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a b s t r a c t

This paper presents a differential geometry based model for the analysis and computation
of the equilibrium property of solvation. Differential geometry theory of surfaces is utilized
to define and construct smooth interfaces with good stability and differentiability for use in
characterizing the solvent–solute boundaries and in generating continuous dielectric func-
tions across the computational domain. A total free energy functional is constructed to cou-
ple polar and nonpolar contributions to the solvation process. Geometric measure theory is
employed to rigorously convert a Lagrangian formulation of the surface energy into an
Eulerian formulation so as to bring all energy terms into an equal footing. By optimizing
the total free energy functional, we derive coupled generalized Poisson–Boltzmann equa-
tion (GPBE) and generalized geometric flow equation (GGFE) for the electrostatic potential
and the construction of realistic solvent–solute boundaries, respectively. By solving the
coupled GPBE and GGFE, we obtain the electrostatic potential, the solvent–solute boundary
profile, and the smooth dielectric function, and thereby improve the accuracy and stability
of implicit solvation calculations. We also design efficient second-order numerical schemes
for the solution of the GPBE and GGFE. Matrix resulted from the discretization of the GPBE
is accelerated with appropriate preconditioners. An alternative direct implicit (ADI)
scheme is designed to improve the stability of solving the GGFE. Two iterative approaches
are designed to solve the coupled system of nonlinear partial differential equations. Exten-
sive numerical experiments are designed to validate the present theoretical model, test
computational methods, and optimize numerical algorithms. Example solvation analysis
of both small compounds and proteins are carried out to further demonstrate the accuracy,
stability, efficiency and robustness of the present new model and numerical approaches.
Comparison is given to both experimental and theoretical results in the literature.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Among the various components of molecular interactions, electrostatic interactions are of special importance
[6,8,41,44,55,59,71,142–144,169,170] because of their long range and influence on polar or charged molecules – including
water, aqueous ions, and amino or nucleic acids. Electrostatic interactions are ubiquitous for any system of charged or polar
molecules, such as biomolecules (proteins, nucleic acids, lipid bilayers, sugars, etc.) in their aqueous environment. Electro-
static solute–solvent interactions, therefore, are of central importance in analyzing molecular structure and modeling the
intramolecular and intermolecular interactions of macromolecules in simulations. There are two types of solvation models
[131,142,143,169]: explicit solvent models that represent the solvent in molecular or atomic detail, and implicit solvent
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models that essentially replace the explicit solvent with a dielectric continuum. Each type of methods has its strengths and
weaknesses. Although explicit solvent models provide some of the highest levels of detail, they generally require extensive
sampling to converge thermodynamic or kinetic properties of interest. On the other hand, implicit solvent models trade de-
tail and some accuracy to eliminate costly sampling of solvent degrees of freedom. Because of their fewer degrees of free-
dom, implicit solvent methods have become popular for many applications in molecular simulation [6,8,22,44,55].

Solute–solvent interactions are typically described by solvation energies (or closely related quantities): the free energy of
transferring the solute from a vacuum to the solvent environment of interest (e.g., water at a certain ionic strength). Solva-
tion energies can be decomposed into polar and nonpolar contributions. It is important to realize that this polar/nonpolar
decomposition is arbitrary and, although widely used, has caveats associated with the non-unique nature of the polar and
nonpolar processes [102] and the intrinsic coupling between these two components of solvation [49,50].

Solvation free energies can be calculated by a variety of computational methods ranging from very time-consuming quan-
tum mechanical approaches [77,102,129] to simple phenomenological modifications of Coulomb’s law. Traditionally, explicit
solvent methods with classical descriptions of intermolecular interactions have been the standard approach for obtaining
very detailed descriptions of solvation [125]. However, such methods require extensive sampling of solvent degrees of free-
dom which creates a significant computational burden. Implicit solvent methods, as used in the present work, have become
popular alternatives to more computationally expensive approaches although they have a lower accuracy [7,9,41,74,131]. In
implicit solvent methods, an atomic detail solute is surrounded by continuum solvent modeled by its ‘‘pre-equilibrated” ef-
fect on the solute [131].

Due to the ubiquitous nature of electrostatics and the aqueous environment common to most biomolecular systems, anal-
ysis of molecular solvation and electrostatics is of significant importance to research in chemistry, biophysics, and medicine.
Such analysis can be classified into two general types: quantitative analysis for thermodynamic or kinetic observables and
qualitative analysis for general characteristics of biomolecular solvation. One of the primary quantitative applications of im-
plicit solvent methods in computational biology and chemistry research has been the calculation of thermodynamic prop-
erties. Implicit solvent methods offer the advantage of ‘‘pre-equilibrating” the solvent and mobile ions, thus effectively
pre-computing the solvent contribution to the configuration integral or partition function for a system [131]. Such pre-equil-
ibration is particularly evident in MM/PBSA models [103,122,151,156,176] which combine implicit solvent approaches with
molecular mechanics models to evaluate binding free energies from an ensemble of biomolecular structures. Another impor-
tant and related application of implicit solvent computational methodology is the calculation and assignment of protein
titration states [3,13,66,90–92,99,104,114,115,159,178]. Such methods have been used to interpret experimental titration
curves, decompose residue contributions to protein–protein and protein–ligand binding energetics, examine structural/func-
tional consequences of RNA nucleotide protonation, and several other applications. Yet another application area for implicit
solvent methods is in the evaluation of biomolecular kinetics where implicit solvent models are generally used to provide
solvation forces for molecular Langevin dynamics [97,98,126,127,155], Brownian dynamics [52,61,101,138], or continuum
diffusion [33,34,148,149,182] simulations.

A major qualitative use of implicit solvent methods in experimental work is the visualization and qualitative analysis of
electrostatic potentials on and around biomolecular surfaces [6,10,124,171]. Visualization of electrostatic potentials was
popularized by the availability of software such as Grasp [124] and is now a standard procedure for the analysis of biomo-
lecular structures with thousands of examples in the literature, including ligand–receptor binding and drug design, protein–
nucleic acid complexes, protein–protein interactions, macromolecular assembly, enzymatic mechanism analysis, etc.

The polar solvation energy is generally associated with a difference in charging free energies in vacuum and solvent. A
variety of implicit solvent models are available to describe the polar solvation process [8,9,29,41,64,82,131,137,141,142,
157,165,169,170]; however, the most widely used methods are currently the Generalized Born [12,29,43,64,70,82,109,
119,161,162,188] and Poisson–Boltzmann (PB) [6,41,44,59,71,84,142] models. Generalized Born methods are very fast but
are only heuristic models for estimating the polar solvation energies of biomolecular structures. These methods are often
used in high-throughput applications such as molecular dynamics simulations [12,29,39,43,55,82,119,143,162]. PB methods
can be formally derived from more detailed theories [18,72,112] and offer a somewhat slower, but often more accurate,
method for evaluating polar solvation properties [12,39,118]. Additionally, PB techniques are often used to parameterize
and assess the accuracy/performance of Generalized Born models [39,43,118,161,163]. Finally, unlike most generalized Born
methods, PB models provide a global solution for the electrostatic potential and field within and around a biomolecule,
therefore making them suited to visualization and other analysis [20,40,42,52,61,95,139,149,166] that require global infor-
mation about electrostatic properties. The PB equation [6,41,44,59,71,84,142] is a nonlinear elliptic partial differential equa-
tion (PDE) which is solved for the electrostatic potential. It can be linearized for cases where the interactions between mobile
ions and the solute electrostatic potential are very weak. This assumption leads to the ‘‘linearized PB equation”. The PB the-
ory is approximate and, as a result, has several well-known limitations which can affect its accuracy [31,37,44,54,71,72,112,
135,141,157,158,169]. These limitations have been reviewed in previous articles and will only be briefly summarized here.
First, most continuum models assume linear and local solvent response [18,54,141,169]. However, nonlinear solvent re-
sponse (usually through dielectric saturation or electrostriction), can be important in regions of strong electric field
[54,141,169]. Biologically-relevant examples of nonlinear solvent response have been found near highly-charged ions, bio-
molecules, and other interfaces. Nonlocal solvent response generally involves the finite non-zero size of water and its unique
hydrogen bonding with solute and other solvent molecules. Such nonlocal response can be important in describing the ori-
entation of water at biomolecular interfaces [26], differing solvation of cations and anions, and the solvation of asymmetric
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charge distributions. The second major limitation is the mean-field treatment of ions in PB theory [71,72,112]. Mean field
models assume that each ion experiences only the average influence of the other ions in solution. Such averaging precludes
detailed ion–ion interactions involving steric repulsion of ions (or their solvation shells) and Coulombic interaction of ions,
including repulsive and attractive pairing. The mean-field assumption thereby eliminates correlations and fluctuations
which can have important energetic and structural consequences for solutions of divalent and multivalent ions surrounding
highly-charged molecules such as nucleic acids [31,37,135,157,158]. As suggested by the limitations above, PB models also
neglect detailed ion–solvent interactions which eliminate differences between ion species in solution and thereby prevent
effects analysis of specific ion species – which can be important in biophysical modeling. However, despite these limitations,
PB methods are still very important for biomolecular structural analysis, modeling, and simulation. Furthermore, these lim-
itations are currently being addressed through new implicit solvent models [5,37,112,123,157,158] and hybrid treatments
[11,87,110,117,164] which extend the applicability of PB theory while preserving some of its computational efficiency
through pre-averaging solvent and ion response.

PB methods provide polar solvation energies and therefore must be complemented by nonpolar solvation models to pro-
vide a complete view of biomolecular solvent–solute interactions. Nonpolar solvation is generally associated with the inser-
tion of the uncharged solute into solvent. There are many nonpolar solvation models available; however, recent work by
Levy, Gallicchio, and others [62–64,89] as well as our own research [167] has demonstrated the importance of nonpolar im-
plicit solvent models which include treatment of attractive solute–solvent dispersion terms as well as models of solvent–sol-
vent repulsive interactions that include both area and volume contributions [167].

All implicit solvent models require an interface definition to indicate the separation of solute atoms from the surrounding
solvent. In the context of the PB equation the solute–solvent boundary is used to define the dielectric constant and ion acces-
sibility coefficients. For nonpolar models the solute–solvent boundary is used to define the solvent accessible domain which,
in turn, defines the area and volume. The van der Waals surface, the solvent accessible surface [86], and the molecular sur-
face (MS) [130] are often used for this purpose. All of the physical properties of interest, including electrostatic free energies,
biomolecular surface areas, molecular cavitation volumes, solvation free energies, and pKa values are very sensitive to the
interface definition [45,47,116,152]. These surface definitions have been found successful in biomolecular modeling
[19,38,48,79,83,94,96,150]; however, these surfaces are simply ad hoc divisions of the solute and solvent regions of the prob-
lem domain; none of them takes into account minimization of interfacial free energies during equilibrium solvation.

The first partial differential equation (PDE) based molecular surface was constructed by Wei el al. in [175]. Unlike the
commonly used PDE based surface smoothing techniques which start with a given surface, this approach embeds the atomic
information, i.e., atomic coordinates and radii, instead of a given surface, in the Eulerian formulation, and generates hyper-
surfaces by curvature controlled PDEs. The biomolecular surface is subsequently extracted from the hypersurface by a level-
set approach [175]. This approach produces well defined molecular surfaces for both small molecules and large proteins. The
true physical boundary of a biomolecule in solvent, as a physical concept, should be in general determined by the optimi-
zation of the free energy of the macromolecule in the aquatic environment. This issue was addressed by a variational der-
ivation of the minimal molecular surface (MMS) that minimizes a surface free energy functional by the mean curvature flow
model in 2006 [15,16]. As in the classical theory of minimal surfaces, the mean curvature flow minimizes the surface area for
a given constraint. For simple models of solute–solvent interactions, interfacial free energy minimization is often equivalent
to surface area minimization, and gives rise to the MMS, which was the first biomolecular surface that has ever been con-
structed by the variational approach. Electrostatic solvation free energies of 26 proteins have been calculated by using MMSs
[17]. To our knowledge, our geometric PDE based models [15–17,175] are the first of their kind for biomolecular surfaces,
electrostatics and solvation modeling. More recently, we have presented a general procedure for the formation and construc-
tion of biomolecular surfaces by balancing the geometric curvature effects and potential effects [14]. This formalism enables
the incorporation of microscopic interactions, such as van der Waals potentials, into the macroscopic curvature description.
The mathematical structure of this approach was prototyped by one of the present authors in [172]. Most recently, differ-
ential geometry based multiscale models have been proposed to describe the dynamics and transports of chemical and bio-
logical systems, including fuel cells, ion channels, DNA packing, nanofluidic systems, and virus evolution [27,173].

Geometric flows [177], particularly mean curvature flows, have been of interest in applied mathematics for many years
with an emphasis on image analysis, material design [57,68,106,120,134,136,140,147] and surface processing [183]. Compu-
tational techniques using the level set formalism were devised by Osher and Sethian [132,140] and have been applied by
many others [25,35,146]. The impact of the level set theory is far beyond applied mathematics. An alternative approach
is to minimize the mean curvature or the energy functional of the characteristic function in the framework of the Mum-
ford–Shah variational functional [111], and the Euler–Lagrange formulation of surface variation [21,24,93,121,132,133]. In
1999, Wei introduced some of the first high-order geometric flow equations for image analysis [172]. Coupled geometric
flow equations were also proposed by Wei and Jia [174] for image edge detection and feature extraction.

While implicit solvent models are very efficient, they are approximate treatments of the solvent environment around a
solute assuming linear and local solvent response to all solute perturbations [18,46,131,169]. As such, they can fail to accu-
rately describe solvent behavior in situations where nonlinear or nonlocal solvent response is important to the phenomenon
of interest or where the atomic details of solute–solvent interactions are needed [1,2,4,8,23,26,30,36,49–51,58,60,75,76,81,
85,88,107,108,128,145,153,154,160,167]. Limitations of the PB equation have been indicated above and follow directly
from these assumptions of linearity and locality in solvent–solute interactions. Similar limitations are present for the
nonpolar models discussed. However, despite their shortcomings, implicit solvent models have many uses in a variety
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of chemical, physical, and biomedical research fields and therefore continue to be an important area of computational
research.

Yet, an important problem in implicit solvent models is the lack of sufficient descriptions of polar–nonpolar coupling and
solvent–solute interactions [4,23,26,36,49,58,60]. This problem has recently considered by Dzubiella et al. [49] who pro-
posed an interesting free energy optimization procedure to couple polar–nonpolar interactions. Their model includes con-
tributions from pressure, Gauss and mean curvatures, van der Waals interactions and electrostatic effects. Biomolecular
surfaces were generated from this model via the level set approach [152] which is similar to our earlier Eulerian geometric
flow approaches of biomolecular surfaces and solvation analysis [15–17,175].

The use of the PB theory in computational biology, chemistry, and physics still faces a number of challenges – many of
which are related to the definition of the solute–solvent interface. First, there is significant controversy over the choice of
solute–solvent interface [45,47]. This controversy stems, in part, from the ad hoc nature of the current popular surface def-
initions. Second, many popular surface definitions lack the stability and differentiability for routine use in molecular simu-
lations due to extreme sensitivity to atomic positions, radii, etc. This sensitivity often drives the use of alternative
‘‘smoothed” solvent–solute interface definitions [69,78] which can introduce additional computational artifacts[152]. Final-
ly, the wide range of surface definitions has led to confusion and misuse of parameter (radii) sets developed for implicit sol-
vent calculations with specific surface definitions.

The objective of the present work is to introduce a differential geometry based approach for the generation of smooth
surfaces with good stability and differentiability for use in both polar and nonpolar modeling, thereby addressing many
of these current challenges. We propose to optimize a polar and nonpolar solvation free energy functional to drive the con-
struction of realistic solvent–solute boundaries and thereby improve the accuracy and stability of implicit solvent calcula-
tions. The differential geometry theory of surfaces and manifolds is employed to result in new coupled geometric and
potential flows for the generation of a physical solvent–solute boundary and the optimization of solvation energy. Techni-
cally, the smoothness of the resulting solute–solvent boundary is ensured by coupled geometric and potential flows of par-
abolic type. Computational methods and algorithms are constructed and carefully validated to ensure their accuracy,
stability, and efficiency. The proposed solute–solvent boundary model and associated free energy functional are tested by
their applications in several common biomolecular modeling tasks.

The rest of this paper is organized as follows. Section 2 is devoted to the theoretical foundation of the present differential
geometry based solvation model. A variational framework is established to couple different parts of the solvation contribu-
tions. Governing equations are derived by variational principles. The solution of the governing equations leads to physical
solvent–solute boundaries and accurate solvation free energies. Numerical methods and algorithms are discussed in Sec-
tion 3. Schemes of the second-order numerical accuracy are designed for the construction and evolution of solute character-
istic function. Appropriate preconditioners are used for solving the generalized Poisson–Boltzmann equations. The coupled
equations are solved by two iterative schemes. Section 4 presents validation and analysis of the proposed numerical ap-
proaches. The accuracy and convergence of various computational schemes, including the surface area formulation based
on the geometric measure theory, are carefully tested to ensure their computational reliability and efficiency. The applica-
tions of the proposed theories, methods and algorithms are considered to two sets of compounds: small molecules and pro-
teins in Section 5. Comparison is given to results in the literature. Finally, this paper ends with concluding remarks.

2. Differential geometry based solvation model

In this section, a differential geometry based model of solvation is briefly described for macromolecules and their aquatic
environment that are near equilibrium. More details about the differential geometry based multiscale formalism, particu-
larly dynamics and transport aspects, can be found elsewhere [173]. For a system near equilibrium, the density of charged
particles in the solvent can be approximated by the Boltzmann distribution, which considerably reduces the number of de-
grees of the freedom of the solvation system. Alternatively, the Nernst-Planck equations or the full set of the Navier–Stokes
equations might be utilized to describe systems that are far from the equilibrium [173].

2.1. Solute–solvent boundary

Let us consider a multi-domain setting of a macromolecule and solvent system. The macromolecule is described in dis-
crete atomic detail, while the aqueous solvent is treated as a continuum. Therefore, the domain X 2 R3 is essentially divided
into two (types of ) regions, i.e., aqueous solvent domain Xs and macromolecular domain Xm. Therefore, one has X = Xs

S
Xm. However, because electron wavefunctions of the solvent and the solute overlap at the atomic scale, Xs and Xm should
overlap with each other at the boundary of molecules and solvent, i.e., Xb = Xs

T
Xm – £, where Xb is the region of solvent–

solute boundary. Therefore, we propose a characteristic function S : R3 ! R to characterize this overlapping solvent–solute
boundary. As such, S(x) is a description function or a characteristic function of the solute domain, i.e., it is one (S = 1) inside
the biomolecule and zero (S = 0) in the aquatic solvent. However, S takes a value between zero and one at the solvent–solute
boundary region. Therefore, (1 � S) is a description function or a characteristic function for the solvent domain. The profiles
of S and (1 � S) are depicted in Fig. 1 for a simple system. It is seen that there is a transition region at the solvent–solute
boundary where the solvent and the solute regions overlap. Obviously, in our model, the evaluation of all the solvent–solute
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properties depends on S. Physically, S and thus the profile of solvent–solute boundary, must be determined by the energy
optimization principle. Therefore, our task is to identify the energy functional that to be optimized. This task is accomplished
via the differential geometry of surfaces and manifolds in the present work.

2.2. Total free energy functional

The solvation process of macromolecules involves a number of interactions. As discussed in the Introduction, typically,
the free energy of solvation models consists of polar and nonpolar contributions, as well as polar and nonpolar interactions.

2.2.1. Polar free energy functional
The polar part is standardly represented by electrostatic interactions, which are of special importance because of their

long range and influence on polar or charged molecules including water, aqueous ions, and amino or nucleic acids. They
are also some of the most important aspects that determine the physical and chemical properties of biomolecules, such
as protein folding, protein–DNA binding, gene expression and regulation, etc. The widely used free energy functional of
the electrostatic system was given by Sharp and Honig [142] and Gilson et al. [67]. However, their formulation is based
on a sharp interface that separates the solvent and solute domains. In our formulation, we incorporate the function S into
the polar solvation free energy functional

Gp ¼
Z

X
S qm/� 1

2
�mjr/j2

� �
þ ð1� SÞ �1

2
�sjr/j2 � kBT

XNc

i¼1

ciðe�/qi=kBT � 1Þ
" #( )

dr; ð1Þ

where / is the electrostatic potential whose domain is the whole computational domain X, and �s and �m are the dielectric
constants of the solvent and solute, respectively. Here qm ¼

P
jQ jdðr� xjÞ is the density of molecular charges, with Q j being

the partial charge on an atom located at xj, qi is the charge of ion species i, Nc is the number of ion species, kB is the Boltzmann
constant, T is the temperature, and ci is the bulk concentration of the ith ionic species. The term associated with S is the elec-
trostatic free energy of the solute and that with (1 � S) is the electrostatic free energy of the solvent.

The above electrostatic free energy functional is inherently multidomain in nature and the domain is divided into the sol-
ute subdomain and the solvent subdomain as indicated by S and 1 � S, respectively. These subdomains do not have to be
mutually exclusive. A discrete description of the solute and a continuum description of the solvent are also employed in
Eq. (1) in the framework of the implicit solvent treatment, in which the charge density of mobile ions follows the Boltzmann
distribution. Moreover, it will be demonstrated that the present electrostatic free energy functional is able to reproduce the
classical Poisson–Boltzmann equation when a sharp solvent–solute interface is used and S becomes a Heaviside function.
Finally, we note that the terms that are quadratic in the potential gradient in Eq. (1) have negative signs. Therefore, the free
energy will be optimized instead of being minimized. In this work, we have adopted the earlier sign convention in the field
[67,142].

2.2.2. Nonpolar free energy functional
For the nonpolar contribution, we consider the following nonpolar solvation free energy functional proposed by Wagoner

and Baker [167].

Gnp ¼ cðAreaÞ þ pðVolÞ þ q0

Z
Xs

Uatt dr; ð2Þ

where Area is the surface area of the macromolecule, c is the surface tension, Vol represents the volume occupied by the
molecule of interest, p is the hydrodynamic pressure, q0 is the solvent bulk density and Uatt(r) is the attractive portion of
the van der Waals potential at point r. The first term is the surface energy. It measures the disruption of intermolecular
and/or intramolecular bonds that occurs when a surface is created. The second term is the mechanical work of creating
the vacuum of a biomolecular size in the solvent. The third term represents the attractive dispersion effects near the

−6 −4 −2 0 2 4 6

0

0.5

1

x

S
S
1−S

Fig. 1. The cross line of S and (1 � S) of a diatomic system described in Section 4.3.
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solvent–solute interface which has been shown by Wagoner and Baker [167] to play a crucial role in accurate nonpolar sol-
vation analysis.

To obtain a functional relation for S, it is necessary to rewrite nonpolar free energy formulation in terms of S(r). The en-
closed volume of biomolecule can be given by

Vol ¼
Z

Xm

dr ¼
Z

X
SðrÞdr: ð3Þ

Similarly the attractive dispersion term can be rewritten in the form

q0

Z
Xs

Uatt dr ¼ q0

Z
X
ð1� SðrÞÞUatt dr; ð4Þ

where we assume that the solvent bulk density q0 is a constant in space.
Typically, one expresses the area of a unique surface as a surface integration over the biomolecular boundary in the

Lagrangian formulation. However, this approach does not work directly in our formulation because no sharp solvent–solute
boundary is assumed. In fact, the concept of the surface area cannot be defined in the same manner as in the sharp surface
case. For a smooth boundary, there are infinitely many surfaces and the surface area can be defined as a weighted mean of
this family of surfaces. Additionally, for practical purpose, we need an appropriate Eulerian formulation for the surface area
so that we can put all energy contributions into an equal footing. Therefore, we need to convert the surface integral into a
volume one. To this end, we make use of the coarea formula in the geometric measure theory [53]. For a scalar field B in R3,
with C1 continuity condition, integrating a function f over its isolevel c in a region X can be done directly by a volume integral
over X through the expressionZ

R

Z
B�1
T

X
f drdc ¼

Z
X
krBkf ðrÞdr; ð5Þ

where c denotes an isovalue of B, and B�1 represents the c-isosurface, i.e., the set of points {rc} such that B(rc) = c. Here, the
coarea formula prescribes a relationship between the sum of area integrals and a global volume integral. In our case, we
introduce the concept of mean surface area of the family of isosurfaces which are subsets of point satisfying {S(r) = y}, where
0 6 y 6 1. Therefore the mean surface area can be given by a volume integral as

Area ¼
Z 1

0

Z
S�1ðcÞ

T
X

drdc ¼
Z

X
krSðrÞkdr: ð6Þ

Note that rS – 0 only in the region of the solvent–solute boundary. Numerical test of this formulation will be presented in
Section 4.1.

Finally, the electrostatic free energy functional is complemented by the nonpolar free energy functional to give the total
free energy functional of solvation for biomolecules at equilibrium

Gtotal ¼
Z

X
ckrSðrÞk þ pSðrÞ þ q0ð1� SðrÞÞUatt þ SðrÞ qm/� 1

2
�mjr/j2

� �

þ ð1� SðrÞÞ �1
2
�sjr/j2 � kBT

XNc

i¼1

ci e�/qi=kBT � 1
� �" #

dr: ð7Þ

Note that the polar and nonpolar parts are coupled via the characteristic function S, which is determined by the total energy
optimization instead of the surface free energy optimization as done in our earlier work [17]. The above total free energy
expression provides a basis for the evaluation of the solvation free energy and a starting point for the derivation of governing
equations for the solvation analysis. A similar coupling of polar and nonpolar interactions was described previously by Dzu-
biella and co-workers [49,50]; however, the implementation of nonpolar interactions and the representation of continuum
and discrete domains differ significantly from the present work.

2.3. Governing equations

The solvation free energy functional is a functional in terms of characteristic function S and potential /. The integral is
taken over the whole space. From the physical point of view, there should exist an optimal function S(r) and an optimal po-
tential / at the equilibrium state which optimize the total energy. Since S and / can vary independently in our formulation,
to optimize Gtotal, it is necessary that

dGtotal

d/
) Sqm þr � ð½ð1� SÞ�s þ S�m�r/Þ þ ð1� SÞ

XNc

i¼1

ciqie
�/qi=kBT ¼ 0 ð8Þ

and

dGtotal

dS
) �r � c

rS
krSk

� �
þ p� q0Uatt þ qm/� 1

2
�mjr/j2 þ 1

2
�sjr/j2 þ kBT

XNc

i¼1

ciðe�/qi=kBT � 1Þ ¼ 0; ð9Þ
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where r � c rS
krSk

� 	
is a generalized Laplace–Beltrami operator, which is a generalization of the usual Laplacian operator to a

smooth manifold [14,173]. In general, c can be a function of the position c = c(r) to reflect surface hydrophobicity at different
locations. However, it is treated as a constant in our present computation. From Eq. (8) we result in the generalized Poisson–
Boltzmann equation (GPBE)

�r � ð�ðSÞr/Þ ¼ Sqm þ ð1� SÞ
XNc

i¼1

ciqie
�/qi=kBT ; ð10Þ

where the dielectric function is given by

�ðSÞ ¼ ð1� SÞ�s þ S�m: ð11Þ

This expression provides a smooth dielectric profile. Fig. 2 shows the cross line of the dielectric function �(S) of a diatomic
system. It is seen that there is a smooth transition region for the dielectric constant to change from �s to �m. The solution
procedure of Eq. (10) can differ very much from that of the standard PB equation, due to the smooth dielectric function. Par-
ticularly, many mathematical difficulties of solving elliptic equations with discontinuous coefficients [180,181,184,186,187]
can be avoided in the present generalized Poisson–Boltzmann equation.

For a weak electrostatic potential, i.e., /� 1, one can linearize the generalized PB equation

�r � ð�ðSÞr/Þ þ ð1� SÞ�j2/ ¼ Sqm; ð12Þ

where �j is a modified Debye–Hückel screening function describing the ion strength [73].
Furthermore, the solution of Eq. (9) leads to a ‘‘physical solvent–solute boundary” (S). As discussed in earlier work

[14,17,173], the solution of this elliptic partial differential equation can be attained via a parabolic partial differential
equation

@S
@t
¼ krSk r � c

rS
krSk

� �
þ V

� �
; ð13Þ

where the generalized ‘‘potential” V is defined as

V ¼ �pþ q0Uatt � qm/þ 1
2
�mjr/j2 � 1

2
�sjr/j2 � kBT

XNc

i¼1

ci e�/qi=kBT � 1
� �

: ð14Þ

Note that Eq. (13) has the same differential operator as the mean curvature flow equation [17], except for the extra external
source term. Therefore, it is a special case of the potential driven geometric flow equation proposed in our earlier work [14].
In Eq. (13), as t ?1, the initial profile of S evolutes into a steady state solution, which solves the original Eq. (9).

It is interesting to see that the sharp solvent–solute interface and the standard PB equation, as well as related interface
conditions, can be recovered from Eq. (10). For a sharp interface, S becomes a Heaviside function, having value 1 for the sol-
ute subdomain and 0 for the solvent subdomain. As such, the smooth transition region in the dielectric function disappears
and the dielectric function becomes discontinuous. Then, Eq. (10) reduces to the classical form of the Poisson–Boltzmann
equation [73]

��mr2/m ¼ qm 8r 2 Xm;

��sr2/s ¼
P

j
qjcjeð�/sqj=kBTÞ 8r 2 Xs;

with appropriate interface conditions

/s ¼ /m; and �mr/m � n ¼ �sr/s � n 8r 2 C; ð15Þ

where /m and /s represent the potential in the solute domain Xm and solvent domain Xs, respectively, C denotes the sharp
interface, and n is the normal vector of the solvent–solute sharp interface.
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Fig. 2. The cross line profile of �(S) of a diatomic system described in Section 4.3. Here, we have set �s = 80 and �m = 1.
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Note that the generalized Poisson–Boltzmann Eq. (10) and the potential driven geometric flow Eq. (13) are strongly cou-
pled. Therefore, these two equations have to be solved by appropriate iterative procedures. This aspect will be discussed in
Section 3.3.

3. Methods and algorithms

This section presents a variety of computational methods and algorithms for the solution of the generalized Poisson–
Boltzmann equation and the generalized geometric flow equation.

3.1. Discretization schemes of the governing equations

We design second-order finite difference schemes for the governing equations derived from the free energy optimization.

3.1.1. The generalized Poisson–Boltzmann equation
For the solution of the generalized PB equation, the finite difference scheme is utilized in this study. The continuous

dielectric definition allows us to obtain accurate solution by using the standard second-order center difference scheme.
Let the pixel (i, j,k) represent the position (xi,yj,zk). The discretized form of Eq. (12) is

� xi þ
1
2

h; yj; zk

� �
½/ðiþ 1; j; kÞ � /ði; j; kÞ� þ � xi �

1
2

h; yj; zk

� �
½/ði� 1; j; kÞ � /ði; j; kÞ� þ � xi; yj þ

1
2

h; zk

� �

� ½/ði; jþ 1; kÞ � /ði; j; kÞ� þ � xi; yj �
1
2

h; zk

� �
½/ði; j� 1; kÞ � /ði; j; kÞ� þ � xi; yj; zk þ

1
2

h
� �

½/ði; j; kþ 1Þ

� /ði; j; kÞ� þ � xi; yj; zk �
1
2

h
� �

½/ði; j; k� 1Þ � /ði; j; kÞ� � ð1� Sði; j; kÞÞ�j2/ði; j; kÞh2 ¼ �Sði; j; kÞqði; j; kÞ=h ð16Þ

where h is the grid spacing, and q(i, j,k) is the fractional charge at grid point (xi,yj,zk), which is resulted from the interpolation
of the charge density qm. The second-order interpolation (i.e., the trilinear mapping) is used to distribute the charges. Thus,
the discretized PB equation can be cast into the standard linear algebraic equation system of the form AX = B, where X is the
solution of the interest, A is the discretization matrix and B is the source term associated with the continuum and discrete
charges. The boundary condition is built up by the far field condition and practically obtained by the sum of potential con-
tributions from individual atom charges with a decay factor from the continuum charge strength j [65]. Initially, we have
explored the use of the biconjugate gradient method as the linear solver. Matrix acceleration is discussed in a later section.
The initial guess of the solution is set to 0 and the convergence tolerance is set as 10�6. It is shown in the test section that the
PB solver is able to deliver the designed second-order accuracy.

3.1.2. The potential driven geometric evolution equation
To attain the solution of geometry flow Eq. (13), one has to determine all of the involved physical parameters first. Some

parameters in the literature [89,113], including the CHARMM force field, can be adopted for this purpose. However, due to
the nonpolar solvation energy expression in our model, not all parameters can be adopted from the literature. Some mod-
ifications are necessary. In particular, surface tension c should vary according to the surface definition [89,113]. Therefore, it
is used as a fitting parameters in our model. To this end, we write

@S
@t
¼ krSk r � c

rS
krSk

� �
þ V

� �
¼ ckrSk r � rS

krSk

� �
þ Vc

� �
; ð17Þ

where Vc ¼ V
c with c as a nonzero parameter and V being defined in Eq. (14). In addition to the Lennard Jones parameters �i, rs

and ri, what will be determined in the generalized geometry flow equation are p/c, q0/c, �s/c, �p/c, and qm/c. Note that since
qm/c is assigned at the center of atoms, term (qm/c)/ has nonzero value only at atomic center so that it does not have con-
tributions to the surface evolution when S evolves only outside the van der Waals volume.

The discretization scheme used here for the solution of the generalized geometry flow Eq. (17) is similar to what we de-
signed previously [14,17]. It can be rewritten in the form

@S
@t0
¼

S2
x þ S2

y

� 	
Szz þ S2

x þ S2
z

� 	
Syy þ S2

y þ S2
z

� 	
Sxx

S2
x þ S2

y þ S2
z

� 2SxSySxy þ 2SxSzSxz þ 2SzSySyz

S2
x þ S2

y þ S2
z

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

x þ S2
y þ S2

z

q
Vc; ð18Þ

where t0 = tc. To obtain the discretized form, we introduce the following notations. We consider a discrete time tn: = ns where
n is a non-negative integer and s is the time stepping size. We denote Sn

ijk to be the discretized form of S(xi,yj,zk, tn). An explicit
scheme of the generalized geometry flow equation is given by

Snþ1
ijk � Sn

ijk :¼ vxd
2
x þ vyd

2
y þ vzd

2
z

h i
Sn

ijk þ sf n
ijk; ð19Þ
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where

f n
ijk ¼ �2

SxSySxy þ SxSzSxz þ SzSySyz

S2
x þ S2

y þ S2
z

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

x þ S2
y þ S2

z

q
Vc

( )n

ijk

;

vx ¼ s
ðS2

y þ S2
z Þ

S2
x þ S2

y þ S2
z

( )n

ijk

;

vy ¼ s ðS2
x þ S2

z Þ
S2

x þ S2
y þ S2

z

( )n

ijk

;

vz ¼ s
ðS2

x þ S2
yÞ

S2
x þ S2

y þ S2
z

( )n

ijk

;

where

d2
x Sn

ijk ¼ Sn
ði�1Þjk � 2Sn

ijk þ Sn
ðiþ1Þjk

� 	
=h2

;

d2
ySn

ijk ¼ Sn
iðj�1Þk � 2Sn

ijk þ Sn
iðjþ1Þk

� 	
=h2

;

d2
z Sn

ijk ¼ Sn
ijðk�1Þ � 2Sn

ijk þ Sn
ijðkþ1Þ

� 	
=h2

;

fSxgn
ijk ¼ Sn

ðiþ1Þjk � Sn
ði�1Þjk

� 	
=2h;

fSygn
ijk ¼ Sn

iðjþ1Þk � Sn
iðj�1Þk

� 	
=2h;

fSzgn
ijk ¼ Sn

ijðkþ1Þ � Sn
ijðk�1Þ

� 	
=2h;

fSxygn
ijk ¼ Sn

ðiþ1Þðjþ1Þk þ Sn
ði�1Þðj�1Þk � Sn

ðiþ1Þðj�1Þk � Sn
ði�1Þðjþ1Þk

� 	
=4h2

;

fSxzgSn
ijk ¼ Sn

ðiþ1Þjðkþ1Þ þ Sn
ði�1Þjðk�1Þ � Sn

ðiþ1Þjðk�1Þ � Sn
ði�1Þjðkþ1Þ

� 	
=4h2

and

fSyzgn
ijk ¼ Sn

iðjþ1Þðkþ1Þ þ Sn
iðj�1Þðk�1Þ � Sn

iðjþ1Þðk�1Þ � Sn
iðj�1Þðkþ1Þ

� 	
=4h2

:

For the initial value of S, we consider

Sðx; y; z;0Þ ¼
1; ðx; y; zÞ 2 D;

0; otherwise j;

�
ð20Þ

where we define the domain enclosed by the solvent accessible surface to be D ¼
SNa

i¼1fr : jr� rij < ri þ rpg, with rp being the
probe radius. Here Na denotes the total number of the atoms for a given biomolecular system. Let the atom centers be ri =
(xi,yi,zi),i = 1, . . . ,Na, and ri represents the radius of the ith atom. To protect the van der Waals surface and make the compu-
tation more efficient, we only update the values of S(x,y,z, t) at the points in between the van der Waals surface and the
solvent accessible surface; i.e., ðx; y; zÞ 2

SNa
i¼1fr : ri < jr� rij < ðri þ rpÞg. Numerically, to avoid possible zeros in the denom-

inator of Eq. (18) we add a very small number, such as 10�7 into the square root expression, which does not affect the result
at all. The forward Euler method is initially used for time integration, and the explicit second-order central difference scheme
is performed for the spatial discretization. Moreover, the numerical algorithms based on semi-implicit scheme can be
applied to relax the step size limitation and to accelerate the geometry flow solver. This aspect is studied in the next section.

3.2. Acceleration procedures

The computational efficiency of the solution process is an important issue and can be a bottleneck for further applications
of the present model. Particularly, when this model is applied to molecular dynamic simulation, the generalized PB equation
and geometry flow equation are to be solved up to millions of times. Therefore, any nontrivial improvement in computa-
tional efficiency will make the present model more feasible to many practical applications in chemical and biological
systems.

3.2.1. Precondition of the PB solver
The linear algebraic system of the discretized PB equation can be solved by two major approaches: direct methods and

iterative methods. Large memory requirement prohibits direct methods to be used in the matrix resulted from large chem-
ical and biological systems. Widely used iterative methods, including Gauss–Seidel and successive over-relaxation (SOR),
work well for the generalized PB equation, but typically converge slowly. Conjugate Gradient method is quite efficient
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for symmetric and positively definite matrices. However, the sparse matrix A resulted from Eq. (16) is sevenfold banded
but non-symmetric because the dielectric distribution function is not a constant and varies in the transition region. The
biconjugate gradient (BiCG) method can be a good choice for non-symmetric systems and has been adopted in a variety
of our MIB schemes [180,181,184,186,187], but attentions are still to be paid in regard to the convergence issue. We have
studied the application of pre-conditioners in two linear solver libraries, the SLATEC (http://people.sc.fsu.edu/�burkardt/
f_src/slatec/slatec.html) and the PETSc (http://www.mcs.anl.gov/petsc/petsc-as/) to the solution of the PB equation [28].
It turned out that combination of stabilized biconjugate gradient method (BiCG) and the blocked Jacobi preconditioner
(BJAC) from the PETSc and the combination of the orthomin method (OM) and the incomplete LU factorization precondi-
tioner (ILU) from the SLATEC performed better compared to other tested solvers, preconditoners and their combinations
[28]. In this study, we focus on the combination of the ILU and the OM from the SLATEC, which is easy to incorporate into
the present iteration procedure and provides a stand-alone package, while the PETSc needs to be pre-installed before being
used. In Section 4, we further demonstrate the improvement by the combination of pre-conditioners and the iterative lin-
ear solvers.

3.2.2. Initial guess of the generalized PB solution
A good initial guess is always desired for the speedup of the iterative PB solver. Normally, the initial guess can be simply

set to 0 because it is complicated and computationally expensive to find good ones. However, in our iteration procedure, it is
found that the electrostatic potential distribution does not change dramatically from the prior calculation due to the small
adjustment in dielectric from the prior step. Therefore, it is beneficial to take the prior potential as a good guess for solving
the linear system. It turns out that the generalized PB solver converges faster when the electrostatic potential from the pre-
vious iteration is used as an input.

3.2.3. Convergence criteria in the generalized PB solver
The convergence criterion directly influences the accuracy and CPU cost of the solution of the generalized PB equation.

The smaller convergence criterion, the more accurate the solution of linear system is. However, the smaller convergence cri-
terion requires more iterations and longer CPU time in the iterative solution process. Therefore, it is worthwhile to find a
criterion which is a good compromise between the accuracy and the efficiency. Typically, a value of 10�6 is used in many
chemical and biological applications. Later on we will numerically investigate the effect of convergence criterion on the elec-
trostatic solvation energy, mean surface area and mean volume which are used to compute the total solvation free energy.
With the 10�8 as a standard, we will examine the efficiency and the accuracy for several relaxed convergence criteria, such as
10�6, 10�4, 10�3, 10�2 and 10�1.

3.2.4. Numerical schemes for the generalized geometric flow equation
The explicit scheme described in Section 3.1 for the generalized geometric flow equation has the advantage of saving

much memory. Nevertheless, it is not very efficient because a very small time step size i.e., time stepping, is required to guar-
antee the stability of the algorithm. This motivates us to find a faster semi-implicit algorithm. An alternative direction im-
plicit (ADI) scheme reported in our earlier work [14] was the fastest scheme among the tested ones under typical accuracy
requirement in the mean curvature flow. One of the reasons is that the traditional ADI method, widely used in linear diffu-
sion equations, is unconditionally stable. It allows a much larger time stepping than does the explicit scheme in guaranteeing
the accuracy and avoiding the stability concern. Another reason is that the capability of applying the fast O(N) Thomas algo-
rithm to solving the tridiagonal linear system in the ADI further speeds up the computation. Considering the similarity of the
current differential operator and the mean curvature flow, we adopt the splitting algorithm based ADI scheme to speed up
our generalized geometric flow solver. To this end, we modify Eq. (19) as

1� vx

2
d2

x �
vy

2
d2

y �
vz

2
d2

z

� 	
Snþ1

ijk ¼ 1þ vx

2
d2

x þ
vy

2
d2

y þ
vz

2
d2

z

� 	
Sn

ijk þ sf Sn
ijk

� 	
: ð21Þ

It follows that

1� Ax

2

� �
1� Ay

2

� �
1� Az

2

� �
Snþ1

ijk ¼ 1þ Ax

2

� �
1þ Ay

2

� �
1þ Az

2

� �
� AxAyAz

4

� �
Sn

ijk þ sf Sn
ijk

� 	
; ð22Þ

where

Ax ¼ vxd
2
x ; Ay ¼ vyd

2
y ; Az ¼ vzd

2
z : ð23Þ

Here vx;vy;vz; d
2
x ; d

2
y and d2

z are defined in Section 3.1. The following multi-step implementation can be carried out.

Step 1:

1� Ax

2

� �
S

nþ1
3

ijk ¼ 1þ Ax

2
þ Ay þ Az

� �
Sn

ijk þ sf Sn
ijk

� 	
; ð24Þ
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Step 2:

1� Ay

2

� �
S

nþ2
3

ijk ¼ S
nþ1

3
ijk �

Ay

2
Sn

ijk; ð25Þ

Step 3:

1� Az

2

� �
Snþ1

ijk ¼ S
nþ2

3
ijk �

Az

2
Sn

ijk: ð26Þ

This ADI algorithm is used to integrate our generalized geometric flow Eq. (10).

3.3. Dynamical coupling of the generalized Poisson–Boltzmann and geometry flow equations

As described in Section 2, the present differential geometry based solvation model prescribes a procedure to set up the
total free energy functional of the solvation. By the variational principle, we obtain generalized coupled PB Eq. (10) and po-
tential driven geometric flow Eq. (10). The solution of these coupled nonlinear equations provides a ‘‘physical” dielectric pro-
file �(S) and the electrostatic potential / and thereby enables the calculation of the solvation free energy. The solution of the
potential driven geometric flow Eq. (10) requires the knowledge of /, while the solution of the generalized PB Eq. (10) re-
quires the input of S and �(S). Therefore, in principle, the geometric flow equation needs to be solved simultaneously with
the generalized PB equation until a self-consistency is reached. In this study, we explore two self-consistent iteration
procedures.

3.3.1. Approach I
The iteration process can be carried out by breaking up the process into an iterative sequence of two steps as follows:

Starting with an initial guess of characteristic function S, one finds out the temporary electrostatic potential / by solving
the generalized PB equation with a given initial S. Once the electrostatic potential is obtained, the electrostatic energy
can be calculated. The second step is to solve the time-dependent generalized geometric flow equation for S with a prior cal-
culated potential /. In this step, the time integration can usually reach a quasi-steady state. With the updated quasi-steady S,
one can come back to the first step for the next cycle until the solvation free energy converges to within a pre-determined
criteria. However, in practice, simply re-inserting S into the PB solver may diverge. Because the quasi-steady S may vary dra-
matically during the iteration. Note that all changes in S are concentrated around the solvent–solute boundary, as the final
solution of the potential driven geometric flow equation reflects the balance between the intrinsic curvature energy and the
external potential terms. A large change in S near the solvent–solute boundary in turn leads to much adjustment in the elec-
trostatic potential which differs much in the solute and solvent regions. To avoid this problem, we adopt a simple relaxation
algorithm: the characteristic function S used for the PB solver is a linear combination of the previous one Sold and the newly
generated one Snew

S ¼ aSnew þ ð1� aÞSold; 0 < a < 1: ð27Þ

It turns out that the convergence of the generalized PB equation is guaranteed if a is small enough. In this work, a can be
taken in the range from 0.1 to 0.7. The choice of a is explored later. Note that this approach may fail sometimes when the
generalized geometric flow equation blows up due to a large variation in the temporary electrostatic potential. We therefore
utilize a similar procedure for the electrostatic potential used in the evolution of the generalized geometric flow equation

/ ¼ a0/new þ ð1� a0Þ/old; 0 < a0 < 1; ð28Þ

where /old and /new are previous and newly resolved electrostatic potentials, respectively. This treatment can avoid the
blow-up of the generalized geometric flow solution.

3.3.2. Approach II
To reduce the dramatic changes in S and /, we can consider a straightforward way in which solving generalized PB equa-

tion follows each time-step integration of the generalized geometry flow equation. However, this treatment makes the
whole iterative procedure computationally over expensive as many more PB solution processes are required. Additionally,
it may not be necessary since the change in the S from one time step to another one is so small that the change in the cor-
responding potential distribution should be very small. Indeed, it is practical to update electrostatic potential after a number
of time steps (i.e., 10 to 100 steps) in the generalized geometry flow equation integration rather than every time step. We call
the number of time integration between two / updatings the number of intermittency Nstep. This approach effectively speeds
up the whole process. Additionally, the relaxation algorithm given in Eqs. (27) and (28) can also be used here to guarantee
the convergence. Moreover, in this approach, one better starts the iterative process by solving the S from Eq. (13) without the
electrostatic potential term. So that the later iteration procedure can focus on the impact of electrostatic potential to the gen-
eration of the solvent–solute boundary. This treatment reduces the total iteration number and save the computational time
significantly.
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In fact, there is a relationship between Approach I and Approach II. When the number of the time integrations becomes
larger and larger, Approach II returns to Approach I. In Section 4, we systematically study the difference between these two
approaches. This can be done by comparing the impacts of different approaches on the resulting total solvation free energy,
surface area and volume of the solute molecule. It is found that these two approaches lead to the same results. This, to some
degree, indicates the reliability and validity of the proposed iteration procedures.

3.4. Evaluation of the solvation free energy

Once the electrostatic potential / and the characteristic function S are obtained, the solvation free energy is given by

DG ¼ G� G0; ð29Þ
where G0 is the energy calculated from the homogeneous environment with �s = �m = 1 and without the nonpolar energy
part. Therefore, we have

DG ¼ Gp þ Gnp � G0: ð30Þ

The expressions of Gp and Gnp are taken from Eq. (7). Here Gp � G0 can be considered as the electrostatic solvation free en-
ergy. In all calculations presented here except for salt effect calculation, mobile ions will be set to zero corresponding to a
solution without salt. Therefore we have

Gp ¼
Z

X
SðrÞqm/dr� 1

2

Z
X
�ðSðrÞÞjr/j2 dr ¼ 1

2

Z
X

SðrÞqm/dr: ð31Þ

Discretizing the integral yields

Gp ¼
1
2

XNm

i¼1

QðriÞ/ðriÞ; ð32Þ

where Q(ri) is the ith partial charge at ri in the biomolecule, and Nm is the total number of partial charges. Now the electro-
static solvation free energy can be calculated as

DGp ¼ Gp � G0 ¼
1
2

XNm

i¼1

QðriÞð/ðriÞ � /0ðriÞÞ; ð33Þ

where / and /0 are electrostatic potentials in the presence of the solvent and the vacuum, respectively. Here / is computed
from the generalized Poisson equation (10) using the continuous dielectric distribution

�r � ð�ðSÞr/ðrÞÞ ¼ Sqm; ð34Þ
where �(S) and qm are the same as the ones in Eq. (10). The homogeneous solution /0 is computed with �(S) = �m in the whole
domain. The nonpolar part, Gnp, is computed exactly by Eq. (2).

4. Numerical test and validation

This section provides systematic validations for the computational algorithms and schemes proposed in the last two sec-
tions. We first examine the behavior of the coarea formula, then continue testing through various equation solvers, and fi-
nally check the impact of the potential term in our generalized geometric flow equation.

4.1. The behavior of the coarea formula

As described earlier, the coarea formula plays an important role in describing the mean surface area of an infinite family
of smooth solvent–solute boundaries by a volume integral. This Eulerian formulation puts the free energy of the surface area
and other free energies in an equal footing. Usually, the isovalue of the surface area in the coarea formula can be any positive
real number. But for the present derivation, it is limited to be between 0 and 1 because S is defined as a characteristic func-
tion of the solute. Here, we numerically explore the behavior of the coarea formula in a bounded open set. To this end, we
design some test cases as follows: Let B be a smooth function with a specific expression according to the geometry in the
coarea formula, we set

Mean surface area of fxj0 < BðxÞ < 1g ¼
Z 1

0

Z
B�1
T

X
drdc ¼

Z
X
krBkdx; ð35Þ

where X is a bounded open set. Therefore, the mean surface area has the same value as the volume of open set
X
T

{xj0 < B(x) < 1}. Computationally, integrating over the norm of the gradient of B gives rise to the corresponding mean
surface area. The volume integral of a density function f is just simply approximated byZ

X
f ðx; y; zÞdr �

X
ði;j;kÞ2J

f ðxi; yj; zkÞh3 ð36Þ
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where the summation is over J, the set of points inside X, and (xi,yj,zk) is the coordinates of grid points (i, j,k). Table 1 lists the
numerical results and exact values of the surface areas for the following cases

(a) A unit sphere: X = {(x,y,z)jx2 + y2 + z2
6 1} and B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
.

(b) A cylinder: X = {(x,y,z)jx2 + y2 < 1, � 4 6 z 6 4} and B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
.

(c) A ellipsoid: X = {(x,y,z)j (x/a)2 + (y/b)2 + (z/c)2
6 1} and B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx=aÞ2 þ ðy=bÞ2 þ ðz=cÞ2

q
, where a = 20/7, b = 25/14, and

c = 25/14.

It is evident that the numerical result converges to the exact value. The errors from the cylinder are slightly larger than
those from the sphere and ellipsoid because the cylinder has non-smooth edges. However, the errors are small for all cases.
Therefore, we conclude that the mean value of the areas of the family of smooth solvent–solute surfaces indeed converges to
the area of the corresponding sharp surface. Thus, the present definition of the mean surface area of an infinite family of
smooth surfaces is an important generalization of the classic concept of the area of a sharp surface.

4.2. Accuracy of the generalized PB solver

In this section, we investigate the accuracy of the proposed numerical solvers. The generalized geometric flow Eq. (19) has
the same differential operator as the mean curvature flow [17] except for the extra source terms. Previously, we have numer-
ically proved that the explicit Euler algorithm delivers the reliability and convergence of the solution of geometric flow equa-
tions, and the finite central different scheme is of second-order convergence in space [14]. Here, we focus on the test of the
accuracy of the generalized PB solver with the proposed dielectric function �(S). Although the discretization form of the sec-
ond-order finite difference PB expression has been used for other continuous dielectric definitions [78], the accuracy of this
approach has not been examined. Moreover, it is worthwhile to validate the generalized PB solver due to its different settings
of dielectric function, i.e., the �(S) profiles generated by the geometric flow equation. For this purpose, we construct a bench-
mark test of a simple one-ball system. We examine the convergence order and the accuracy of the finite difference scheme in
solving the generalized PB equation. In particular, we consider a modified Poisson equation with a designed dielectric def-
inition given by

�ðrÞ ¼ �1SuðrÞ þ �2ð1� SuðrÞÞ; ð37Þ

where r = (x,y,z), �1 and �2 are two constants to be determined, and

SuðrÞ ¼

1 if
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
< a;

�2 b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þz2
p

b�a

� �3

þ 3 b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þz2
p

b�a

� �2

if a 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
6 b;

0 if b <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
;

8>>>><
>>>>:

ð38Þ

where a < b. Note that through the definition of � and Su(r), this designed case has the same features of the dielectric defi-
nition as that in our model. The exact solution is designed to be

/0ðrÞ ¼ cosðxÞ cosðyÞ cosðzÞ: ð39Þ

Then the modified equation becomes

r � ð�r/0Þ ¼ �xrx/0 þ �yry/0 þ �zrz/0 þ �r2/0; ð40Þ

where

r2/0ðx; y; zÞ ¼ �3 cosðxÞ cosðyÞ cosðzÞ;
rx/0 ¼ � sinðxÞ cosðyÞ cosðzÞ;
ry/0 ¼ � sinðyÞ cosðxÞ cosðzÞ

and

rz/0 ¼ � sinðzÞ cosðxÞ cosðyÞ:

Table 1
Areas computed from the coarea formula for bounded open sets.

Case Grid spacing Exact value

0.5 0.25 0.1 0.05 0.025

Sphere 4.00 4.00 4.15 4.17 4.18 4.189
Cylinder 22.50 23.25 24.49 24.84 25.01 25.133
Ellipsoid 37.75 37.97 38.10 38.17 38.16 38.163
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For �, if a 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
6 b, we have

�xðrÞ ¼ 6ð�2 � �1Þ
b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
b� a

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
� a

b� a

 !
x

ðb� aÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
 !

;

�yðrÞ ¼ 6ð�2 � �1Þ
b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
b� a

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
� a

b� a

 !
y

ðb� aÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
 !

and

�zðrÞ ¼ 6ð�2 � �1Þ
b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
b� a

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
� a

b� a

 !
z

ðb� aÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
 !

:

Otherwise, �x = �y = �z = 0. Table 2 lists the computed errors under different mesh sizes with a = 1 and b = 3. The standard
absolute norm error measurement L1 is employed. Here �1 is fixed to be 1 and �2 is taken to be 80 or 10. The second-order
convergence in space is observed for the scheme. Furthermore, it is found that a large �2 may slightly deteriorate the
convergence.

4.3. Convergence of boundary profile and dielectric function

In the present model, the characteristic function S defines the solvent–solute boundary. Consequently, it can significantly
affect the solution of the generalized Poisson–Boltzmann equation, the surface area and volume, and thus, plays a key role in
the solvation free energy calculation. To illustrate the evolution and the convergence of the generalized geometric flow equa-
tion and corresponding S function, we solve Eq. (13) without the electrostatic potential term in this test. However, the elec-
trostatic solvation free energy at a given time can still be calculated.

The expression of attractive interaction Uatt
i needs to be given explicitly in order to solve the geometric flow equation.

Here we consider the following 6–12 Lennard–Jones (L–J) pair potential to model Uatt
i :

Uatt
i ðrÞ ¼ �i

ri þ rs

kr� rik

� �12

� 2
ri þ rs

kr� rik

� �6
" #

; ð41Þ

where �i is the well-depth parameter, and ri and rs are solute atomic and solvent radii, respectively. Here r and ri are posi-
tions. The L–J potential can be divided into attractive Uatt and repulsive Urep in different ways. It can be a ‘‘6–12” decompo-
sition as follows:

Uatt;6=12
i ðrÞ ¼ �2�i

ri þ rs

kr� rik

� �6

; ð42Þ

Urep;6=12
i ðrÞ ¼ �i

ri þ rs

kr� rik

� �12

:

Or it can also be a ‘‘WCA” decomposition based on the original WCA theory [89]

Uatt;WCA
i ðrÞ ¼

��iðrÞ 0 < kr� rik < ri þ rs;

ULJ
i ðrÞ kr� rikP ri þ rs;

(
ð43Þ

Urep;WCA
i ðrÞ ¼ ULJ

i ðrÞ þ �iðrÞ 0 < kr� rik < ri þ rs;

0 kr� rikP ri þ rs:

(
ð44Þ

All the calculations in this work are carried out by using the WCA decomposition.
To illustrate the S profile and evolution, we consider a diatomic system with the van der Waals radius 2.2 Å and coordi-

nates (x,y,z) = (�3,0,0) and (1.4,0,0). The spacing and time stepping are chosen as h = 0.25 Å and s = h2/4.5, respectively. The
solvent probe radius is set to 2 Å, which is used for the initial value setting and constraint construction. In fact a much small
solvent probe radius can ensure the correct surface topology [17]. The computational domain is set to [�8.70,7.05] �
[�5.7,5.55] � [�5.7,5.55]. Thus, the size of computational system is 64 � 46 � 46. The L–J parameters are set as follows:

Table 2
Errors and convergence orders for the generalized PB solver (�1 = 1).

Spacing �2 = 80 �2 = 10

L1 Order L1 Order

1 0.22 0.13
0.5 8.13 	 10�2 1.65 3.18 	 10�2 2.02
0.25 2.06 	 10�2 1.99 7.97 	 10�3 2.00
0.125 5.44 	 10�3 1.94 1.98 	 10�3 2.01
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ri is taken from atomic radius and rs is chosen to be 0.65 Å. We set well-depth �i = 0.039 kcal/mol and bulk density coeffi-
cient q0/c = 2, where, c = 1/15 kcal/(molÅ2). To compute the electrostatic solvation free energy during the evolution of sol-
vent–solute boundary, 1 unit charge is set on the center of each atom. We choose the dielectric constants �m = 1 and �s = 80,
respectively. We set pressure coefficient p/c = 0.2. A different c is used for real systems.

The evolution process of diatomic solvent–solute boundary is depicted through a group of cross section profiles of the S
function in Fig. 3 where the values of S from a set of points of (x,y,0.05) are described. The cross sections start with a rela-
tively fat-shaped interface which reflects the solvent accessible density. Here, S = 1 inside the molecular domain and S = 0 in
the solvent domain. Then the solvent–solute boundary is driven inward by intrinsic geometric curvature effect and external
potential. At the same time, there appears a transition region between the solvent and the solute. Finally a convergence is
reached with a balance among intrinsic geometric curvature effect, different potentials and enforced constraints. To have a
clear idea about the distribution feature of the S function, we draw a cross line from the cross section graph at T = 5 along
x = �0.75 which are shown in Fig. 1, where the functions of S and 1 � S are described together. It can be seen that the S func-
tion in the transition region is rather smooth. Once the S function is determined, the dielectric function �(S) is calculated
according to Eq. (11). Here the dielectric function �(S) corresponding to the S function in Fig. 1 is also exhibited in Fig. 2.
It has a pattern similar to 1 � S but with different values. It is important to note that the dielectric function �(S) is also very
smooth at the solute–solvent boundary. That is why the classical finite difference scheme can be applied to solve the general-
ized PB equation without reducing the accuracy of the solution.

Once the solution of the generalized PB equation is computed, the electrostatic solvation free energy can be calculated.
Therefore, the time history of the free energy along with the evolution of solvent–solute boundary can be recorded. To illus-
trate the convergence pattern of the solvation free energy, we compute the electrostatic solvation free energies in interme-
diate states during the time evolution. The results are shown in Fig. 4. In order to show evolution histories of the surface area,
volume and solvation free energy together in one plot, we plot two linear functions F(Volume) and J(Area) which have the
same time dependence as the volume and the surface area, respectively. Here T denotes the time span and N ¼ T

s represents
the number of computational steps in the generalized geometric flow solver. It is found that the solvation free energy de-
creases with respect to the time evolution, which is consistent with our theoretical formulation. It is observed that the solu-
tion of our model converges to a steady state in terms of volume (Å3), area (Å2) and electrostatic solvation free energy (kcal/
mol). Moreover, to obtain the results at the steady state, N = 200 or T = 3.5 is large enough to be taken as the stopping time in
our geometry flow solver for this system. Normally, it takes a longer evolution time for a large system to set down to the
steady state. The total integration time could be considerably shortened had a small probe radius been used [17].

4.4. Consistency of iteration procedures

If the electrostatic potential effect is taken into account during the solvent–solute boundary evolution, the iteration pro-
cedure has to be used to update the electrostatic potential repeatedly. As described earlier, there are two possible iterative
approaches which can be explored to solve the coupling system, in which the simple relaxation algorithm guarantees the
convergence of the algorithm. The question is whether these two approaches lead to the same outcome.

Fig. 3. The evolutionary profiles of the S function at cross section (x,y,0.05) in a diatomic system plotted from six intermediate states.
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To study the consistency between these two approaches, the above mentioned diatomic system is employed as well as a
small molecule called glycerol triacetate (Gly) from a set of 17 test compounds whose detailed information is given in Sec-
tion 5. The self-consistent iteration is performed until the electrostatic solvation free energy converges to within 0.01 kcal/
mol. The electrostatic solvation free energy (kcal/mol), surface area (Å2) and volume (Å3) resulted from these two different
methods are compared. The results are shown in Table 3. Here we take a = 0.5 for both methods. The electrostatic potential /
is updated in every 15 steps of the generalized geometric flow integrations in Approach II. It is evident that the results from
these two approaches are almost the same. Therefore, they can be alternatives for each other at least in small molecular sys-
tems. But for large protein systems, as we mentioned, it is better to use the second approach to avoid the possible blowup in
the generalized geometry flow caused by unpredictable large changes in the temporary electrostatic potential. Thus, in the
following tests and applications, the second method is applied except specified.

In Approach II, the relaxation factor a and the number of intermittency Nstep need to be determined. We are interested in
knowing whether the relaxation factor a plays a role in the final result. Similarly, it is important to know whether the Nstep

makes a difference in the converged result. We address these issues by examining the effects of a and Nstep on the electro-
static solvation free energy, surface area and enclosed volume. The above mentioned diatomic system is used here again.

It is known that a stable a value is between 0 and 1 but can not be very close to 1. We consider a number of a values in the
diatomic system while keeping other settings fixed. Table 4 shows the electrostatic solvation free energy, surface area and
volume for a = 0.1, 0.2, 0.5 and 0.7. It is found that the procedure diverges when a P 0.8. However, convergence is achieved
as long as the relaxation factor a is small enough. Once the convergence is achieved there is no much difference in the final
outcome. We therefore take a = 0.5 in the following tests and applications.

To study the effect of the number of intermittency, we take Nstep = 5, 10, 15, 40 and 100, while fixing a = 0.5 and other
settings. The results are listed in Table 5. It is seen that all values obtained from different number of intermittency are very
close to each other. However, a numerically too large or too small Nstep is not preferable. If Nstep is too large, Approach II goes
back to the first one. If Nstep is too small, the iterative process may stop too early because the perturbation in each iteration is

100 101 102 103
−250

−200

−150

−100

−50

N

Energy

F(Volume)

J(Area)

Fig. 4. The time evolution histories of the electrostatic solvation free energy, F(Volume) and J(Area), where F(Volume) = volume/5 � 180 and
J(Area) = (surface area)/5 � 200.

Table 3
Comparison between two iteration approaches.

2 atoms Gly

Approach I Approach II Approach I Approach II

Energy �231.18 �231.18 �12.44 �12.44
Surface area 128.67 128.67 271.91 272.02
Volume 100.72 100.83 287.85 287.93

Table 4
Effect of relaxation factor a on final results.

a 0.1 0.2 0.5 0.7 0.8

Energy �231.26 �231.18 �231.18 �231.18 Divergence
Surface area 100.73 100.94 100.83 100.71
Volume 128.65 128.62 128.67 128.71
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so weak that the convergence criteria is satisfied unexpectedly sometimes. In addition, small step number makes the whole
process computationally expensive.

4.5. Efficiency of the accelerated iteration procedure

We study the efficiency of the accelerated self-consistent iteration in this section. At the beginning we analyze the CPU
time usage based on an original combination of methods: Biconjugate Gradient (BiCG) method for the generalized PB solver
and a widely used explicit scheme for the generalized geometric flow (GGF) solver. In addition, as commonly used in the
linear system of the PB equation, we take 10�6 as the initial convergence criteria and set the first guess of the electrostatic
potential in each generalized PB run to be 0. The above mentioned diatomic and Gly systems will be utilized through this
efficiency test. Table 6 lists the breakup of time spending in the different parts of the self-consistent iteration procedure.
It is seen that for these two systems the major computation cost lies in the routines of the generalized PB solver and the
generalized geometric flow solver (more than 90%). Therefore, the total time will be dramatically reduced when efficient
accelerations are achieved in the generalized PB solver and generalized geometric flow solver. Note that all of the compu-
tations are performed on a SGI Altix 350 workstation with a 1.4 GHz Itanium processor and 4 GB memory. Additionally,
we explore the improvement made to the generalized PB solver, the generalized geometric flow solver, and consequently
to the total time cost. First, we combine an appropriate preconditioner with the iterative solver of the linear system. Addi-
tionally, we make use of the prior electrostatic potential as a first guess for the next PB run. Moreover, we obtain the approx-
imations through the relaxation of the convergence criteria of the linear solver. Finally, we employ the ADI scheme to
integrate the generalized geometric flow equation.

First of all, we do the following improvement: Take the prior potential solution as the first guess of each run of the linear
solver, then replace BiCG scheme with a combination of the preconditioner and the iterative solver (ILU/OM), while keeping
other settings unchanged.

Table 7 gives the total computational costs of the generalized PB solver in the diatomic system as well as the total iter-
ation numbers which are inside the parenthesis. The third column lists the time spending for original schemes, the fourth
one makes use of prior potential as a first guess and the fifth one records the time spending from the usage of the precon-
ditioner and the new first guess setting. It is seen that the gain of speedup is related to the size of system: The larger size is
the system, the more acceleration is achieved. For a 127 � 92 � 92 system, combination of the above two implementations
can obtain a speedup up to a factor of 4, while a single adjustment does not give much impressive improvement. It is also
found that although the total iteration number reduces dramatically by adding the preconditioner, the total computational

Table 5
Effect of the number of intermittency in Approach II.

Nstep 100 40 15 10 5

Energy �231.18 �231.19 �231.18 �231.17 �231.11
Surface area 100.83 100.83 100.83 100.89 101.07
Volume 128.63 128.63 128.67 128.48 128.63

Table 6
CPU time analysis from original schemes.

2 atoms Gly

Time (s) % Time (s) %

Total 23.95 58.4
GF 4.95 21 11.31 19
PB 18.25 76 45.24 77
Other 0.75 3 2.03 4

Table 7
Speedup from adjustment of initial guess and preconditioner in PB solver.

h Size BiCG BiCG1 ILU/OM Speedup

1 17 � 12 � 12 0.0557(252) 0.0322(152) 0.0371(50) 1.50
0.5 32 � 23 � 23 0.775(419) 0.467(248) 0.420(82) 1.85
0.25 64 � 46 � 46 17.676(841) 10.410(490) 6.947 (166) 2.54
0.125 127 � 92 � 92 525.74(2771) 263.11(1371) 130.76 (410) 4.02

1 The initial guess for the PB based linear solver is from prior potential calculation.
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cost is reduced with a much smaller factor. The reason is that the PB solver with a preconditioner takes more time in each
step.

Next, we study the impact of the convergence criteria to the electrostatic solvation free energy of the diatomic system.
Table 8 summarizes the calculated electrostatic solvation free energies and total time cost of the PB solver under different
convergence criteria. It indicates that 10�4 is good enough to deliver accurate results. In fact, 10�2 is still fine but 10�1 is
clearly unacceptable. In this study, we take 10�4 as the convergence criteria of the linear system in the following calculations
except specified. Because it is able to save much time compared to 10�6 while at the same time maintains the accuracy to a
satisfied level. In practical application, one might use 10�2. A further reduction in computational time is possible if one sets
the probe radius to rp = 0.25rvdW, where rvdW is the van der Waals radius [17].

Finally, we implement the ADI scheme in the generalized geometric flow solver. Thus we can use a much larger time
increment than that used in an explicit scheme without the stability concern. For example, if grid spacing is h = 0.25, the time
step size can be taken as large as 0.2 for the ADI scheme to be a good balance between accuracy and efficiency, while it has to
be less than 0.02 in the explicit scheme. The acceleration of the generalized geometric flow solver can be found in Table 9,
which is obtained by applying all of the speedup strategies we have discussed to the diatomic and Gly systems. This table
shows all the time spending for major routines in the iterative process before and after the acceleration. It indicates that
speedup in the PB solver can reach a factor of 4 or 5. However, the speedup in the total time is not as impressive as in
the PB solver. It is about a factor of 3 in the Gly system and about a factor of 2 in the diatomic system. The reason is that
the acceleration in the generalized geometric flow equation through the ADI can not have the same speedup factor as that
of the PB solver. The electrostatic solvation free energies are also given in the table for a comparison before and after the
speedup. Little difference in energies is observed due to varying schemes and the approximation.

4.6. Impact of potentials in the geometric flow equation

The potential source terms in the generalized geometric flow equation include pressure, long-ranged attractive dispersion
interaction and electrostatic potential. The solution (S) of the generalized geometric flow reflects a balance between the
intrinsic geometric curvature effect and several external potentials at the equilibrium. In this section, we illustrate the im-
pact of involved potentials to the characteristic function S, and consequently to the solvation free energy. Although in our
model there is no explicit surface definition to be demonstrated, the impacts of these potentials can be reflected by volume,
area and the electrostatic solvation free energy. In particular, if the flow is driven inward by a potential, the volume should
become smaller, and an outward driving makes the volume larger. These are true at least during the early stage of the sol-
vent–solute boundary evolution. In fact, they are not true for the system near the equilibrium. The present study is carried
out through two proteins (PDB ID 1ajj and 1fca) from protein data bank (PDB). Their detailed coordinates and parameters are
given in the application section of 22 proteins. Without any potential term, the mean curvature flow equation is driven
purely by intrinsic geometric curvature effect, which leads to the minimal molecular surface (MMS) [17]. With the MMS
as a reference, each time we use one additional potential term in Eq. (17) to produce a new characteristic function S which
will be used in the PB solver to calculate the electrostatic potential. In other words, starting with the MMS, we attain the
different characteristic functions S with either pressure, attractive nonpolar potential, or electrostatic potential separately.
Only when electrostatic potential term is taken into account, is it needed to run the self-consistent iteration process for
the solution of the coupled system. Table 10 gives the calculated volume and electrostatic solvation free energy under each
potential term. We also calculate the solvation free energy when all the potentials are turned on. It is seen that all the poten-
tials involved here drive the flow inward so that there are more solvent components between or around two spherical

Table 8
Influence of convergence criteria on electrostatic solvation free energy and computational time for the diatomic system.

Criteria 10�8 10�6 10�4 10�3 10�2 10�1

Energy (kcal/mol) �231.17 �231.17 �231.19 �231.28 �231.07 �239.80
PB Time (s) 10.44 6.95 4.17 3.09 2.05 0.90

Table 9
Comparison of CPU time (s) in the iteration procedures with and without acceleration.

2 atoms Gly

Without acceleration With acceleration Speedup Without acceleration With acceleration Speedup

Total 23.95 8.87 2.70 58.40 16.28 3.59
GF 4.95 3.67 1.35 11.13 5.57 2.00
PB 18.25 4.45 4.10 45.24 8.71 5.19
Other 0.75 0.75 2.03 2.00

Energy �231.17 �231.18 �12.44 �12.44
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solutes when just an individual potential is turned on. This is consistent with the experimental observations [168] and our
previous studies [14].

5. Applications

We consider two types of applications in this section. First, we apply our new approach to a set of 17 small molecules.
Then, some protein examples are studied. The Dirichlet boundary condition is used for both the generalized Poisson–Boltz-
mann equation and the generalized geometric flow equation as in our previous calculations [17,65,179,185]

5.1. Set of 17 test molecules

We apply our optimized surface model (OSM) of solvation to compute the solvation free energies of a set of 17 small com-
pounds. This test set was studied by Nicholls et al. [113] using a number of approaches, including quantum mechanics, PB
theory etc. An important aspect about this test set is that experimental data are available. Therefore, solvation free energies
predicted from our new model can be compared with both experimental values and other numerical results. Moreover, these
compounds are considered as a challenging test set for computational methods because the existence of polyfunctional or
interacting polar groups, which lead to strong solvent–solute interactions.

In our calculation, we set the dielectric constants �m = 1 and �s = 80. We use c as fitting parameter, and its initial value is
set to c = 1/15 kcal/(molÅ2) to compute other c-dependent parameters, see Eq. (17). We choose q0/c = 2 by comparing the
bulk density 0.033 Å�3 and the possible c value. For micro-molecular systems, pressure p can be very small and sometimes
is neglected in the calculation [32]. But here we still take it into account and set p/c to 0.2. Note that in the numerical sim-
ulation, all ratio parameters here are treated as dimensionless. For L–J parameters, rs is chosen to be 0.65 Å as a good fitting
solvent radius and ri is the solute atomic radii [167]. Note that due to the continuum representation of solvent in our model,
the 6–12 Lennard Jones potential formula (41) differs from the standard version – the distance used in our formula is no
longer the distance between the centers of solute atoms and the centers of solvent atoms but the distance between a specific
position in the solvent area and the centers of solute atoms. This should make the setting of well-depth �i different from the
ones taken from AMBER or OPLS force fields. However, the performance of the L–J potential should be similar, i.e., the value
of the L–J potential in the solvent caused by a solute atom only depends on the distance from the center of the atom. It im-
plies that the value of L–J potential caused by a solute atom should be a constant on the van der Waals surface of the atom. In

other words, �i
riþrs
kr�rik

� 	12
� 2 riþrs

kr�rik

� 	6
� �

¼ Di if r is on the vdW surface of the atom. Here the constant Di should have different

values for various types of atoms. For simplicity we use a uniform constant D to determine the value of �i given rs and ri. In
the present calculation, we pick 1.0 for D and the WCA expression is chosen as the attractive van der Waals potential. We
choose grid spacing h = 0.25 Å and time stepping s = h2/4.5. Here, c (kcal/(molÅ2)) serves as a fitting parameter, and its final
value is 0.0065 kcal/(molÅ2).

Structure and charge information of the 17 compounds are adopted from those of Nicholls et al. [113] and can be obtained
from the supporting information of their paper. In particular, charges are taken from the OpenEye-AM1-BCC v1 parameters
[80]. Atomic coordinates and radii are based on their new parametrization called ZAP-9 in which certain types of radii are
adjusted by them from Bondi radii to improve the agreement with experimental free energy. With these structures and
charges parameters, the root mean square error (RMS) obtained in their paper is 1.71 ± 0.05 kcal/mol via the explicit solvent
model. And the smallest RMS error of their single – conformer Poisson–Boltzmann approach is 1.87 ± 0.03 kcal/mol [113].
Such a large RMS error indicates the challenge of this test set. Usually, different surface definitions in implicit solvent models
should have their own optimal radii set. In particular, a continuous dielectric definition based model is supposed to have
radii set with larger values than those of a discontinuous dielectric model. Otherwise, the calculated free energy does not
give a good fitting to experimental data [152]. This also occurs in the present model. Therefore, we multiply the radii from
ZAP-9 by a common factor 1.1. It turns out this treatment leads to a good agreement with experimental data in terms of
electrostatic solvation free energies and total solvation free energies. The results are summarized in Table 11, which gives
a comparison between calculated and experimental values of solvation free energies of 17 compounds. RMS error of the
present model is 1.76 kcal/mol which is similar to that of Nicholls et al., i.e., 1.87 kcal/mol. This RMS error is competitive
to that of the explicit solvent approach (1.71 ± 0.05 kcal/mol) under the same charge and structure parameters set [113]. This

Table 10
Effects of potentials on the solvent–solute boundary.

1ajj 1fca

Volume Energy Volume Energy

MMS 6601.9 �975.6 9345.7 �1082.2
Pressure 6195.1 �1032.1 8866.6 �1123.2
Attractive 5533.8 �1139.3 8107.2 �1192.8
Electrostatic 6585.8 �1061.4 9329.3 �1112.4
Total potential 5381.6 �1165.6 7886.8 �1211.9
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may be credited to the more satisfactory nonpolar terms and the enforcement of the potential driven geometric flow. Here,
as expected, major errors are from the calculation of benzamides which are between 3.5 and 4.0 kcal/mol, see Fig. 5. Without
these benzamide compounds, the RMS error drops from 1.76 kcal/mol to 1.24 kcal/mol. This problem with benzamides is
likely due to radius adjustment for the carbonyl oxygens and tertiary nitrogens in ZAP 9 under the OpenEye-AM1-BCC v1
charges [113]. In other words, these large errors from benzamides can not be avoided if both OpenEye-AM1-BCC v1 charge
and corresponding optimized ZAP 9 radii are used in PB approaches. Based on these considerations, one possible approach
for improvement is to create a new charge set more appropriate for the PB approach with the same ZAP radii. It may be real-
ized by introducing quantum mechanical corrections to our model to take care of charge density. However, this aspect is out
of the scope of the present paper and will be investigated in our future work.

5.2. Solvation free energy of proteins

Validation by using a set of 17 molecules has shown that proposed differential geometry based solvation model works
well for the energy prediction of small compounds. Since small molecules are accessible to more accurate computational
means, such as quantum mechanical calculations, one of the main purposes of developing the present optimized surface
model (OSM) is to attack relatively large macromolecules. To this end, we consider a test set of proteins employed by
Mei et al. [105]. For this set, the total number of residues ranges from 21 to 275. The initial structures of all proteins are taken
from the protein data bank (PDB). The hydrogen atoms, which are typically missing from the X-ray data, are added to the
structures to obtain full all-atom models with optimized hydrogen bondings. Partial charges at atomic sites and atomic
van der Waals radii in angstroms are assigned from the CHARMM27 force field [100]. All of these operations, i.e., the trans-
formation from PDB files to PQR files, can be easily done with a software http://www.poissonboltzmann.org/pdb2pqr/
PDB2PQR. Parameters of the present calculation are set in the same way as those for 17 compounds except for Nstep = 2. Sim-
ilar to the treatment of the 17-compound set, the radii from the CHARMM force field need to be multiplied by a common
factor of 1.1. Our results are summarized in Table 12.

For a comparison, The results of Mei et al. are listed in Table 12 as well. Their results obtained from the molecular frac-
tionation with conjugate caps and conductor-like polarizable continuum model (MFCC–CPCM). This is an approximate quan-
tum approach that divides the macromolecule into fragments, such that the quantum calculations at HF/6-31 G level and
B3LYP/6-31 G level can be applied. The solvation effect is estimated vis the polarizable continuum method with the classic
molecular surface [105]. It is seen from the table that there are relatively large deviations, up to 28%, between results ob-
tained by the present OSM and those of the MFCC–CPCM. These derivations might due to the different methodologies, com-
putational environments and structures. In fact, the results from two different quantum basis sets have up to 10% deviation
for protein Amyloid. Another deviation between results of two quantum basis sets is about 5% for the protein BPTI.

As the largest deviation between the results from the proposed OSM and that of the MFCC–CPCM is quite large as shown
in Fig. 6, we consider another independent approach, the MIBPB [65,179,185], to evaluate the present method. A specific
MIBPB code, the MIBPB-III which has the treatment of geometric and charge singularities [65], is employed in our calcula-
tions. MIBPB-III has been intensively calibrated in the past and is the only known second-order convergent method for solv-
ing the Poisson–Boltzmann equation with both molecular surfaces and partial charges represented by the Dirac delta
functions. To deliver such an accuracy, the MIBPB-III has been built upon the MIB scheme [181,187] and Dirichlet to Neu-
mann mapping [65]. Similar to the present approach, the structural data of MIBPB-III is also prepared with the PDB2PQR soft-
ware. As such, we can eliminate the difference due to the different treatment of initial data. However, the MIPPB utilizes the
classic PB equation and the molecular surface, while the present method has a generalized PB equation, and an optimized

Table 11
Comparison of free energies (kcal/mol) for 17 compounds.

Compound Gnp DGp DG Exptl Error

Glycerol triacetate 2.27 �12.44 �10.16 �8.84 �1.32
Benzyl bromide 1.40 �4.89 �3.49 �2.38 �1.11
Benzyl chloride 1.35 �5.02 �3.68 �1.93 �1.75
m-Bis (trifluoromethyl) benzene 2.22 �3.22 �1.00 1.07 �2.07
N,N-Dimethyl-p-methoxybenzamide 1.96 �9.20 �7.24 �11.01 3.77
N,N-4-Trimethylbenzamide 1.86 �7.67 �5.81 �9.76 3.95
bis-2-Chloroethyl ether 1.45 �4.22 �2.77 �4.23 1.46
1,1-Diacetoxyethane 1.65 �8.24 �6.59 �4.97 �1.62
1,1-Diethoxyethane 1.52 �4.40 �2.88 �3.28 0.40
1,4-Dioxane 1.01 �5.65 �4.64 �5.05 0.41
Diethyl propanedioate 1.82 �7.85 �6.03 �6.00 �0.03
Dimethoxymethane 1.03 �4.52 �3.50 �2.93 �0.57
Ethylene glycol diacetate 1.59 �8.43 �6.84 �6.34 0.50
1,2-Diethoxyethane 1.55 �4.31 �2.76 �3.54 0.78
Diethyl sulfide 1.22 �2.39 �1.17 �1.43 0.26
Phenyl formate 1.37 �7.84 �6.48 �4.08 �2.40
Imidazole 0.82 �11.27 �10.45 �9.81 �0.64
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smooth surface. It is seen from Table 12 that solvation energy results from the present OSM and from the MIBPB have an
excellent agreement on most proteins except for Subtilisin. For this protein, the difference of energies from two methods
is about 5%.

5.3. Twenty-two proteins

Encouraged by the good consistency of the proposed method and the MIBPB-III, we further compare these approaches by
a larger set of protein molecules – twenty-two proteins that have been frequently used in previous studies [14,56,65,179].
The implementation of these two methods is the same as that described in the last section.
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Fig. 5. Correlation between experimental data and the present optimized surface model (OSM) (also results from Nicholls’) in electrostatic solvation free
energies of 17 compounds.

Table 12
Comparison of electrostatic solvation free energies (kcal/mol) obtained from the MFCC–CPCM, the present model (OSM) and MIBPB.

Protein PDBID No.of residues MGp(kcal/mol)

MIBPB-III MFCC–CPCM [105] OSM

RP71955 1RPB 21 �184.68 �267.60 �192.23
Amyloid 1AMC 28 �861.65 �886.01(�798.72) �852.68
Crambin 1CBN 46 �303.80 �361.52 �304.84
BPTI 1BPI 58 �1301.9 �1332.71(�1263.52) �1281.19
Calbindin 1CDN 75 �2188.96 �2259.62 �2195.42
Ubiquitin 1UBQ 76 �1170.61 �997.02 �1148.81
Lysozyme 2BLX 129 �1913.40 �1887.71 �1898.07
Subtilisin 1SBT 275 �1896.5 �2062.2 �2001.4
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Fig. 6. Correlation between the MFCC–CPCM [105] and the present optimized surface model (OSM) in electrostatic solvation free energies of 8 proteins.
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Table 13 shows the results from the present continuous dielectric model, denoted as ‘‘Radii1” in the table, and those by
MIBPB-III. It turns out that electrostatic solvation energies obtained via our optimization process are very close to those
based on the MIBPB-III. This can also be seen through Fig. 7 which shows that the results between them are quite linearly
correlated. The correlation coefficient is 0.999.

It is still interesting to understand how important it is to use a slightly enlarged radius in smooth surface models [152]. To
this end, we carry out the present calculations by using the original CHARMM22 van der Waals radii, denoted as ‘‘Radii0”.
This result is also listed in Table 13. It is seen that results from the original CHARMM22 van der Waals radii can have over
20% deviations from those of ‘‘Radii1”. This helps to come to a conclusion that for continuous dielectric models, it is neces-
sary to enlarge atomic radii obtained from widely used force fields. Otherwise, the results will be inconsistent with those of
other analysis. This is in agreement with the observation in the literature [152]. The necessity of using larger radii is also
shown clearly in Fig. 8 by the differences of electrostatic solvation free energies obtained from the MIBPB-III and the present
calculations with original radii (Radii0) or enlarged radii (Radii1).

Additionally, it is useful to demonstrate that the electrostatic potential function computed in the present OSM can be
illustrated at arbitrary isosurface of the characteristic function S. This is done by first computing a sharp surface at a given
S value, then projecting the / value on the isosurface of a given S value. Fig. 9 shows three plots of the electrostatic potentials
at S = 0.25, 0.5 and 0.75. A comparison of these potentials indicates the fast/slow electrostatic potential changing regions in
the solvent–solute boundary. These regions are also interactive regions in the protein–protein or protein–ligand interactions.
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Fig. 7. Correlation between MIBPB-III and the present model (OSM) in electrostatic solvation free energies of 22 proteins.

Table 13
Electrostatic solvation free energies for 22 proteins.

PDB-ID No. of atoms MGp(kcal/mol)

MIBPB-III Radii1 Radii0

1ajj 519 �1137.2 �1178.5 �1362.6
1bbl 576 �986.8 �965.94 �1158.7
1bor 832 �853.7 �871.4 �1066.5
1fca 729 �1200.1 �1200.6 �1340.9
1frd 1478 �2852.2 �2844.8 �3173.4
1fxd 824 �3299.8 �3291.9 �3496.9
1hpt 858 �811.6 �808.2 �1039.1
1mbg 903 �1346.1 �1328.2 �1535.4
1neq 1187 �1730.1 �1713.9 �2049.3
1ptq 795 �873.1 �866.2 �1064.5
1r69 997 �1089.5 �1072.7 �1294.0
1sh1 702 �753.3 �771.8 �973.8
1svr 1435 �1711.2 �1704.6 �2073.7
1uxc 809 �1138.7 �1125.7 �1350.9
1vii 596 �901.5 �892.0 �1052.1
2erl 573 �948.8 �935.8 �1067.3
2pde 667 �820.9 �843.0 �1049.3
451c 1216 �1024.6 �1020.6 �1291.8
1a2s 1272 �1913.5 �1900.3 �2155.0
1a7m 2809 �2155.5 �2179.8 �2666.1
1a63 2065 �2373.5 �2380.5 �2912.0
1vjw 828 �1237.9 �1226.6 �1411.4
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Finally, it remains an important issue to further improve the computational efficiency, although systematical efforts have
been made in this work to reduce CPU cost. Since the coupled generalized PB and geometry flow equations are needed to
evolve self-consistently to reach the steady state, it takes more CPU time for the present method to calculate the total free
energy than some existing approaches that compute the polar and nonpolar energies separately.

6. Concluding remarks

This paper presents a novel differential geometry based solvation model. A crucial concept in the present model is the
characteristic function or the description function of solute molecules which is one inside the solute domain and zero inside
the solvent. Near the solvent–solute boundary, the characteristic function gradually changes from one to zero over a region
of transition. The exact position and width of the transition region are determined by a variational framework, which is for-
mulated based on the total solvation free energy. As a key ingredient of the present framework, the total energy encompasses
coupled polar and nonpolar contributions. The polar solvation free energy functional is described by the electrostatic theory
at equilibrium, while the nonpolar solvation free energy functional consists of surface energy, mechanical work and attrac-
tive solvent–solute interactions. Both the polar and nonpolar solvation free energies are coupled through the characteristic
function S. This approach is similar in spirit to the works of Sharp and Honig [142], Gilson et al. [67], Dzubiella et al. [49,50]
and some of our own work [15,17]; however, the present work is unique in its implementation of nonpolar interactions and
differential geometry based representation of continuum and discrete domains. The differential geometry aspects are built
upon our geometric flow formulations and variational minimization of surface free energy [14,15,17,172,174,175]. In the
present work, the characteristic function of the solute is naturally described by differential geometry theory of surfaces
and manifolds. Geometric measure theory is utilized to convert the Lagrangian formulation of the surface into appropriate
Eulerian formulation. By variation of the total solvation free energy functional with respect to the characteristic function and
electrostatic potential, a generalized geometric flow equation for the electrostatic potential and a generalized Poisson–
Boltzmann equation for the characteristic function are obtained. Unlike the standard Poisson–Boltzmann equation, the
generalized Poisson–Boltzmann admits a smooth dielectric profile governed by the generalized geometric flow equation,
which provides a physical description of the true solvent–solute dielectric boundary, according to the variational principle.
The generalized geometric flow equation balances the intrinsic geometric curvature effect and external potential due to
mechanical work, solvent–solute interactions, and the electrostatic potential. The solution of the generalized geometric flow
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Fig. 8. Differences between electrostatic solvation free energies obtained from the MIBPB and the present model with original radii (Radii0) or enlarged
radii (Radii1).

Fig. 9. Surface potential display of one protein (PDBID: 1frd) at different isosurfaces.
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equation and the generalized Poisson–Boltzmann equation leads to quantities for the direct evaluation of the solvation free
energy.

Computational methods and algorithms are designed and developed for the solution of the generalized Poisson–Boltz-
mann equation and generalized geometric flow equations. Specifically, a second-order finite difference scheme is designed
to solve the generalized Poisson–Boltzmann equation. The effect of the appropriate preconditioner to the basic Poisson–
Boltzmann solver is explored. Both a simple-minded Euler method and an appropriate alternative direction implicit (ADI)
scheme are constructed to solve the nonlinear generalized geometric flow equation. The ADI scheme allows a relatively large
time stepping and provides better efficiency. Finally, two iterative approaches are designed and tested for the solution of the
coupled Poisson–Boltzmann equation and the generalized geometric flow equation. All computational methods have been
extensively validated.

Numerical applications of the present differential geometry based solvation paradigm are considered to a set of 17 small
compounds and a set of proteins. The 17 small compounds consist of very different types of molecules, ranging from polar to
nonpolar. The strong solvent–solute interactions are presented in many of these compounds. The present model takes a blind
approach to these compounds, i.e., the same set of parameters are used for all the compounds without parameter fitting or
adjustment according to an individual molecule. Our new model outperforms the standard Poisson–Boltzmann method and
is compared well with the quantum mechanical method employed by Nicholls et al. [113]. To further demonstrate the utility
and usefulness of the present differential geometry based solvation model, we considered a group of protein molecules in
our study. Similar to the treatment of 17 small compounds, the same set of parameters are applied to all the proteins to com-
pute electrostatic free energies and/or solvation free energies. Results from present model compare well with those of quan-
tum mechanical calculations based on the polarizable continuum method [105]. The present predictions have also been
compared with those obtained with the standard Poisson–Boltzmann theory utilizing sharp interfaces [65]. Results from
these two theories shown a very good consistency. However, our study on small compounds, particularly on the benzamide
derivatives, indicates the need to refine the charge assignment for certain conjugated polar groups. Therefore, the incorpo-
ration of quantum mechanical description in the present theory is necessary. A differential geometry based multiscale sol-
vation paradigm including continuum, discrete and quantum descriptions is under our consideration.
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