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Viruses are infectious agents that can cause epidemics and pandemics. The understanding of virus formation, evolution, stability,
and interaction with host cells is of great importance to the scientific community and public health. Typically, a virus complex
in association with its aquatic environment poses a fabulous challenge to theoretical description and prediction. In this work,
we propose a differential geometry-based multiscale paradigm to model complex biomolecule systems. In our approach, the
differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic
continuum domain of the fluid mechanical description of the aquatic environment from the microscopic discrete domain of
the atomistic description of the biomolecule. A multiscale action functional is constructed as a unified framework to derive the
governing equations for the dynamics of different scales. We show that the classical Navier-Stokes equation for the fluid dynamics
and Newton’s equation for the molecular dynamics can be derived from the least action principle. These equations are coupled
through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows.

1. Introduction

Viruses are omnipresent infectious agents that are about
100 times smaller than bacteria. Unlike bacteria, viruses
are not able to grow or reproduce outside a host cell [1–
4]. There are more than 5000 types of known viruses.
Viruses have a known history of causing epidemics and
pandemics. About 70% of native Americans were killed
by foreign diseases after the arrival of Columbus in the
Americas. The Spanish flu pandemic lasted from 1918 to
1919 and killed about 100 million people, or 5% of the
world’s population in 1918. AIDS, a disease due to HIV
virus, has killed more than 25 million people since it was
first recognized on June 5, 1981. There are about 39 million
people living with HIV viruses worldwide nowadays. Virus
infection processes or virus life cycles differ greatly among
species but there are six basic stages: [1–4] (1) selective
attachment due to the interaction, binding and/or fusion
between viral capsid surface and specific receptors on the
host cellular surface, (2) penetration of a virus into a
host cell through membrane fusion or receptor-mediated
endocytosis, (3) viral genomic nucleic acid releasing in the

host cell due to viral capsid degradation by viral enzymes
or host enzymes, (4) virus replication and assembly in the
host cell, (5) Posttranslational modification of the viral
proteins; and finally, (6) virus releasing from the host cell.
For some viruses, such as HIV, the order of stages (5) and
(6) is reversed. Body uses two defense mechanisms, innate
immune system and cell-mediated immunity to defend host
from infection by viruses or other organisms. The innate
immune system terminates the virus replication in the host
cell by degrading or inhibiting the virus genetic material,
DNA or RNA through antibodies or other virus DNA/RNA
binding molecules. In the cell-mediated immunity, killer cells
known as T cells destroy the infected host cell and its close
neighbors by recognizing the viral protein displayed on the
cellular surface.

Recent advances in structural biology and microbiology
have led to a rapidly growing body of virus structural data [5–
7]. A striking feature of virus data is that they are excessively
large—a virus complex may involve tens of millions atoms,
with detailed information on atomic coordinates, types, and
radii. Most virus structural data are collected via X-ray
diffraction (X-ray), cryo-electron microscopy (cryoEM) [8],
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fiber diffraction, and nuclear magnetic resonance (NMR)
techniques. There are a few major virus morphologies: spher-
ical type, helical type, dihedral type, viral envelope type, and
complex type. Most animal viruses are of spherical mor-
phology with icosahedral symmetry [6]. Most virus structure
information can be obtained from the Protein Data Bank
(PDB; http://www.rcsb.org/pdb/home/home.do), the Virus
Particle Explorer database [7] (VIPERdb; http://viperdb
.scripps.edu/), and the Protein Quaternary Structure server
(PQS; http://pqs.ebi.ac.uk/).

Currently, the prevention and control of epidemics and
pandemics caused by infective viruses, such as H1N1, HIV,
SARS, and bird flu are of paramount importance. As an
infection starts with the surface attachment between a virus
and a host cell, it is important to construct and visualize
the surface topology and morphology of viruses in order to
understand the surface attachment and further interaction.
This information is also crucial to the understanding of
the molecular mechanism that gives rise to the assembly
of virus capsids and DNA or RNA packaging. Computer-
based visualization is able to represent results of explorations
in an easy-to-comprehend form and to facilitate conve-
nient information retrieval. Currently, visualization tools are
often developed in close conjunction with imaging, data
registration, simulation and/or surface construction. Virus
visualization plays a unique role in the understanding of
virus infection processes, such as, virus attachment of a host
cell, binding and fusion between a virus capsid surface and
a host cellular surface, and the penetration of a virus into
a host cell. However, viruses are not directly visible because
their sizes are at the order of tens of nanometers. The virus
images are constructed from virus information, which is
either collected from modalities described above or gen-
erated by computer simulations. Therefore, surface/image
construction is a part of the virus visualization. Yu and Bajaj
present a computational algorithm to segment asymmetric
units of three-dimensional (3D) density maps of icosahedral
viruses [9] and a computational approach to structural
interpretation from reconstructed 3D electron microscopy
(3D-EM) maps of viruses [10]. Some basic biomolecular
surface methods are available in visualization software
packages Chimera (http://www.cgl.ucsf.edu/chimera/) and
VMD (http://www.ks.uiuc.edu/Research/vmd/).

The difficulty of characterizing a virus complex is not
only its massive number of atoms, or data sets, but also its
everlasting interactions. Except for envelope type of viruses
which typically cover their capsids by envelopes derived from
lipids and proteins of their host cell membranes, most viruses
use their own capsids to interact with the environment and
host cells. A viral capsid usually consists of many identical
viral protein subunits that form the capsid by symmetric
assembly. There are strong interactions between viral protein
subunits so that viral capsids are rigid enough to hold
viral genome material and protect its content. Viruses have
adapted a number of strategies to maintain the stability
and flexibility of viral capsids. For many small viruses,
such as one of STMV, their subunit proteins generally only
touch each other by their edges. Their capsid stability is
achieved by strong nonbonding interactions (i.e., hydrogen

bonding and van der Waals interactions) between edges
of subunit proteins. Some large viruses, such as BMV,
have developed overlapping strategies to increase the capsid
stability. Some viruses even use a few intricately intertwining
layers to strengthen their capsids [11]. Virus capsids are
further stabilized by their hydrophobic interaction with the
aquatic environment. Clearly the boundary profile of the
virus complex is determined by the balance of all mechanical
forces or equivalently, the energy minimization of the system.

One of the present authors, Wei, introduced some of
the first high-order geometric flow equations for image
analysis [12]. These equations have led to many applications
[12–16]. Mathematical analysis of Wei’s equations has been
recently carried out in Sobolev space H1 by Bertozzi and
Greer [17–19], who proved the existence and uniqueness
of the solution to a case with H1 initial data and a
regularized operator. Coupled geometric flow equations
were introduced by Wei and Jia for image edge detection
[13]. An evolution operator based single-step method was
proposed by Wei, Wang and their coworkers for image
processing [14]. A partial differential equation approach of
Connolly surfaces was proposed by Wei and his coworkers
[20]. In such an approach, geometric partial differential
equation (PDE) is used to describe the solvent density
flows. Most biological processes occur in water, which
consists of about 70% body mass. Therefore, in general, the
biomolecular surface morphology should be determined by
the free energy minimization in the aquatic environment.
Wei and his coworkers have addressed this question by
considering a mean curvature flow model of bimolecular
surfaces that minimize the surface-free energy functional
[21]. They have also recently introduced stochastic geometric
flows to account for the random fluctuation and dissipation
in density and pressure near the surface [22]. A general
geometric flow structure, the potential driven geometric
flows, was introduced [22]. Physical properties, such as free
energy minimization (area decreasing) and incompressibility
(volume preserving), were realized in new geometric evolu-
tion equations [22]. Computational techniques used in this
surface analysis are quite similar to the level sets devised by
Osher and Sethian [23–25]. Another efficient approach is the
Euler-Lagrange formulation of surface variation developed
by Chan and others, [26, 27]. Interacting particle systems
and point-based approaches have also been proposed for the
modeling and animation of surfaces [28].

An unsolved problem in structural virology is the
detailed molecular mechanism of the assembly of virus
capsids with the right size that is able to accommodate
virus genetic material in the subsequent virus DNA/RNA
packaging. Additionally, the process of virus attachment on
its host cell, the movement of virus fusion with cellular
membrane, and the dynamics of virus penetration into
its host cell remain unrevealed mysteries. Prerequisites to
unveiling these mysteries are efficient computer science and
mathematical tools for modeling virus surface construc-
tion, evolution, and visualization, and for analyzing the
virus interactions with its host cell. A typical virus has
millions of atoms, while a large virus may have tens of
millions atoms. Huge viral data sets pose severe challenges
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to the theoretical understanding and prediction of virus
dynamics and interactions. These challenges are considerably
exacerbated by the fact that virus behavior and infectivity
depend strongly on the physiological environment, where
the water molecules are the most common media. This
dramatically increases the number of degrees of freedom
of a virus system. The real-time dynamic visualization of
viral attachment, fusion, and penetration of a host cell
in the aquatic environment requires microsecond or even
millisecond simulation time and is technically intractable
with full-atom models at present [11, 29]. In fact, the
elementary operations, that is, the construction of virus
surfaces with physical models and real-time visualization of
virus morphology present formidable challenges for applied
mathematics and computer science.

Recently, one of the present authors, Wei, has developed
a differential geometry-based multiscale paradigm to address
some of the aforementioned challenges in the nonequi-
librium dynamics of viruses, as well as other complex
chemical systems, for example, fuel/solar cells, and biological
systems, for example, ion channels [30]. In this approach,
the differential geometry theory of surfaces and geometric
measure theory are employed to couple the macroscopic
continuum mechanical description of the aquatic environ-
ment with the microscopic discrete atomistic description
of the macromolecule. Multiscale action functionals are
constructed as a unified framework to derive the governing
equations for the dynamics of different scales and different
descriptions. The generalized Navier-Stokes equation for the
fluid dynamics, the generalized Poisson Boltzmann equation
for electrostatic interactions, and Newton’s equation for
the molecular dynamics were derived by the least action
principle. These equations are coupled through the micro-
macro boundary whose dynamics is governed by potential
driven geometric flows.

The objective of the present work is threefold. First, we
apply the differential geometry-based multiscale models to
the formation and evolution virus capsids where challenges
originated from a large number of atoms and a variety
of interactions in a virus system, including the aquatic
environment. To dramatically reduce the number of degrees
of freedom of a virus system, we treat the water molecules
as a macroscopic continuum. However, we maintain atomic
description of the virus to allow an optimal access to detailed
biomolecular information. Secondly, we propose a new scale,
the coarse-grained particles, to improve the earlier multiscale
formalism [30]. Our new coarse-grained scale is based on
the description of amino acid residues. This additional scale
is necessary for excessively large viruses or macromolecules.
It efficiently reduces the number of degrees of freedom.
Finally, to further reduce computational cost, we utilize virus
symmetries to provide an optional reduction in data size.
Viruses typically have a few coding genes and they make use
of symmetries to reduce their genome size, because capsid
genes are repeatedly used. Apparently, viruses also try to
make use of symmetry so that they have a high ratio of
volume over surface area. As such, virus can maintain the
desirable mechanical and chemical stability while without
their own cell membranes and complex defense systems.

Some of the proposed ideas are tested by their applications
in virus surface formation, evolution, and visualization.

2. Theory and Algorithms

In this section, differential geometry theory of surfaces and
potential driven geometric flows are utilized to establish a
multiscale paradigm for modeling and simulation of virus
formation and evolution. Then, a coarse-grained virus model
is formulated to further reduce the number of degrees
of freedom. Finally, the use of symmetry in virus surface
construction is discussed.

2.1. Differential Geometry-Based Multiscale Model

2.1.1. Multiscale Models of Virus Surface Formation and
Evolution. A fundamental issue in biological modeling, and
in data analysis, visualization, and dynamical representation
is how to deal with a tremendously large number of degrees
of freedom resulting from various interaction. Under phys-
iological condition, a virus and its interacting environment
may involve tens of millions of protein atoms and water
molecules. In principle, the system can be described entirely
in the microscopic scale, that is, atomistic description or
more detailed description of electrons and nuclei. However,
such an approach cannot be productive and does not
provide theoretical predictions of physical properties of the
virus complex. It is impossible at present, and formidably
expensive in near future to describe in full-atomic detail of all
the aforementioned interactions for a large virus system. On
the other hand, a macroscopic description of the system is
incapable of revealing the molecular and atomic information
of the virus particle and its dynamics. We plan to reduce
the number of degrees of freedom of the virus complex
by a differential geometry-based multiscale model. In our
multiscale model, we will describe the aquatic environment
by a hydrodynamic continuum, that is, a macroscopic
description. As such, we are able to dramatically reduce
the number of degrees of freedom of millions surrounding
water molecules. However, since the biomolecule or the virus
is the objective of interest, we will describe the virus in
atomic detail, that is, a microscopic, discrete description.
Additionally, we carefully consider the solvation process of
the virus molecule. The virus surface tension and mechanical
work of virus immersion into the solvent are considered in
our model, in addition to the possible interaction between
virus atoms and the aquatic environment. Finally, the force
resulted from virus and solvent interactions is accounted by
fluid motion, which is modeled by a viscous fluid.

In our differential geometry-based multiscale model, we
use a hypersurface (characteristic) function S to characterize
the boundary of the virus and solvent. As such, S = 1
indicates the virus domain and S = 0 (i.e., 1 − S = 1)
indicates the aquatic domain. However, at atomic scale, the
virus surface, or the flow boundary between the virus particle
and aquatic environment cannot behave like the Heaviside
function. Instead, it must take a value between zero and one
(0 ≤ S ≤ 1). Such a profile characterizes the boundary
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between the virus and the aquatic environment. In the rest
of this section, we set x ∈ R3 as the macroscopic variable
and z = (z1, z2, . . . , zN ) ∈ R3N as the microscopic variable
of N discrete atoms or particles. The domain of the solvent
is denoted as Ωm : {x | S(x) /= 0} and that of the virus
molecule is denoted as Ωs : {x | (1 − S(x)) /= 0}. The whole
computational domain is Ω = Ωs ∪ Ωm. The solvent-solute
boundary is Ωb = Ωs ∩Ωm.

We consider the total action functional for the virus
complex [30]

Stotal
[
S,φ, x, z

]

=
∫∫∫⎧⎨

⎩
[
γ‖∇S‖ + Sp +(1− S)ρsu
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cj
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)
⎤

⎦
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ρs
v2

2
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μ f

8

∫ t[
∇v + (∇v)T

]2
dt′
]

−S
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j=1

[

ρj
ż2
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2
−U(z)

]⎫⎬

⎭dxdzdt,

(1)

where φ ∈ Ω is the electrostatic potential, γ is the surface
tension, p is the pressure, u is the interaction potential
between the solvent and the solute, kB is the Boltzmann
constant, T is the temperature, cj is the bulk concentration
of jth ionic species, Nc is the number of ionic species,
and ρm(x, z) = ∑

j Qjδ(x − z j) is the canonical density
of molecular free charges, with Qj being partial charges
on (discrete) atoms. Here, εm = ε0εm and εs = ε0εs are
the permittivities of the macromolecule and the solvent,
respectively, where ε0 is the permittivity of vacuum, and
εα and (α = m, s) are relative permittivities. We treat εα
as constants. Additionally, ρs and ρj are mass densities of
the solvent and virus atom (or coarse-grained particle),
respectively. Finally, v ∈ Ωs is the fluid velocity, μ f is the
viscosity of the fluid, symbol T in superscript denotes the
transpose, ż j = dz j /dt ∈ Ωm is the velocity of the jth atom,
and U is the interaction potential for atoms.

On the right hand side of (1), the first row is the
nonpolar solvation free energy, which includes the surface
area effect (γ‖∇S‖), the mechanical work (the volume
effect Sp), and the solvent-solute interactions ((1 − S)ρsu).
In principle, these interactions take care of important
dispersion effects, and other van der Waals effects. Geometric
measure theory is used to come up with the expression
for the surface area. The second row is the electrostatic
polar solvation free energy, which has contributions from
the virus particle S[ρmφ − εm/2|∇φ|2] and the aquatic
solvent (1 − S)[−(εs/2)|∇φ|2 − kBT

∑Nc
j c j(e−qjφ/kBT − 1)].

Here, the virus particles contribute a set of discrete partial
charges while the ion charges in the solvent are treated as
a continuous Boltzmann distribution. This is valid as long
as the system is near equilibrium. For systems far from

equilibrium, alternative models, such as Poisson-Nernst-
Planck (PNP) equations, are required to describe the density
of ionic species [30]. The third row is the Lagrangian of the
fluid dynamics subsystem with a negative sign. It consists
of the kinetic energy (ρs(v2/2)) of the fluid flow and the
generalized potential energy. The latter includes pressure

(p) and stress energy ((μ f /8)
∫ t[∇v + (∇v)T]

2
dt′). The stress

energy represents the energy loss due to the interactions
among the fluid particles, which are not explicitly described
in the present model. The exact expression of the stress
tensor for real fluid is usually unknown. Newtonian fluid and
NonNewtonian fluid approximations are commonly used, in
addition to numerous other approximations. Finally the last
row contains the Lagrangian of the virus molecular dynamics
subsystem with a negative sign. It describes the kinetic energy
ρj(ż2

j /2) and potential energy U(z). The latter includes all
possible potential interactions among virus atoms or coarse-
grained particles. We have chosen negative signs for two
Lagrangians so that the potential energies have positive signs
and are consistent with other potential energies.

2.1.2. Governing Equations for Coupled Fluid Dynamics and
Molecular Dynamics. In the present work, we derive four
governing equations by employing the principle of the least
action to the total action functional (Stotal[S,φ, x, z]) in (1)
with respect to four variables (S,φ, x, z)
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⎭dxdzdt = 0.

(2)
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Here, δS, δφ, δx, and δz are four infinitesimally small but
nonzero perturbations. In order for the first variation to
vanish, the terms associated δS, δφ, δx, and δz have to vanish
independently. First, the term associated with δφ gives rise to
a generalized Poisson-Boltzmann equation

−∇ · ε(S)∇φ = Sρm + (1− S)
Nc∑

j

q jc je−qjφ/kBT , (3)

where

ε(S) = Sεm + (1− S)εs (4)

provides a smooth dielectric profile near the interface.
This is a new Poisson-Boltzmann equation for overlapping
domains. With the sharp interface, limit, (3) reduces to the
standard Poisson-Boltzmann equation [31–35]

−εm∇2φm = ρm, ∀x ∈ Ωm,

−εs∇2φs =
Nc∑

j

q jc je−qjφs/kBT , ∀x ∈ Ωs,
(5)

and appropriate interface conditions

φs = φm, εm∇φm · n = εs∇φs · n, ∀x on Γ, (6)

where Ωm and Ωs are, respectively, the virus domain and the
solvent domain, Γ is the sharp interface and n is the normal
vector of the surface.

Additionally, the virus surface evolution equation can be
constructed by requiring the term associated with δS in (1)
to vanish, followed by the use of the steepest descent scheme
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2
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8
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]2
dt′
]

+
∑

j

[

ρj
ż2
j

2
−U(z)

]⎫⎬

⎭.

(7)

The structure of this equation is very similar to the potential
driven geometric flows introduced in the earlier work [22,
30]

∂S

∂t
= ‖∇S‖

[
∇ · γ∇S

‖∇S‖ + V
]

, (8)

where V includes appropriate potential interaction terms.
Therefore, (7) can be solved by using the same procedure as
that described in the earlier work [22].

Moreover, the requirement of the vanishing of the term
associated with δx gives rise to a generalized Navier-Stokes
equation for continuum fluid dynamics [30]

ρs

(
∂v
∂t

+ v · ∇v
)
= −∇p +

1
1− S

∇ · (1− S)T + F, (9)

where the stress tensor is given by

T = μ f

2

[
∇v + (∇v)T

]
. (10)

The Newtonian fluid is assumed in the present work. The
force in (9) is given by

F = S

1− S
f . (11)

Here, the force includes a few components

f = fP + fSSI + fRF, (12)

defined as

fP = −∇p;

fSSI = − (1− S)
S

∇(ρsu
)
,

fRF = ρm
S
∇(Sφ).

(13)

The detailed derivation of the generalized Navier-Stokes
equation can be found in [30]. In case of sharp solvent-
virus interfaces, the hypersurface function S becomes a step
function, and (9) reduces to the standard Navier-Stokes
equation

ρs

(
∂v
∂t

+ v · ∇v
)
= −∇p + μ f∇2v + F, (14)

with simplified force expressions.
Finally, the Newton’s equation for molecular dynamics of

the jth atom (particle) in the virus is derived from the term
associated with δz j ,

ρj z̈ j = f j . (15)

Here the microscopic force associated with the jth atom is

f j = f
j

SSI + f
j

RF + f
j

PI. (16)

The force components are defined as

f
j

SSI = −
(1− S)

S
∇ j
(
ρsu
)

f
j

RF =
ρm
S
∇ j
(
Sφ
)

f
j

PI = −∇ jU(z),

(17)

where f
j

SSI, f
j

RF, and f
j

PI are, respectively, solvent-solute inter-
action force, reaction field force, and potential interaction
force.

In this multiscale system, all forces are balanced. The
fluid dynamics, the molecular dynamics, the electrostatic
subsystem, and the hypersurface function are all coupled.
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Table 1: Coarse-grain radii (Å) for twenty standard amino acid residues.

Residue Radius Residue Radius Residue Radius Residue Radius Residue Radius

GLY 4.20 ALA 4.10 VAL 4.30 LEU 5.70 ILE 5.60

PRO 4.10 PHE 7.00 TYR 8.30 TRP 8.30 SER 4.30

THR 4.40 ASN 5.50 GLN 6.80 CYS 4.50 MET 7.30

ASP 5.50 GLU 6.70 HIS 6.40 LYS 8.20 ARG 9.10

Figure 1: Coarse-grained model of a viral protein subunit. Left: the full atomic model of a protein subunit of the Nodamura virus (PDB ID:
1nov), Right: the coarse-grained model of a protein subunit of the Nodamura virus.

2.2. Coarse-Grained Model. As a part of our multiscale
framework, we consider a coarse-grained formalism for viral
surface formation and evolution. Coarse-grained models
are often used to deal with exceptionally large biological
systems. In the present treatment, we consider each amino
acid residue as a particle, located at the Cα position. The radii
of twenty standard amino acid residues used in the present
work are listed in Table 1. Coarse-grained representations
are efficient approaches for data size reduction. Combined
with enhanced computer power and efficient computational
algorithms, coarse-grained approaches currently enable the
simulation of systems of biologically relevant size (sub-
micrometric) and timescale (microsecond or millisecond)
[29]. Although coarse-grained models cannot be considered
as predictive as all-atom ones, they can provide much
insight with the use of more rigorous parameterization
techniques and efficient algorithms for sampling config-
urational space. Since the simulation size and timescale
of coarse-grained models coincide with those that can be
reached with the most advanced spectroscopic techniques,
it is possible to directly compare experiment data and
simulation predictions. In this work, we will explore the
use of coarse-grained models for viral surface formation
and evolution. Figure 1 presents an illustration of coarse-
graining particles for a viral protein subunit. The original
full-atomic subunit of the Nodamura virus has about 10
thousand atoms. In the coarse grained representation, each

amino acid residue is considered as one particle, located
at the position of the original Cα atom. Each type of
amino acid residues has a particle radius as shown in
Table 1. The discrete-continuum model of viral surface
representation discussed above is still applicable to the
present coarse-grain-continuum setting. However, to use (7)
for viral surface formation and evolution, we need to redefine
the Lennard-Jones and Coulomb potential parameters to
describe the interaction between amino-acid-residue parti-
cles.

2.3. Viral Data Size Reduction by Symmetry

2.3.1. Symmetry in Virus Capsids. Viral data may involve
tens of millions of atomic coordinates and radii, and
are enormously large for structural modeling, simulation
and visualization. Viral dynamical cycles may last from
millisecond to days, and real-time full-atom viral dynamical
simulations of viruses are intractable to the present com-
putational capability [11]. However, viruses typically have
very small genomes and code a few proteins. In order for
a viral capsid to hold all viral genetic material, virus makes
use of symmetry in its capsid assembly. Amazingly, most
viruses are symmetric, having icosahedral, helical, dihedral,
or circular symmetries [6]. As such, an icosahedral virus
can self-organize one protein to generate a capsid of 60
symmetry-related subunits (some viruses code hundreds of
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Figure 2: Illustration of surface construction from a facet patch by using symmetry. Left: the generating subunit (facet patch) of the
Nodamura virus (PDB ID: 1nov), Right: the full surface of the Nodamura virus constructed by symmetric assembly.

proteins). Therefore, it is desirable to take advantage of
symmetry in viral data analysis, operation, and management.
In particular, we propose to make use of viral symmetries, if
they are available in our geometric flow based viral surface
formation and evolution. Additionally, we can detect partial
and approximate symmetry [36] from viral surfaces, and
enforce symmetrization [37]. As such, we will use geometric
flows to generate symmetric facets, or patches from viral
protein subunits, and construct the whole viral surface
by symmetric assembly of viral facets; see Figure 2 for an
illustration.

2.3.2. Virus Symmetry Transformation. Viruses have adapted
five point group symmetries, that is, circular, dihedral,
tetrahedral, octahedral, and icosahedral, in their biological
assemblies. Mathematically, only three types of symmetric
operations, that is, rotation, inversion, and translation are
involved. Starting with the basic set of coordinates of a
protein subunit, the virus capsid data can be obtained by the
transformation
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where ri j are rotational (or inversion) elements, and ti
are translational elements. The viral data deposited in
the Protein Data Bank (PDB) often have problems with
missing sets of transformation operations and erroneous
coordinate-frame representations. We make corrections by
using the Virus Particle Explorer database [7] (VIPERdb;
http://viperdb.scripps.edu/) and/or the Protein Quaternary
Structure server (PQS; http://pqs.ebi.ac.uk/).

3. Numerical Demonstration

Recent advances in structural biology and microbiology have
given rise to an increasing body of structural data for over
300 viruses and viral complexes. Quaternary structures of
viruses and viral complexes pose many challenges for viral
representation, visualization, and the analysis of virus stabil-
ity and interaction [6]. The proposed multiscale framework
can be studied on a wide range of test cases to demonstrate its
utility and usefulness to the research community. However, a
full-scale demonstration of the proposed multiscale model
is a rather computationally challenging task as it involves
computational fluid dynamics (CFD), molecular dynamics
(MD) of viruses, and surface dynamics of large systems.
In this paper, we should primarily focus on the virus
surface formation and evolution. The coupling of the surface
dynamics to the CFD and MD will be studied in our future
work and published elsewhere.

We also test two other proposed ideas in this work, that
is, the coarse-grained virus model and the use of symmetry
assembly for the virus surface construction. In particular,
we are interested in examining the effect of the symmetry
assembly on the virus surface visualization. As shown in
Figure 3, we consider the coarse-grained model, which is an
efficient way to reduce computational cost. Additionally, we
test the surface construction by using symmetric assembly.
In comparison with surfaces constructed by potential driven
geometric flows without using the symmetry (Lower row),
geometric flow surfaces constructed by symmetry (Upper
row) provide a good representation of the original surfaces.
However, one can still see that contact edges in the surfaces
constructed by symmetry are not very smooth. Moreover,
we expect some impact of symmetric assembly to the MD
and fluid dynamics, as the symmetry becomes an additional
constraint to virus dynamical motions. The soundness of
such a constraint needs to be studied. This aspect as well
as many other ideas proposed in this work will be further
explored elsewhere.
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Figure 3: Illustration of virus surfaces constructed by using the proposed geometric flow approach in conjunction with the coarse-grained
model and the symmetry assembly. Upper row: Surfaces generated from a facet patch by using symmetry assembly. Lower row: Surfaces
generated without the use of symmetry. From left to right: Cucumber green mottle mosaic virus (CGMMV) with helical symmetry (1cgm),
Tobacco mosaic virus coat protein four-layer aggregate with D17 symmetry (1ei7), Nodamura virus with icosahedral symmetry (1nov), and
Viral toxin pneumolysin with C38 circular symmetry (2bk1).

4. Concluding Remarks

The control of infective viruses released by terrorists, and
the prevention of viral epidemics and pandemics, such
as HIV, SARS, H1N1, and bird flu are of tremendous
importance. The understanding of viral surface formation,
evolution, viral attachment and penetration of host cells are
prerequisites to viral disease prevention and control. This
problem, as well as many other similar problems in molec-
ular biology, poses pressing challenges to the theoretical
community due to their large number of degrees of freedom.
The main purpose of the present work is to introduce a
differential geometry-based multiscale framework to handle
complex biological systems. The present multiscale model
couples macroscopic fluid dynamics, microscopic molecular
dynamics, and surface dynamics in a unified framework.
The differential geometry theory of surfaces is utilized
to put continuum description and discrete description in
an equal footing. The present work constructs a general-
ized action functional to self-consistently couple different
scales. Governing equations for the fluid dynamics, that
is, the generalized Navier-Stokes equation, and molecular
dynamics, that is, the Newton’s equation, are derived by
minimizing the action functional. Additionally, we make use
of viral symmetry to dramatically reduce viral data sizes and
improve viral visualization. Finally, some of the proposed
approaches are demonstrated by the generation of a few virus
surfaces.

The proposed differential geometry-based multiscale
model can be easily generalized to complex systems with
multiple interfaces or many biomolecules. Additionally,
the incorporation of continuum solid description into the
present model will be published elsewhere. Finally, the
inclusion of a quantum mechanical description can also be
pursued in a similar way and will be published elsewhere.
Numerical experiments that further demonstrate the pro-
posed ideas are under our consideration.
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