in the present test. By taking the end time T = 1, three time increment values are considered,
i.e., h = 2 × 10−3, h = 1 × 10−3, and h = 5 × 10−4. The corresponding errors and orders of
convergence are shown in Table 3. It can be seen from the table that the theoretical orders
of all studied schemes are numerically verified. In particular, the DG deduced RK3 schemes
with C 6= 2 are all of second order in time, which is the same as the RK2 scheme. However,
the RK3 schemes are more accurate than the RK2 scheme. Similarly, the DG deduced RK4
schemes with D 6= 4 are all of third order in time and the RK3 scheme with C = 2 achieves
that order too. Moreover, the four stage Runge-Kutta schemes are more accurate than the
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Table 3: Temporal convergence tests for the hyperbolic problem. Here N = 51, M = 10, and
T = 1.

L∞ L2

Scheme Parameter h Error Order Error order

RK2 none
2× 10−3 2.40× 10−4 7.93× 10−5

1× 10−3 5.99× 10−5 2.00 1.98× 10−5 2.00
5× 10−4 1.50× 10−5 2.00 4.95× 10−6 2.00

RK3 C = 4
3

2× 10−3 1.20× 10−4 4.20× 10−5

1× 10−3 3.00× 10−5 2.00 1.05× 10−5 2.00
5× 10−4 7.52× 10−6 2.00 2.62× 10−6 2.00

RK3 C = 4
2× 10−3 1.20× 10−4 4.20× 10−5

1× 10−3 3.01× 10−5 2.00 1.05× 10−5 2.00
5× 10−4 7.52× 10−6 2.00 2.62× 10−6 2.00

RK3 C = 16
3

2× 10−3 1.50× 10−4 5.25× 10−5

1× 10−3 3.76× 10−5 2.00 1.31× 10−5 2.00
5× 10−4 9.40× 10−6 2.00 3.28× 10−6 2.00

RK3 C = 16
3 − ε

2× 10−3 1.50× 10−4 5.25× 10−5

1× 10−3 3.76× 10−5 2.00 1.31× 10−5 2.00
5× 10−4 9.40× 10−6 2.00 3.28× 10−6 2.00

RK3 C = 2
2× 10−3 6.25× 10−7 2.87× 10−7

1× 10−3 7.80× 10−8 3.00 3.59× 10−8 3.00
5× 10−4 9.74× 10−9 3.00 4.48× 10−9 3.00

RK4 D = 9
2× 10−3 3.47× 10−7 1.59× 10−7

1× 10−3 4.33× 10−8 3.00 1.99× 10−8 3.00
5× 10−4 5.41× 10−9 3.00 2.49× 10−9 3.00

RK4 D = 22/3+2

2× 10−3 7.28× 10−8 3.30× 10−8

1× 10−3 9.03× 10−9 3.01 4.12× 10−9 3.00
5× 10−4 1.12× 10−9 3.00 5.15× 10−10 3.00

RK4 D = 4
2× 10−3 6.28× 10−9 1.28× 10−9

1× 10−3 3.96× 10−10 3.99 8.00× 10−11 4.00
5× 10−4 2.43× 10−11 4.02 4.91× 10−12 4.02

three stage Runge-Kutta scheme, even though having the same order. This perhaps suggests
that DG deduced Runge-Kutta schemes with more stages tend to be more accurate, although
their orders may not be higher. Finally, the RK4 with D = 4 attains the highest order in
Table 3.

We next investigate the stability of DG deduced Runge-Kutta schemes for the hyperbolic
process. The theoretical stability analysis of high order central FD discretization for hyperbolic
equation has been conduced in [43]. In the present study, we only consider the central FD with
M = 1 for simplicity. The corresponding spectral radius ρ of central FD matrix is known to
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Table 4: Numerical CFL numbers for the hyperbolic problem. Here N = 51, M = 1, and
T = 10000. The analytical CFL number equals to β, while the numerical CFL numbers given
in the last column are computed based on the critical h.

Scheme Parameter β Critical h CFL

RK2 none 0 1.12× 10−3 0.0560

RK3 C = 4 0 1.61× 10−3 0.0805

RK3 C = 16
3 0 1.41× 10−3 0.0705

RK3 C = 16
3 − ε 0 1.41× 10−3 0.0705

RK3 C = 2
√

3 3.47× 10−2 1.7350

RK3 C = 4
3 2 4.00× 10−2 2.0000

RK4 D = 22/3 + 2 0 3.38× 10−3 0.1690

RK4 D = 9 2.076418342 4.16× 10−2 2.0800

RK4 D = 4 2
√

2 5.66× 10−2 2.8300

be ρ = 1
∆x and a numerical discretization is stable if

ρ∆t =
∆t

∆x
=

h

∆x
≤ β, (70)

where β is the dimension of the imaginary interval of the time stepping scheme. Consequently,
we have the analytical Courant-Friedrichs-Lewy (CFL) number for the hyperbolic problem
being β. We next study the numerical CFL numbers of the proposed Runge-Kutta schemes.
By fixing N = 51, we consider an extremely large end time T = 10000 in the present study. We
then numerically search for the critical ∆t = h value such that the computation is still stable.
The numerical CFL number can then be computed as h/∆x. The critical h and numerical
CFL numbers of the DG deduced Runge-Kutta schemes are reported in Table 4. These results
can be grouped into two categories, i.e., with β = 0 and β 6= 0. The critical h for β 6= 0 is
easy to test. Basically, before that value, the computation is still quite accurate, but after that
value, the error quickly goes to infinity. It can be seen from Table 4 that the numerical CFL
numbers for β 6= 0 agree with the analytical ones very well. On the other hand, the critical h
for β = 0 is somewhat vague. Around certain critical value, the error deteriorates slowly when
h increases. The error blows up only when a quite larger h is chosen. In our computation, we
print out ten sample errors in the interval t ∈ [0, 10000]. Consequently, the reported critical
h value is determined to be the h value such that the error in the last step remains to be
of the same magnitude as other errors in the previous nine steps. It can be observed from
Table 4 that such critical h values are not zero, although β = 0. Instead, they are some
quite small numbers. Furthermore, it has been found that when T is larger, such critical h
numbers become smaller. Thus, the numerical CFL numbers of these schemes become 0 only
under a limit sense. We also note that the numerical CFL number for the RK4 scheme with
D = 22/3 + 2 is 0.1690 due to the effective β = 0. Furthermore, we note that the proposed
RK3 scheme with C = 4

3 attains the largest CFL number among all three stage schemes, while
the classical fourth order Runge-Kutta method with D = 4 attains the largest CFL number
among all four stage schemes. This confirms our theoretical stability analysis.
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Table 5: Temporal convergence tests for the parabolic problem. Here N = 51, M = 10, and
T = 1.

L∞ L2

Scheme Parameter h Error Order Error order

RK2 none
1× 10−4 2.69× 10−9 3.59× 10−9

5× 10−5 6.63× 10−10 2.02 7.06× 10−10 2.35
2.5× 10−5 1.65× 10−10 2.00 1.65× 10−10 2.09

RK3 C = 4
3

1× 10−4 9.25× 10−10 1.25× 10−9

5× 10−5 2.28× 10−10 2.02 2.64× 10−10 2.25
2.5× 10−5 5.67× 10−11 2.01 5.91× 10−11 2.16

RK3 C = 4
1× 10−4 9.07× 10−10 9.28× 10−10

5× 10−5 2.26× 10−10 2.00 2.20× 10−10 2.07
2.5× 10−5 5.65× 10−11 2.00 5.37× 10−11 2.04

RK3 C = 16
3

1× 10−4 1.14× 10−9 1.25× 10−9

5× 10−5 2.83× 10−10 2.01 2.83× 10−10 2.14
2.5× 10−5 7.07× 10−11 2.00 6.79× 10−11 2.06

RK3 C = 16
3 − ε

1× 10−4 1.14× 10−9 1.25× 10−9

5× 10−5 2.83× 10−10 2.01 2.83× 10−10 2.14
2.5× 10−5 7.07× 10−11 2.00 6.79× 10−11 2.06

RK3 C = 2
1× 10−4 5.24× 10−11 2.23× 10−10

5× 10−5 5.72× 10−12 3.20 2.45× 10−11 3.19
2.5× 10−5 6.43× 10−13 3.15 2.79× 10−12 3.14

RK4 D = 9
1× 10−4 2.43× 10−11 1.06× 10−10

5× 10−5 2.88× 10−12 3.08 1.25× 10−11 3.08
2.5× 10−5 3.41× 10−13 3.08 1.48× 10−12 3.07

RK4 D = 22/3+2

1× 10−4 2.28× 10−11 9.54× 10−11

5× 10−5 1.15× 10−12 4.17 5.91× 10−12 4.01
2.5× 10−5 1.22× 10−13 3.66 4.90× 10−13 3.59

RK4 D = 4
1× 10−4 1.83× 10−11 5.84× 10−11

5× 10−5 8.29× 10−13 4.46 2.74× 10−12 4.41
2.5× 10−5 4.94× 10−14 4.07 1.52× 10−13 4.17

Next, we examine the order of convergence in time for the parabolic problem. Again, a
high order central FD with a large bandwidth M = 10 is employed for spatial discretization so
that the spatial error is vanishing. We also fix N = 51 and T = 1. Here we test the orders by
considering h = 1×10−4, h = 5×10−5, and h = 2.5×10−5. Note that these h values are smaller
due to the nature of the parabolic process. The numerical errors and orders of convergence are
listed in Table 5. The theoretical orders of all schemes are numerically validated. Moreover,
the DG deduced RK4 scheme with D = 22/3 +2 actually experiences some over performance so
that its numerical order is higher than three. Furthermore, we observe a similar pattern in the
Table 5, i.e., the DG based Runge-Kutta schemes with more stages tend to be more accurate,
even though their orders are not higher. The double precision limit is almost achieved by using
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Table 6: Numerical CFL numbers for the parabolic problem. Here N = 51, M = 1, and
T = 100. The analytical CFL number equals to α

4 , while the numerical CFL numbers given in
the last column are computed based on critical h.

Scheme Parameter α α
4 Critical h CFL

RK2 none 2 0.5 2.00× 10−4 0.5000

RK3 C = 4
3 2 0.5 2.00× 10−4 0.5000

RK3 C = 2 2.512745327 0.628186332 2.51× 10−4 0.6275

RK3 C = 4 4.519842100 1.129960525 4.52× 10−4 1.1300

RK3 C = 16
3 6.260790890 1.565197717 5.93× 10−4 1.4825

RK3 C = 16
3 − ε 6.259414105 1.564853525 6.26× 10−4 1.5650

RK4 D = 22/3 + 2 2.617454426 0.654363607 2.61× 10−4 0.6525

RK4 D = 4 2.785293563 0.696323391 2.78× 10−4 0.6950

RK4 D = 9 6 1.5 6.00× 10−4 1.5000

the RK4 scheme with D = 4.
At last, we test the stability of the proposed Runge-Kutta schemes for the parabolic process.

The theoretical stability analysis of high order central FD approaches for parabolic equation
has been considered in [43]. Again, we only test the central FD with M = 1 for simplicity.
The spectral radius ρ of the central FD approximation to the second order derivative is known
to be ρ = 4

∆x2
. Thus, the numerical scheme is stable if

ρ∆t =
4∆t

∆x2
=

4h

∆x2
≤ α, (71)

where α is the dimension of the real interval of the time stepping scheme. Consequently, the
analytical CFL number for the parabolic problem is α

4 . The numerical CFL numbers of the
proposed Runge-Kutta schemes are calculated by using N = 51. Because we have a term e−t

in the analytical solution to the parabolic problem, a too large T introduces computational
vanishing solutions. To avoid that, we select the end time T = 100 for stability analysis. We
again numerically search for the critical ∆t = h value such that the computation is still stable.
The numerical CFL number can then be computed as h/∆x2. The critical h and numerical
CFL numbers of the DG based Runge-Kutta schemes are given in Table 6. The present test
of critical h is similar to the previous case with β 6= 0, i.e., the cutoff value can be easily found
through a linear scanning. We note that the numerical results in Table 6 confirm our analysis
that for the RK3 schemes, the largest CFL number is not achieved at C = 16

3 , because the
intersection point on the real axis is not covered (see Fig. 2). In fact, C = 16

3 is the only
exception in Table 6 that the numerical CFL number does not agree with the theoretical one.
Instead, when we perturb this value by a small ε = 0.001, the RK3 scheme attains the largest
CFL number. For four stage schemes, the proposed RK4 with D = 9 is the most stable one
as shown in Table 6. Among all schemes studied, the RK3 scheme with C = 16

3 − ε is the best
one in terms of stability for the parabolic process.
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8 Concluding Remarks

In this work, we introduce a unified discontinuous Galerkin (DG) finite element framework
for solving ordinary differential equations (ODEs) in time. With each element being weakly
connected to its neighboring elements, the present DG framework provides a flexible way to
generate time stepping schemes. We particularly investigate different choices of three main
components in the present DG formulation, i.e., boundary conditions, numerical quadrature,
and nontrivial test functions, so that many different time integration methods can be derived.
The boundary conditions are shown to be essential to the switch of one step or multistep time
integrators. Based on the method of weighted residual, numerical quadratures are indispens-
able in our finite element time discretization to account for general nonlinear ODEs. Many
different conditions, e.g. explicit conditions, implicit conditions, and symplectic conditions, are
proposed for the test functions to control the features of the resulting time-stepping schemes.
With these modeling issues being well taken care, the proposed DG formulation provides a
unified framework to rederive all standard time-stepping schemes, such as low order one-step
methods, high order Runge-Kutta methods, and multistep methods. Additionally, by using
the proposed explicit conditions, explicit Runge-Kutta methods can be generated via a DG
variational analysis for the first time in the literature.

Moreover, we have explored the potential of the proposed DG framework for construct-
ing new time integration schemes. The successful derivation of novel explicit Runge-Kutta
methods and symplectic implicit Runge-Kutta methods has also been realized. The gener-
ated high order Runge-Kutta methods often involve a set of essential parameters based on
the proposed DG formalism. In order to render such new schemes being useful, we develop
many optimization strategies. Three optimization criteria, i.e., accuracy, sparseness and sta-
bility, are considered. First, we consider the accuracy optimization of a linear initial value
problem in terms of an error function without using the analytical solution. The most accu-
rate scheme is found to be the one with the highest formal order of accuracy. Additionlly,
We have also explored the optimization of the sparseness, which is related to the compressive
sensing problem in signal/imaging processing. Finally, the stability optimization is considered
based on the special features of the semi-discretized matrix obtained from solving partial dif-
ferential equations. Both the maximizations of stability region along the real and imaginary
axes are studied. Various novel three stage and four stage Runge-Kutta methods have been
constructed. Numerical experiments have been carried out to validate the proposed optimized
time integration schemes and to compare among them.

One feature of the proposed optimization procedure is that it is analytical in nature and
thus is free of numerical error. A different general optimization procedure was proposed in
the literature [29] to optimize the stability regions of Runge-Kutta schemes. Via a numerical
search, optimized Runge-Kutta schemes with the maximal dimension along the imaginary axis,
and along both imaginary and real axes were studied up to six stages. This algorithm could
be extended to obtain extended interval along the negative real axis too. It is interesting to
compare some results obtained from this approach with those of the present work. For the
three stage third order Runge-Kutta scheme, the reported β value obtained via their numerical
procedure was β ≈ 1.7871 (see Table IV of Ref. [29]), while the analytical value found in the
present work is β =

√
3 ≈ 1.7321. The numerical error in this case is about 0.055. Moreover,

in Table V of Ref. [29], the expansion coefficient of 0.25 was reported for the location of the
optimal three-stage second-order Runge-Kutta method. This actually agrees with C = 4

3 of
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the present study. Nevertheless, the numerical β was given as β ≈ 2.0696 [29], while the
analytical value found in the present work is β = 2. Thus, the numerical error is about
0.0696. Finally, the optimal imaginary interval scheme for the four-stage third-order Runge-
Kutta methods was reported to be located at an expansion coefficient 0.03812 with a numerical
β ≈ 2.8521, see Table IV of Ref. [29]. Such an expansion coefficient 0.03812 corresponds to
D = 4.3722 in our description. While in the present study, it is found analytically that the
true optimal scheme to be β = 2

√
2 (i.e., β ≈ 2.8284) and D = 4. In fact, it is easy to

verify that β ≈ 2.8521 cannot be a true maximum. At D = 4.3722, the analytical β value
is β = 2.78339056, which is smaller than our maximum of β ≈ 2.8284. This inconsistence
might be explained by examining the numerical error. In fact, the numerical error of their
estimate is |2.8521 − 2.78339056| ≈ 0.0687, which is consistent with their errors in the other
case. Nevertheless, we note that even though involving numerical errors, their optimization
procedure is quite flexible to be applied to optimizations involving more stages, while the
present analytical optimization procedure becomes cumbersome when dealing with Runge-
Kutta schemes with more stages.

Finally, we like to point out that the proposed DG formulation encounters difficulties to
recover certain time integration schemes. One such example is the reducible Runge-Kutta
scheme [22]. The irreducible Runge-Kutta schemes have weights bj 6= 0, j = 1, . . . , S. If one
bj is zero, one deals with a reducible Runge-Kutta scheme. See Appendix A.8 for more details
about this. We also experience difficulties in generating a popular strong stability-preserving
(SSP) Runge-Kutta method, i.e., the third order Shu-Osher scheme [18, 19, 20, 25]. The
essential difficulty of the proposed DG approach for deriving the Shu-Osher scheme and the
attempts to cover other SSP Runge-Kutta methods can be found in Ref [21].
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A Derivation details

A.1 Euler and Crank-Nicholson schemes

The implicit Euler scheme can be obtained by consider a different boundary condition. In
particular, we still have L = 1, but take Un(tn+1) = un+1. We note that under such a condition,
the discretized variational equation is still of the form (9) after some similar derivations. Then,
by taking w(t) = 1, one attains Eq. (17) as well. Now by employing a quadrature with c1 = 1
and b1 = 1, we have

un+1 = un + hnf(U1, tn+1), (72)

where U1 = Un(tn + c1hn) = Un(tn+1) = un+1. We thus have the implicit Euler scheme (20).
Likewise, the Crank-Nicholson scheme obviously demands a two points support quadrature:

(c1, c2) = (0, 1) and b1 = b2 = 1
2 . Moreover, we need to set L = 2 and enforce boundary

conditions rigorously at both ends of time element In: Un(tn) = un and Un(tn+1) = un+1. The
resulting DG scheme

un+1 = un +
hn
2
f(U1, tn) +

hn
2
f(U2, tn+1), (73)

is in fact the Crank-Nicholson scheme (21), because U1 = Un(tn + c1hn) = Un(tn) = un and
U2 = Un(tn + c2hn) = Un(tn+1) = un+1.
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A.2 Midpoint rule and improved Euler scheme

We first consider the midpoint rule. Following the guidelines given in Sec. 2.3, the numerical
quadrature is taken as c1 = 1/2 and b1 = 1. Here, we need to determine only one nontrial test
function w(t) with w(tn+1) = 0 for a one stage scheme. For the present case, Eq. (9) becomes

unw(tn) + hnU
1ẇ
(
tn+ 1

2

)
+ hnf

(
U1, tn+ 1

2

)
w
(
tn+ 1

2

)
= 0. (74)

By taking w(tn) = 1, the consistent conditions (15) and (16) imply that w
(
tn+ 1

2

)
= 1

2 and

ẇ
(
tn+ 1

2

)
= − 1

hn
. This gives rise to a linear function

w(t) = − 1

hn
(t− tn) + 1.

With this test function, Eq. (74) becomes

U1 = un +
hn
2
f

(
U1, tn +

hn
2

)
,

which is the same as Eq. (27), while Eq. (28) can be simply attained by assuming w(t) = 1.
We thus derived the midpoint rule (25) based on the DG finite element method.

The improved Euler scheme correspondes to a two stage Runge-Kutta method

y1 = un (75)

y2 = un + hnf
(
y1, tn

)
, (76)

un+1 = un +
hn
2

[
f(y1, tn) + f(y2, tn+1)

]
(77)

With s = 2, the abscissae and weights of the DG method are taken as c1 = 0, c2 = 1, b1 = 1
2 ,

and b2 = 1
2 . We note that since c1 = 0, we have simply U1 = Un(tn + C1hn) = Un(tn) = un,

according to the boundary condition. In fact, Eq. (75) can always be trivially satisfied if the
abscissae starts from c1 = 0. No test function w(t) is required for calculating U1.

To compute U2, we first have w(tn+1) = 0 as usual and we take w(tn) = 1 for simplicity.
Then, two consistent conditions (15) and (16) can be employed to determine ẇ(t) values on
abscissae. We thus have ẇ(tn) = − 1

hn
and ẇ(tn+1) = − 1

hn
. Therefore, the test function is the

same linear polynomial

w(t) = − 1

hn
(t− tn) + 1.

and U2 is given as
U2 = un + hnf

(
U1, tn

)
,

which is identical to (76). Finally, Eq. (77) can be simply derived by taking w(t) = 1.

A.3 Two stage explicit Runge-Kutta method

We note that last point tn+1 is missing in the quadrature for the Scheme RK2-2, so that the
current derivation is slightly different that of the Scheme RK2-1. For scheme RK2-2, U1 is
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again given as U1 = un. To compute U2, one needs to fix w(t) = w2(t). According to avaiable

conditions, we have w(tn) = 1, w
(
tn+ 2

3

)
= 0, and w (tn+1) = 0 due to (32) and ẇ(tn) = − 5

2hn

and ẇ
(
tn+ 2

3

)
= − 1

2hn
due to (15) and (16). Hence, at t = tn+1, function value w(t) is zero,

but the derivative value is unknown. In the present study, we optimize the unfixed derivative
value at tn+1 so that the expression for w(t) could be simpler. The optimized test function is
given as

w(t) =
3

2h2
n

(t− tn)2 − 5

2hn
(t− tn) + 1.

By substituting w(t) into Eq. (9), one attains

U2 = un +
2hn
3
f(U1, tn).

With U1 and U2, un+1 is updated according to Eq. (12)

un+1 = un +
hn
4
f(U1, tn) +

3hn
4
f
(
U2, tn+ 2

3

)
.

A.4 Three stage explicit Runge-Kutta method

Following the previous discussions, we have U1 = un first. Here U2 can be uniquely determined

based on the proposed procedure. In particular, we have w(tn) = 1, w
(
tn+ 1

2

)
= 0, and

w(tn+1) = 0 according to (32) and ẇ(tn+1) = 0 following from (30). The remaining coefficients

can be solved from (15) and (16) to be ẇ(tn) = − 4
hn

and ẇ
(
tn+ 1

2

)
= − 1

2hn
. Consequently,

the weight function is

w(t) = − 2

h3
n

(t− tn)3 +
5

h2
n

(t− tn)2 − 4

hn
(t− tn) + 1.

By substituting w(t) into Eq. (9), one attains

U2 = un +
hn
2
f(U1, tn). (78)

One degree of freedom is involved in calculating U3. From the explicit condition (32),

we have w(tn) = 0, w
(
tn+ 1

2

)
= 1, and w(tn+1) = 0. Now, the second explicit condition

(30) is not applicable so that three nodal values of ẇ(t) are unknowns. Taking into account

the previous results, we assume these three numbers being ẇ(tn) = − A
hn

, ẇ
(
tn+ 1

2

)
= − B

hn
,

and ẇ(tn+1) = − C
hn

. By plugging in these coefficients into Eqs. (15) and (16), consistent
conditions suggest that one can express A and B in terms of C. Thus, the general form of ẇ(t)
is ẇ(tn) = 8−C

hn
, ẇ(tn+ 1

2
) = C−4

2hn
, and ẇ(tn+1) = − C

hn
for C 6= 0. Thus, the weight function is

w(t) =
8− 2C

h3
n

(t− tn)3 +
3C − 16

h2
n

(t− tn)2 +
8− C
hn

(t− tn).

By substituting w(t) into Eq. (9), the general formula for U3 is

U3 = un +
C − 4

C
hnf(U1, tn) +

4

C
hnf

(
U2, tn+ 1

2

)
. (79)
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With U2 and U3 from Eqs. (78) and (79), the general explicit Runge-Kutta scheme can be
given as

un+1 = un +
hn
6
f(U1, tn) +

2hn
3
f
(
U2, tn+ 1

2

)
+
hn
6
f(U3, tn+1).

A.5 Four stage explicit Runge-Kutta method

To derive U2, we set w+(t) = 0 and need to determine w−(t). According to (32), one has

w−(tn) = 1 and w−
(
tn+ 1

2

)
= 0, while ẇ−(tn) = − 4

hn
and ẇ−

(
tn+ 1

2

)
= − 1

hn
follow from (15)

and (16). Thus, the weight function is taken as

w(t) =

 −
4
h3n

(t− tn)3 + 6
h2n

(t− tn)2 − 4
hn

(t− tn) + 1, if t ∈
(
tn, tn+ 1

2

)
0, if t ∈

(
tn+ 1

2
, tn+1

)
.

(80)

This weight function gives rise to

U2 = un +
hn
2
f(U1, tn).

For U3, we have first w−(tn) = 0, w−
(
tn+ 1

2

)
= 1, w+

(
tn+ 1

2

)
= 0, w+(tn+1) = 0, and

ẇ+(tn+1) = 0, based on (30) and (32). One free constant has to be introduced here and let us

denote it as C1. By using (15) and (16), we then have ẇ−(tn) = 4
hn

, ẇ−
(
tn+ 1

2

)
= C1−2

hn
, and

ẇ+
(
tn+ 1

2

)
= −C1

hn
. Thus, the weight function is taken as

w(t) =


4C1−8
h3n

(t− tn)3 − 2C1
h2n

(t− tn)2 + 4
hn

(t− tn), if t ∈
(
tn, tn+ 1

2

)
−4C1

h3n
(t− tn)3 + 10C1

h2n
(t− tn)2 − 8C1

hn
(t− tn) + 2C1, if t ∈

(
tn+ 1

2
, tn+1

)
.

(81)

This weight function gives rise to

U3 = un +
C1 − 2

2C1
hnf(U1, tn) +

1

C1
hnf

(
U2, tn+ 1

2

)
.

For U4, only nodal values can be fixed w−(tn) = 0, w−
(
tn+ 1

2

)
= 0, w+

(
tn+ 1

2

)
= 1, and

w+(tn+1) = 0, due to (32). Two free constants C2 and C3 are introduced for nodal derivative

values of w(t). By using (15) and (16), we then have ẇ−(tn) = 4−C3
hn

, ẇ−
(
tn+ 1

2

)
= C2+C3−2

hn
,

ẇ+
(
tn+ 1

2

)
= −C2

hn
, and ẇ+(tn+1) = −C3

hn
. Consequently, w−(t) and w+(t) are taken as

w−(t) =
4C2 + 8

h3
n

(t− tn)3 +
2C3 − 2C2 − 12

h2
n

(t− tn)2 +
4− C3

hn
(t− tn),

w+(t) =
16− 4C2 − 4C3

h3
n

(t− tn)3 +
10C2 + 8C3 − 36

h2
n

(t− tn)2

+
24− 8C2 − 5C3

hn
(t− tn) + 2C2 + C3 − 4. (82)
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It is interesting to note that C1 is not involved in the current weight function, while it is
involved in the updating equation

U4 = un +

(
1− 2

C3
+

2C2

C1C3

)
hnf(U1, tn)− 2C2

C1C3
hnf

(
U2, tn+ 1

2

)
+

2

C3
hnf

(
U3, tn+ 1

2

)
.

Finally, by taking w−(t) = w+(t) = 1, we have the last step of the Runge-Kutta method

un+1 = un +
hn
6
f(U1, tn) +

hn
3
f

(
U2, t−

n+ 1
2

)
+
hn
3
f

(
U3, t+

n+ 1
2

)
+
hn
6
f(U4, tn+1). (83)

A.6 Two stage symplectic Runge-Kutta method

Since the symplect Runge-Kutta methods are implicit, U1 is not simply given by the boundary
condition. Here to compute U1, one symplectic condition from (38) shall be imposed, i.e.,
a11 = 1

2b1. In addition to that, we have two consistence conditions (15) and (16). Also, the
implicit condition (39) suggests ẇ(tn + c2hn) = 0. Thus, the rest three coefficients can be

solved to be w(tn+ c1hn) = 1
2 , w(tn+ c2hn) = 1

2 −
√

3
3 , and ẇ(tn+ c1hn) = −hn

2 . Consequently,
the weight function is

w(t) =

√
3

h2
n

(t− tn)2 −
√

3 + 1

hn
(t− tn) + 1.

By substituting w(t) into Eq. (9), one attains

U1 = un +
hn
4
f

(
U1, tn +

(
1

2
−
√

3

6

)
hn

)
+

(
1

4
−
√

3

6

)
hnf

(
U2, tn + (

1

2
+

√
3

6
)hn

)
. (84)

We next consider U2. We first assume four undetermined coefficients to be w(tn+c1hn) = A,
w(tn + c2hn) = B, ẇ(tn + c1hn) = C, and ẇ(tn + c2hn) = D. Equation (9) thus becomes

0 = un +
hn
2
CU1 +

hn
2
DU2 +

hn
2
Af(U1, tn + c1hn) +

hn
2
Bf(U2, tn + c2hn). (85)

By substituting (84) into (85), one attains

−hn
2
DU2 =

(
1 +

Chn
2

)
un +

(
Ahn

2
+
Ch2

n

8

)
f(U1, tn + c1hn)

+

(
Bhn

2
+

(
1

8
−
√

3

12

)
Ch2

n

)
f(U2, tn + c2hn).

We now switch to necessary conditions. There are two conditions involved in symplectic
condition (38), i.e.,

a22 =
1

2
b2, b2a21 + b1a12 − b1b2 = 0. (86)

However, these two conditions and two consistence conditions (15) and (16) are not indepen-
dent. In fact, one can derive (16) from other three in the present context. Therefore, we
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also need to impose the implicit condition (39) C = ẇ(tn + c1hn) = 0. Then the rest un-

determined coefficients can be solved based on (86) and (15): A = w(tn + c1hn) = 1
2 +

√
3

3 ,
B = w(tn + c2hn) = 1

2 , and D = ẇ(tn + c2hn) = − 2
hn

. Consequently, the test function is

w(t) = −
√

3

h2
n

(t− tn)2 +

√
3 + 1

hn
(t− tn) + 1.

By substituting w(t) into Eq. (9), one attains

U2 = un +

(
1

4
+

√
3

6

)
hnf

(
U1, tn +

(
1

2
−
√

3

6

)
hn

)
+
hn
4
f

(
U2, tn +

(
1

2
+

√
3

6

)
hn

)
.

(87)
After U1 and U2 being computed, the symplectic Runge-Kutta scheme is completed by

taking w(t) = 1 in Eq. (9)

un+1 = un +
hn
2
f

(
U1, tn +

(
1

2
−
√

3

6

)
hn

)
+
hn
2
f

(
U2, tn +

(
1

2
+

√
3

6

)
hn

)
. (88)

A.7 Three stage symplectic Runge-Kutta method

Similarly, we first fix w(tn) = 1 and w(tn+1) = 0. Moreover, the implicit condition (39)
indicates that the derivative ẇ(t) will be zero at two of three Gaussian nodes. This leaves one
undetermined coefficient in terms of derivative. Together with three nodal values of w(t), we
have a total of four degrees of freedom in each stage.

For the purpose of computing U1, only one diagonal condition shall be used in the sym-
plectic condition (38), a11 = 1

2b1. Together with two consistent conditions (15) and (16), one
degree of freedom is left. We let A1 = w(tn + c1hn), A2 = w(tn + c2hn), A3 = w(tn + c3hn),
and B = ẇ(tn + c1hn). Equation (9) now becomes

0 = un+
5hn
18

BU1 +
5hn
18

A1f(U1, tn+c1hn)+
4hn
9
A2f(U2, tn+c2hn)+

5hn
18

A3f(U3, tn+c3hn).

(89)
The consistent condition (15) can be satisfied if 5hnB

18 = −1 or B = − 18
5hn

. By enforcing

a11 = 1
2b1, we have 5hnA1

18 = 1
2 ·

5hn
18 . This gives rise to A1 = 1

2 . Then, the consistent condition

(16) implies 16A2 + 10A3 = 13 − 18
√

3
5 . We treat A2 as the remaining degree of freedom

and represent A3 in terms of it, i.e., A3 = 1
10

(
13− 18

√
3
5 − 16A2

)
. Consequently, Eq. (89)

reduces to

U1 = un+
5hn
36

f(U1, tn+c1hn)+
4hn
9
A2f(U2, tn+c2hn)+

5hn
18

13− 18
√

3
5 − 16A2

10
f(U3, tn+c3hn).

(90)
We now continue on U2 with the assumption that A2 is still unfixed. Now, there are two

constrains involved in symplectic condition (38)

a22 =
1

2
b2, b2a21 + b1a12 − b1b2 = 0. (91)
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Thus, four unknowns at this stage are uniquely determined from these two constrains and
two consistent conditions. The unknown A2 is passed on to the next stage. We let C1 =
w(tn + c1hn), C2 = w(tn + c2hn), C3 = w(tn + c3hn), and D = ẇ(tn + c2hn). Similarly, we
have first

un+
4hn
9
DU2 +

5hn
18

C1f(U1, tn+ c1hn)+
4hn
9
C2f(U2, tn+ c2hn)+

5hn
18

C3f(U3, tn+ c3hn) = 0.

(92)
The consistent condition (15) can be satisfied if 4hnD

9 = −1 or D = − 9
4hn

. By enforcing

a22 = 1
2b2, we have 4hnC2

9 = 1
2 ·

4hn
9 . This gives rise to C2 = 1

2 . Then, the consistent condition

(16) implies 5hn
18 C1 + 4hn

18 + 5hn
18 C3 = hn

2 , which reduces to C1 + C3 = 1. The other symplectic
condition b2a21 + b1a12 − b1b2 = 0 becomes

5hn
18

4hn
9
A2 +

4hn
9

5hn
18

C1 −
5hn
18

4hn
9

= 0.

Thus, we have simply A2 + C1 = 1. Therefore, both C1 and C3 can be solved in terms of A2:
C1 = 1−A2 and C3 = A2. Then, the U2 is given as

U2 = un+
5hn
18

(1−A2)f(U1, tn+ c1hn) +
4hn
18

f(U2, tn+ c2hn) +
5hn
18

A2f(U3, tn+ c3hn). (93)

Finally, we consider U3. The undetermined coefficients of this stage are E1 = w(tn+c1hn),
E2 = w(tn + c2hn), E3 = w(tn + c3hn), and F = ẇ(tn + c3hn). Together with the left degree
of freedom A2 from the previous stages, we have totally five unknowns. Now the symplectic
condition introduces three conditions:

a33 =
1

2
b3, b3a31 + b1a13 − b1b3 = 0, b3a32 + b2a23 − b2b3 = 0. (94)

Together with two consistent conditions, it seems that one can uniquely determine five un-
knowns. However, we show that out of these five conditions, only four are independent, so
that A2 is still remained as one degree of freedom. We have first

0 = un+
5hn
18

FU3 +
5hn
18

E1f(U1, tn+ c1hn)+
4hn
9
E2f(U2, tn+ c2hn)+

5hn
18

E3f(U3, tn+ c3hn).

(95)
The consistent condition (15) can be satisfied if 5hnF

18 = −1 or F = − 18
5hn

. By enforcing

a33 = 1
2b3, we have 5hnE3

18 = 1
2 ·

5hn
18 . This gives rise to E3 = 1

2 . The symplectic condition
b2a21 + b1a12 − b1b2 = 0 implies

5hn
18
· 5hn

18
·

13− 18
√

3
5 − 16A2

10
+

5hn
18
· E1 ·

5hn
18
− 5hn

18
· 5hn

18
= 0.

From which, one solves E1 =
16A2+18

√
3
5
−3

10 . The last symplectic condition b3a32+b2a23−b2b3 =
0 suggests

4hn
9
· 5hn

18
·A2 +

5hn
18
· E2 ·

4hn
9
− 5hn

18
· 4hn

9
= 0.
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Thus, we have E2 = 1−A2. Finally, the consistent condition (16) is given as

5hn
18
·

16A2 + 18
√

3
5 − 3

10
+

4hn
9

(1−A2) +
5hn
36

=

(
1

2
+

1

2

√
3

5

)
hn.

It can be verified that this equation is trivially true for any A2 value. Therefore, A2 is the
free parameter involved in all stages of current DG version of symplectic Runge-Kutta scheme.
Now, U3 is computed as

U3 = un+
5hn
18

16A2 + 18
√

3
5 − 3

10
f(U1, tn+c1hn)+

4hn
9

(1−A2)f(U2, tn+c2hn)+
5hn
36

f(U3, tn+c3hn).

(96)
After U1, U2, and U3 being computed, we can take w(t) = 1 as usual to complete the

derivation of the three stage symplectic Runge-Kutta scheme. For simplicity, we denote A2 to
be A in the final scheme.

A.8 Reducible Runge-Kutta scheme

We consider an explicit two stage reducible Runge-Kutta method to illustrate this issue.

Scheme RRK

0
1
2

1
2

0 1

The present quadrature rule c1 = 0, c2 = 1
2 , b1 = 0, and b2 = 1 is an incomplete one because

the first node c1 is of no use in numerical approximation. Let us consider the DG derivation.
First, as usual we have U1 = un since c1 = 0. To computer U2, we would like to explore all
possible degrees of freedom. Thus, we consider undetermined coefficients not only for tn+c1hn
and tn + c2hn, but also the end point tn+1. We let A = w(tn + c1hn), B = w(tn + c2hn),
C = w(tn+1), D = ẇ(tn + c1hn), E = ẇ(tn + c2hn), and F = ẇ(tn+1). Then Eq. (9) becomes

Cun+1 = Aun + EhnU
2 +Bhnf(U2, tn + C2hn). (97)

Obviously, no matter what values are used for undetermined coefficients, Eq. (97) can not be
rewritten into the form

U2 = un +
hn
2
f(U1, tn), (98)

simply because the term f(U1, tn) of Eq. (98) is missing in Eq. (97), due to the incom-
plete quadrature. Similar difficulties have been found in deriving other reducible Runge-Kutta
schemes of different order.
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