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Abstract: Visualizing data by graphing a response against certatorfscand conditioning on other factors, has arisen inde-
pendently in many different types of applications. One dagbe interaction plots used in the analysis of data fromgiesl
experiments; these plots show conditional dependencel tmséhe output of methods and models applied to the datalisTrel
display, a framework for the visualization of multivarieldata, allows conditioning to be readily carried out in aggahway. It
was developed initially in the context of data sets with a arate or large number of observations to support the comdtit.
This article demonstrates through examples that trellidss a highly useful visualization framework for designegeriments
with a small number of runs. This includes highly fracti@mdtdesigns: the number of runs is just a fraction of the number
that would result if all combinations of the factors were.rdmellis succeeds because it allows the visualization ofd@®mnal
dependence, not based only on the output of models and nthaichlso based on the raw data directly. This providesiirei
assessments of patterns of dependence in the data thatidartlyeichoice of the final methods and models used in the sisaly
contributing substantially to the understanding of thedat

Keywords: Data visualization, statistics, machine learning, fiawdil factorial design, interaction plot.

1. INTRODUCTION used in this context. This article reports the results of an
investigation of the use of trellis in analyzing data from de
Trellis display is a framework for the visualization of mul-  signed experiments that result in small data sets. While the
tivariable data [1, 2, 3, 4]. One capability is a mechanism to sizes of data sets have grown dramatically in many domains,
study the dependence of a response variable on predictive fa controlled experiments with a small number of runs are still
tor variables. It does this through a mechanism for visidiz ~ commonplace in the many settings where a single run is very
the dependence of the response on one set of factors, givegostly [8]. It is often the case that designed experimerds ar
values of other factors. The visual design allows assessmenhighly fractionated: values of each factor are chosen, ot t
of how the conditional dependence changes with the givenexperiment is run on just a small fraction of the number of
values. This can be done for both the raw data and for thepossible combinations of the values of the factors.
numeric and categorical output of mathematical methods and The question in our investigation was whether success us-
models applied to the data. The former is particularly valu- ing trellis conditioning methods and visual methods wolgd b
able, allowing an understanding of the patterns of depeselen inhibited by the limited number of runs and fractional exper
in the data free of assumptions about the patterns. Figwse 1 iimental design. It seemed quite possible to us that for such
a trellis display that shows the dependence of a response omlata the number of observations in each subset resulting fro
one factor given three others using the raw data. The data ané multiple conditioning would often be too small for pattern
the display will be described in Section 2. to be seen. Our investigation, over a long period, has ciasis
The success of trellis display in the visualization of multi  of using trellis in the analysis of data from many experirsent
variable data has led to implementations in a number of soft-reported in the literature, some arising in our own work.
ware systems including S-Plus [5], R [6], and Tableau [7]. Displaying data by conditioning has surfaced indepen-
Trellis display was originally developed in the context of dently in a number of places and for many different types of
moderate, large, and very large data sets, and has beerywideldata [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. The experimen-
tal design literature contains a long history of data vizaal

*Correspondence to: Bowei Xi (xbw@purdue.edu)



2 TRELLIS DISPLAY OF LEAD CONCENTRATION DATA 2

S3][S3]S3[S3[S3[S3[S3][S3[S3[S3[S3[S3[S3[S3][S3[S3[S3[S3[S3[S3[S3

tion [20, 21, 22, 23, 24] Included in this deSign literatise W WWATWA vt [ W] Wl wo [ wa w2 walvia| WS WS WalwaIWal Wl w3

a widely used method of visualizing conditional dependence N eeEEEEEEEEEEEEEEEEEEE!
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the raw data as well.

Results of this article are conveyed through describing
analyses of three data sets from designed experiments in Sec
tions 2 to 4. The data sets are representative of what we have
seen more generally. Section 5 is a discussion of results.

In the course of the discussion of trellis conditioning in
Sections 2 to 4, another important matter for all data visu-
alization is investigated in the context of designed experi ot erion ottt eplaatobtosl ostesfostus st
ments. Methods of data analysis can be divided into two cat- THERSALSU MO TUWE TH FRISATSU MO TU WE TH  FROSA, SU MO T IE
egories [29]: (1) mathematical methods and models in which 257 \/
formulas are computed to produce numeric and categorical 207 \
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output; (2) visualization methods whose output is visuat di 15 \ 1 H
plays, either of the raw data or of the output of mathemati- 1.0 4 L
cal methods and models. The analysis of variance (ANOVA), o5~ [N \\\ \ N \\/\z
used pervasively in the analysis of experimental data, is a L

mathematical method for answering specific questions about

terms in a model for the data, and thus is a model building Height

tool. We discuss the relative power of ANOVA and the trellis

visual methods. Figure 1: Trellis display of. againstH givenD, W, andS.

2. TRELLISDISPLAY OF LEAD CONCENTRATION
DATA Figure 1 is a trellis display of againstH given D, W,
andS. The display consists of>x1 = 63 panels arranged

Lead concentrations at a site next to a major roadway ininto 21 columns and 3 rows. Each panel has a scatter-plot of
Ohio were measured and analyzed in an experiment to de-againsH given D, W, and S. The strip labels at the top of each
termine their spatial variation [30]. The concentratioreyev  panel indicate the values of the three conditioning vaest3
measured at 9 positions on one side of the roadway. Therechanges with the row; for row 1, the bottom rdBis smallest,
were three setback distances from the roadway: 2.8 m, 7.1 mand then increases as we go up the rows. As we go left to right
and 21.4 m. There were three heights: 1.1 m, 6.3 m, and 10.8hrough the columns of each row, we go in order through the
m. The 9 positions, each height combined with each setbackdays. In a similar manner, Figure 2 is a trellis displayLof
distance, form a 3 by 3 vertical spatial grid. Measurements againstSgivenD, W, andH.
were made at the nine positions for 21 consecutive days. Each Figure 1 shows that tends to decrease &% increases.
measurement is an accumulation of lead over a period of 24The decline as a function &f lessens aSincreases. In other
hours. Thus the data consist of 21 daily lead measurements atvords there is a spatial effect with an interaction betwiden
each of the 9 positions; one observation is missing. For suchandS, which is not surprising.
data we would expect the lead concentrations to be affected Figure 2 shows the spatial effect in a different way. There
by a host of factors: meteorological conditions; traffic,ieth is mixed behavior in the dependence of leadSnFor the
has a day-of-the-week effect; and spatial position. smallest value oH, L decreases witts. But for the mid-

The lead data consist of five variables: (1) lead concentra-dle value ofH, L typically first increases witls and then de-
tion, L; (2) setback distanc& (3) height,H; (4) day-of-the- creases. For the largedt lead occasionally has the increase-
week,D; and (5) week numbevy. D andW describe time —  decrease pattern for about 1/3 of the days, most of them days
that is, the day — but do so in a way that allows for a day-of- with large concentrations, and is relatively stable for e
the-week effect. There arei3x 21— 1 =188 measurements maining days. This behavior is consistent with air transpor
of each of the five variables. mechanisms. Lead is emitted at ground level from automo-
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Figure 3: Trellis display of. againstH givenS, D, andW.
Figure 2: Trellis display ot againstSgivenD, W, andH. g play 9 9 S

days. The cause is changing weather conditions which have a
bile tail pipes. The closest of the 9 monitors, the one with substantial effect on the concentrations. Rain and higldwin
the smallest values ¢ andS, has the largest concentrations speeds reduce concentrations and low wind speeds increase
because it is close to the pollution source. From the sourceconcentrations; the 9 measurements on a given day are af-
the lead is carried laterally by the wind, spreading upward a fected in the same way by the weather. Weather conditions
moves. This plume-like behavior can cause the concentisatio are correlated through time; fronts move in and persist for
to be relatively small at the higher monitors with the clases a few days. This is visible in the concentrations; the fig-
setback. ure shows that collectively, low or high concentrationsspsr

The arrangement of the panels in Figure 1 allows study of across days. By contradd, does not appear to be salient in
3 collections of patterns, one collection for each row. This that there does not appear to be a systematic day of the week
provides a comparison of the patterns of dependenteowf effect in the data whose magnitude is more than minor com-
H asSchanges. Suppose, however, that we want to study thepared with the weather effect. The conclusion is that there i
3 patterns for each day, and then compare the 21 collectfons oa strong time correlation in the concentrations, across,day
daily patterns. This is a more difficult task in Figure 1 bessau  which is not surprising.
the 3 panels for each day are arranged vertically in such away Figure 3 also suggests spatial correlation, likely indumed
that we have a reduced ability to effortlessly visually asisie the weather effects interacting with spatial position;ghane
the 3 patterns. In Figure 3, the panels have been rearranged thas different shapes depending on the meteorological €ondi
facilitate the study of the daily patterns. Now the 3 panefs f tions. For each of the three setbacks on one day, there are two
each day are juxtaposed horizontally, and each row is now thedifferences inL with height: L for H1 minusL for H2, andL
data for one week. The panels in the bottom row are week 1,for H2 minusL for H3. There are 6 such differences for each
the panels in the middle row are week 2, and the panels in theday. The 6 differences appear positively correlated. When on
top row are week 3. difference is larger than average, the others tend to berarg
Figure 3 shows that the within variation of the 9 measure- as well; a similar statement holds for smaller than average.
ments for each day is much smaller than the variation acrossobust estimate of the correlation matrix [31] of the six-dif
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ferences is shown in Table 1. There are indeed high positive
correlations as expected from our observations of Figure 3.

Table 1: Robust estimtes of correlation coefficients ofediff

ences.
S1:1-2 S1:2-3 S2:1-2 S2:2-3  S3:11-2  S3:2

S1:1-2 | * 0.61 0.60 0.28 0.75 0.30
S1:2-3 | 0.61 * 0.75 0.51 0.91 0.73
S2:1-2 | 0.60 0.75 * 0.16 0.89 0.34
S2:2-3 | 0.28 0.51 0.16 * 0.26 0.85
S3:1-2 | 0.75 0.91 0.89 0.26 * 0.52
S3:2-3 | 0.30 0.73 0.34 0.85 0.52 *

H1
1.3

L =
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L L

Lead Concentration
P

H2

o
©
!

s1 s2 s3
Setback Distance

H3

0.8

In the source publication for the lead concentration data Figure 4: Interaction plot fok by spatial locationll x ).

[30], ANOVA was used as a model building tool. The author
states: “ One potential problem is that the lead concenotrati
data may be serially correlated and this could interferd wit
the assumption of independently identically distributedies.

This problem was minimized by introducing the effects of day
[day-of-the-week], week, and their interaction to isoltte
variations due to the effects of time and hence serial crrel
tion.” Table 2 is an ANOVA for the same effects fitted by the
author. The missing value has been estimated by maximum
likelihood, but is treated as not missing for the purposes of

carrying out the ANOVA.

Table 2: Analysis of variance for lead concentration data.

Effect DF SS MS F P
S 2 0.30 0.148 5.35 0.00
H 2 297 1.486 53.70 0.00
D 6 16.64 2.773 100.22 0.00
w 2 19.22 9.611 347.41 0.00
SxH 4 1.00 0.251 9.06 0.00
W x D 12 38.13 3.177 11485 0.00
Sx W 4 0.07 0.018 0.65 0.63
Hx W 4 0.18 0.045 1.63 0.17
Error 152 421 0.028

The significant effects shown in Table 2 are S, H, SH, W, D
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Figure 5: Trellis display of residudl againstH given S, D,
andWw.

plotted are 1+ fi + Bsi for S=1to 3 andH = 1 to 3, wherg
andfBgy are the least squares estimates. We see a summariza-

' tion of the effect that was observed from Figure 2. These are

and DW, so these effects provide a modeling of the data. Thethe effects in the data as seen by the ANOVA and the resulting

model is quite simple. Letpwsy be the lead concentration
for day of the weekD, weekW, setbackS and heightH.

Then the model is

LowsH = U + Opw + Bsy +error

where

7 3 3 3
DZl\Agl oow = gl i—ZlBs-| -0

In other words we model time effects with 21 coefficients that tion compared with the model fit. On many of the panels the
sum to 0, and we model spatial variation with 9 coefficients values span 0.5 or more, very significant compared with the

that sum to zero.

model. Note that the interaction effects span a range oftabou
0.5 on the lead concentration scale.

The residuals from the modelf,iDWg4 = Lpwsy — 1 —
O0pw — B, are the remaining variation ibpwsq after sub-
tracting the least squares model fit. TReyvsy are the varia-
tion not explained by the model. Figure 5 graphs Rag/s+
in the same way that the raw data are graphed in Figure 3. We
can see clearly the correlation revealed in Figure 3 andeTabl
1. Now however we can judge the magnitude of the correla-

range of the effect, also 0.5. This means that the change in

Figure 4 is the classical interaction plot discussed in Sec-the spatial effect with the meteorological conditions isteu
tion 1 for theH by Sinteraction, the spatial effect. The values substantial.
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The trellis plots of the lead concentrations show us that the
simple ANOVA model of the data misses an important effect
with a large magnitude. Furthermore, the effect is quite-com

Table 3: Analysis of variance for resist data.
Effect DF SS MS F P

< . . 1~ S 1 2193.36 2193.36 20.35 0.00

plex, an interaction between meteorological conditiond an T 1 1332344 1332344 12361 0.00
the spatial pattern — a changing plume. Unfortunately, the L 1 4977.83  4977.83 4618 0.00
current data are not sufficient to estimate this effect. Give D 1 405475 405475  37.62 0.00
the salience of the effect we must conclude that the experi- T2 1 109147 109147 1013 0.0

. . . . . 2

ment has not succeeded in its goal, which is an understanding oot 69.90 69.90 065 043
of spatial variation. Success would require detailed imir D ! 29.37 29.37 027 06l
i bout the meteorology, or a large enough number of days Pl 1 100499 100499 yz oot
tion abou 9y, g g _ Y TxL 1 145548 145548 1350 0.00
to provide a representative sample of meteorological condi DxL 1 104862  1048.62 973 0.00
tions. SxT 1 52.46 52.46 0.49 0.49
SxL 1 554.89 554.89 5.15 0.03

SxD 1 66.41 66.41 0.62 0.44

3. MODELING DATA FROM A RESIST Eror 22 2371.33 107.79

EXPERIMENT

Computer chips are manufactured by creating them on wafersthe design is not sufficient to estimate the effects. If wetare
circular or near circular silicon disks that are coated ard p  reliably estimate the effects we need more insight into tta d
cessed by hundreds of steps. Then the wafers are cut up tthan that given by the ANOVA. We need some good luck in
produce the individual chips. One manufacturing process isthe form of a simple model explaining the data, and we need
etching: coating a wafer with a resist solution, exposing th methods that allow us to perceive the simpler structure if it
resist to light to create the chip features, and then plaiting  exists.
wafer in a developer solution to remove the exposed areas of
theresist. _ , 3.2. TrellisDisplay of the Raw Data

In an experiment run to improve the resolution, process-
ing of the wafers involved the following measured steps32] We will use trellis display of the raw data to search for itmig
(1) coat a wafer with a resist solution containing a new pho- into the dependence of the response on the factors. Figure 6
toacid generator, whose amount, load, was varied in the  shows intervals that will be used for conditioning on thes¢hr
experiment; (2) use one of twaplvents in the resist solution;  numeric variable®, L, andT. Each set of 3 conditioning in-
(3) expose the coated wafer to 248 nm light shone through atervals consists of low, medium, and high. Low and high in all
photo mask; (4) bake the wafer atemperature that was var-
ied and for aduration that was varied; (5) develop the wafer
for 60 seconds in a developer solution. The response in the
experiment is the clearing dosg, which is the exposure dose
in mJ/cnt needed to clear the resist in a cross-shaped region
100 um by 150um. The following are the factors in the ex-
periment: (1)L: load of the photoacid generator in the resist 0 10 20 30
(% wt); (2) S solvent, with value -1 for solvent 1 and value Rank
1 for solvent 2; (3)T: temperature of bake cyclé C); (4) 324 !
D: duration of bake cycle (sec). The fractional experiment 301 L
design consisted of 36 runs in four blocks of nine runs chosen
to optimize estimation of a response surfacelfepecified to 26 1 L
be a full quadratic in the numeric variables and to have a sol- ; ‘ ; ‘
vent main effect and interactions with the linear terms @f th Rank
numeric variables.

125 4 r

120 4 r

1159 ‘ r

Temperature

110 1 -

Load

90 1 r
80 1 r
70 1 r
60 1 EEEm =

Table 3 shows an ANOVA. The conjectured model, described 50 - -
above, is that used for the choice of the design. The quadrati 0 10 2 2

term for T is significant but not for the other two numeric Rank

variables. The interaction & with the numeric variables is

significant only for. The results are unintuitive. It is possible Figure 6: Conditioning intervals fdD, L, andT.

3.1. Analysisof Variance

Duration
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Figure 8:C againstD givenL, T, andS.

cases consist of a single value, an interval of length 0. €ond
tioning onSis simple; there are two conditioning categories,
solvent 1 (-1) and solvent 2 (1).
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Figure 9:C against givenD, T, andS.

Figure 7 is a trellis display of againstT givenD, L, and
S. Each panel shows the values©fand T for those runs
with D in one of its intervals antl in one of its intervals; and
on the paneBis encoded by the symbol color; solvent 1 is
magenta and for solvent 2 is cyan. To avoid exact overlap of
some data points, a small amount of random uniform noise
has been added to the valuesTaf The intervals ofD are
the same for all panels in the same column; as we go from
left to right through the columns, the intervals increasbe T
intervals ofL are the same for all panels in the same row;
as we go from bottom to top through the rows, the intervals
increase. The strip label for each panel contains a graphica
portrayal of the conditioning interval. The strip has a ecal
but there are no tick marks to indicate the numeric values of
the interval; the scale value at the left endpoint of a saiyel
is the minimum value of the measurements of the conditioning
variable, the scale value at the right endpoint is the marimnu
and the darkened bar shows the interval.

Figure 7 reveals important patterns. As eitBeor L in-
creases for a fixed interval of the other, the pattern of \s&tie
Cas afunction of shifts downward. In addition, the absolute
value of the slope of the pattern tends to zero; so the alesolut
first derivative decreases with increasing C. The chandeein t
derivative is quite large indicating a strong interactidtur-
thermore, the positive second derivative also decreas€s as
increases; so the second derivative decreases with ifrngeas
C. Finally, there is a suggestion that overall, solvent )y
leads to very slightly higher values @fthan solvent 1 (ma-
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Figure 10: ¥+/C againsfT givenD, L, andS.

genta), but in addition, the solvent effect decreases asreit
D or L increases, which means ttis interacting withD, L,
andT as well.

Figures 8 and 9 are further trellis displays of the data. The
first is a display ofC againstD givenL, T andS, the second
is a display ofC against_ givenD, T, andS. As a function of
each of these two other numeric facta€sexhibits the same
dependence of the first and second derivatives on the level of
C, and the same dependence of the effec® oh the level of
C, as seen in the previous two figures.

The complexity of the dependence Gfon the factors is
quite bad news. Unless we can find a simplification, more runs
are needed because the design cannot support the number of
interactions, at least to order 3, seen in the data.

3.3. Exploiting An Observed Regularity

There is one regularity revealed in the trellis displayst tha
might be exploitable. The magnitudes of the first and second
derivatives ofC with respect to each numeric factor decrease
monotonically toward zero as the level Gfdecreases. And
the effect ofSalso appears to decreaseadecreases. Also,
the first derivatives appear not to go exactly to zero, but are
still positive. The same is true of the effect®f

Suppose a power transformation®fs additive in the fac-
tors and is a linear function of the three numeric factorsatTh
is,

C C(SL,T,D)
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Figure 13: Residual //C againsfT givenD, L, andS.

= (U+aS+BL+yT+3D)"P.

Suppose also that> 0. Finally, suppose that the coefficients
a,B,y, andd are all positive. Then the derivative 6fwith
respect to any one of the numeric variables, Isaig

—Bp
(M+aS+ BL+yT +0D)pP+L
—Bp
C(SL,T,D)p+t

dc
dL

So the derivative is everywhere negative and its absollteva
decreases witle, exactly the behavior of the resist data re-
vealed by the trellis plots. Also, the second derivativeCof
with respect to any one of the numeric variables, Isag

d’C B*p(p+1)
dL? (U+aS+BL+yT +0D)P+2
B*p(p+1)

C(SL,T,D)P+2’

So the second derivative is everywhere positive and degseas
with C, exactly the behavior of the resist data revealed by th
trellis plots. Finally, it is easy to see that an analogossiite
holds forS.

The transformation analysis suggests that a power transfor

mation ofC might remove or reduce the non-linearity and the
pervasive interactions among the factors. We repeateddhe t
lis displays in Figures 10 to 12 for a number of power transfor

Table 4: Analysis of variance for 10¢/C.

Effect DF SS MS F P
S 1 41.70 41.70 28.46  0.00
T 1 35789 357.89 24421 0.00
L 1 57.88 57.88 39.50 0.00
D 1 88.58 88.58 60.45  0.00
T? 1 0.05 0.05 0.03 0.86
L2 1 0.28 0.28 0.19 0.67
D? 1 0.05 0.05 0.03 0.85
DxT 1 3.70 3.70 252 013
TxL 1 0.37 0.37 0.25 0.62
DxL 1 4.33 4.33 296 0.10
SxT 1 0.38 0.38 026 0.61
SxL 1 1.50 1.50 1.02 032
SxD 1 0.10 0.10 0.07 0.79

Error 22 32.24 1.47

Figures 10 to 12. The units for the response are now/em.
The plots suggests that the dependence 9fC on the factors

is additive, and linear in the numeric factors. Table 4 shows
an analysis of variance for 19Q'C, carried out in the same
manner as in Table 3. The new table also suggests an absence
of non-linearity and interaction. Nature has been excegylin
good to us. A simple power transformation@has resulted

in a very simple model.

Trellis displays of the residuals on the transformed scale
suggest our additive model has no appreciable lack of fit. One
such residual display is shown in Figure 13, a trellis graph o
the residuals againdt givenD, L, andS. A normal proba-
bility plot of the residuals shows that their distributiawell
approximated by the normal. A spread-location, or s-I, plot
[10] shows that the variance does not change with the fitted
values. The estimate of the standard deviation using the-res
uals is 0.0121, a very small number since the range 8f is
close to 0.30; the model explains much of the variation in the
data.

3.4. TrelisDisplay of the Fitted Response Surface:
Higher Order Interaction Plots

Trellis display is also very effective for studying modets fi
ted to data from designed experiments, providing a connénie
and effective expansion of the interaction plot to higheleor
interactions. This is illustrated in the three trellis dégfs of
Figure 14. The simple model f@~%° just fitted has been
transformed back to the original scale by the inverse square
allowing study on the scale of mJ/érto appeal to engineer-
ing intuition about clearing dose. There is one trellis tigp
for each numeric factor.

For example, in the left display of Figure 1@,s graphed
againstT givenD, L, andS. There are 16 panels on the dis-
play. There are 4 equally spaced valuedDoénd 4 equally
spaced values df, each ranging from the minimum to the

mations. The displays for the inverse square root are shown i maximum value in the dateC is valued for all 16 combina-
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Figure 14: Left: FittedC againstT givenD, L, andS, Middle: FittedC againstD givenL, T, andS, Right: FittedC againstL
givenD, T, andS

tions of these two factors at 50 valueslofor each of thetwo  align, scattering is reduced, and the section becomegtmans
values ofS. This results in two curves on each panel, one for ent. If the background behind the material is black, apglyin
solvent 1 (magenta) and one for solvent 2 (cyan). The othera voltage makes the section go from white to black.
two displays have similar evaluations.

Figure 14 shows the non-linearity and the strong interac-
tions among all factors revealed in our initial trellis Haif
the data, albeit far more incisively here. For example, @ th The Switching Vo|tage is the V0|tage necessary to a|ign
left trellis display of Figure 14, we see clearly thatas the-c  the droplets. One series of experiments [33] studied the de-
ditioning value ofD increases for fixedl, or as the condition-  pendence of switching voltag¥,, on three factors: (1) the
ing value ofL increases for fixed, the magnitudes of the  amount,M, of liquid crystal in the mixture, measured in wt
three quantities —€, dC/dT, d°C/dT2 — all decrease. We  94: (2) the intensity,, of the light used in the processing,
can also see that solvent 2 (cyan) results in a la@éman  measured in mW/cfj (3) the temperaturél], of the mixture
solvent 1 (magenta). From this display we are able to assesgjuring processing, measured’i@.
the complex properties, which possess complex interagtion  \We will describe here the modeling of the data from the
of the factors. This shows why modeling on the original scale pjlot experiment that began the series. In the pilot, eapletr
of C, mJ/cnt, is so challenging. of values of the three factors was close to one of nine design
locations — the corners and center of a cube whose edges are
parallel to the factor axes. Eight of the design locationd ha
two runs and one had three, so there were 19 runs in all.

4.2. TheExperiment

4. LIQUID CRYSTAL DATA

4.1. Polymer-Dispersed Liquid Crystal Displays

. . o . _ 4.3. Analysisof Variance
Reflective displays that are visible in ambient lighting aped

erate without back lights reduce weight and power require-  Table 5 shows an ANOVA for an overall model that is
ments. Polymer dispersed liquid crystals (PDLCs) are pgomi quadratic in the variables. If we drop the terms that are in-
ing materials for these reflective displays. Under normakco significant, the residual sum of squares, 6.22 Yemains
ditions, the droplets of a liquid crystal are randomly otézh nearly the same and = 0.74 V. But if in this reduced model
and the material is white because light is scattered. Butvehe we dropT? and replace it wittM?, the residual sum of squares
voltage is applied to a section of the liquid crystal, thepdiets also remains nearly the same. Thus this ANOVA does not
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Figure 15: Left:V againstM givenT andl; Middle: V againstT givenM andl; Right: V against givenM andT.

Table 5: Analysis of variance for liquid crystal data.

decrease itV with M; for the lowest level, there is a small
decrease. Furthermore, for the middle levellofthe values

Effi DF SS MS F P
ec: n 529 529 940 0oL of V are close to what they are for the lowest levellofBut
M 1 21923 21923 31738 000 the changes i with M do not appear to depend on the level
T 1 12643 12643 18304 0.0 of I. Thus there appears to be a strong interaction betwWeen
2z 1 0.23 0.23 0.34 058 andM, but no interaction betwedrandM.
M2l 0.64 0.64 0.93  0.36 The middle trellis display of Figure 15 grap¥sagainsfT
TP 1 1449 1449 2098 000 givenM andI. There is more information about tifleandM
MxT 1 12639 12639 18297  0.00 interaction. FoM at the lowest level increases by a large
I xT 1 0.02 0.02 0.03 0.87 ithT. But for M at the highest | I th d t
M 1 003 003 004 085 amount withT. But for M at the highest level, there does no
Emor 9 6.22 0.69 appear to be an effect dueTo And for M at the middle level,

V has values close to what they are fdérat the highest level.
Finally, there appears to be no appreciable interactiondxet

yield an unambiguous model specification. We should not | andT.

take this to mean that there is an irresolvable ambiguitién t

The right trellis display of Figure 15 graphé againstl

data because, our ANOVA rests on the unsubstantiated hygivenM andT. As| increasesy decreases. The sizes of the

pothesis that the overall quadratic model adequately idescr

the structure in the data.

4.4. TrellisDisplaysof the Raw Data

decreases vary but there is no consistent pattern to thé-va
tion and the magnitude of the variation is not large compared
with the variation of the replicated points, so there appéar

be little or no interaction betwedrand the other two factors.

We will use trellis display to search for insight into the
dependence of the response on the factors. Each factor in the
experiment —, M, andT — has low values, medium values,
and high values. We will condition on each factor using three The ANOVA carried out earlier was predicated on a
intervals that divide its values into low, medium, and high. quadratic dependence dfon the factors:M, T, andl. But
The number of combinations of the three sets of three inferva the structure of the data revealed by the trellis displayls ca
is 27. However, the design only covers 9 of them, so we caninto question the appropriateness of a quadratic model. The
expect to see gaps in the trellis displays. reason is the radical change in slope. As a functioNand

The left trellis display of Figure 15 graphs againstM T,V is large forM at the lowest level and at the highesty
givenT andl. The values of go from low to medium to high  is much smaller and nearly flat elsewhere.
as we go from left to right through the columns. The values of  Let us describe the structure we observed in the trellis dis-
I go from low to medium to high as we go from bottom to top plays in terms of Figure 16, a scatter-plot of the measurésnen
through the rows. For the highest level Df there is a large  of M and| with a small amount of uniform random noise

4.5. Modeling the Data
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mated join line of the spline surface. a — BT.

added to break up the overlap of plotting symbols. (The line 5. DISCUSSION

on the plot will be explained later.) At the points in the lowe _ . o

right corner,V is high and much lower everywhere else. In We investigated the use of the conditioning methods of

going from the points in the upper left to the lower left, ther trellis display for experimental data with a small humber of
is a small increase M. In going from the upper left to the up- ~ runs including highly fractionated designs. Such expenitsie
per right,V is constant. At the two center pointsjs between  arise in settings where each run is very expensive, or as in
where it is for the upper points (left and right) and whersiti SOme computer experiments, each run takes a long time. The
in the lower left. investigations, which covered a large number of data sefs ov
A simple model explains the structure revealed by the trel- time, have led to several conclusions.
lis displays: (1) linear in; (2) a continuous piecewise linear ~ Trellis display is almost always quite useful for modeling
spline inT andM consisting of two half planes that join along data from these experiments, and commonly produces major
a line in theT andM space that, in Figure 16, is close to the Cchanges in the analysis, modeling, and results due to the dis
center points and the points in the lower left and upper right covery of patterns in the data not suspected before the data
(3) the half plane covering the upper left in Figure 16 has zer Were collected. The finding is true even for highly fractitath

slope. Thus the model is experiments. The pattern discovery is a result of the scébpe o
the trellis conditioning methods. They are applicable et |
Vi=pu+yi+3(Mi—a—BT) +¢ to fitted models, but also to the raw data. This allows ineisiv
assessments of patterns in the data that can lead to sudlstant
wherex is x if x < 0 and is 0 otherwise. The join line is improvements to models initially entertained, or to a cancl
sion that an experiment failed. Both were demonstrateddn th
M—oa—BT=0. examples described here.

We also found that ANOVA, used pervasively in the anal-
We will begin with an assumption that tlseare independent  ysis of experimental data, is a powerful tool for answering
and normally distributed with mean 0 and constant variance specific questions about models for data, but a poor tool for
0. Thus the parameters will be estimated by nonlinear least-guiding the overall modeling process.
squares. The residual sum of squares is #.8adé = 0.55 One might find it remarkable that conditioning methods can
V, better than the quadratic models. Residual plots suggesbften succeed for highly fractionated experiments. Cawakit
there is no significant lack of fit and that the above assump-ing for such designs often results in just a few points on the

tions about the error terngs are reasonable. panel of a trellis display, potentially making it hard to ess
The line drawn in Figure 16 is the estimated join line, dependence because of variability in the error term. Howeve
) we found patterns often did emerge as demonstrated in our
M—a—-BT=0. examples. The reason appears to be that for success, highly

fractionated designs require an engineering practicektegis
Figure 17 is a partial residual plot that shows the spline fit. error variability small. Such designs, by their very nateen-
Vi — ¥l; is graphed againd¥l, — & — BT;. The fitted function  not succeed in cases with large error variability that nemai
tracks the data. The spline fit explains the subtle behamior i large aggregation of runs to see a signal. The very practices
the trellis displays of the data in Figure 15. that make such experiments succeed allow trellis methods to



REFERENCES

succeed.

Acknowledgments: This work was supported in part by Na-
tional Science Foundation Award CCF-0937123, Scalable Vi-

(14]

sualization and Model Building; and in part by National Sci- [15]

ence Foundation Award DMS-0532217, Data Mining, Statis-

tical Learning, and Data Visualization for Complex Data.

References

[1] R. A. Becker, W. S. Cleveland, and M. J. Shyu. The

Design and Control of Trellis Displaylournal of Com-
putational and Statistical Graphics, 5:123—-155, 1996.

[2] P. Murrell. R Graphics. Chapman & Hall, New York,

2006.

[3] J. C Pinheiro and D. M. BatedJlixed Effects Models in
Sand S-Plus. Springer-Verlag, New York, NY, 2000.

[4] D. Sarkar.Lattice: Multivariate Data Visualization with
R. Springer, New York, NY, 2008.

[5] A. Krause and M. Olson.The Basics of Sand S-Plus.
Springer, New York, 2000.

[6] J. M. ChambersSoftware for Data Analysis. Program-
ming with R. Springer, New York, 2008.

[7] S. McDaniel. Rapid Graphs with Tableau Software:
Create Intuitive, Actionable Insights in Just 15 Days.
CreateSpace, United States, 2009.

[8] G. E. P. Box, J. S. Hunter, and W. G. Hunt&atistics
for Experimenters: Design, Innovation, and Discovery.
Wiley, Chichester, U. K., 2005.

[16]

[17]

(18]

[19]

[20]

[21]

[22]

12

R. B. Gramacy and H. K. H. Lee. Adaptive Design and
Analysis of Supercomputer Experiment§echnomet-
rics, 51:130-145, 2009.

W. A. Larsen and S. J. McCleary. The Use of Partial
Residual Plots in Regression Analysi$echnometrics,
14:781-790, 1972.

T. Mihalisin, J. Timlin, and J. Schwegler. Visualizing
Multivariate Functions, Data, and Distribution€om-
puter Graphicsand Its Applications, 11: 28—-35, 1991.

R. D. Snee. Experimenting with a Large Number of
Variables. In R. D. Snee, editdExperiments in Indus-
try, pages 25-35. American Society for Quality Control,
Milwaukee, Wisconsin, U.S.A., 1985.

E. R. Tufte. The Visual Display of Quantitative Infor-
mation. Graphics Press, Cheshire, Connecticut, U.S.A,
1983.

P. A. Tukey and J. W. Tukey. Graphical Display of Data
Sets in 3 or More Dimensions. In V. Barnett, editor,
Interpreting Multivariate Data, pages 189-275. Wiley,
Chichester, U. K., 1981.

R. R. Barton.Graphical Methods for the Design of Ex-
periments. Springer, New York, NY, 1999.

J. A. Cornell and L. Ott. The Use of Gradients to Aid in
the Interpretation of Mixture Response Surfacéach-
nometrics, 17:409-424, 1975.

C. Daniel.Applications of Statistics to Industrial Exper-
imentation. Wiley, New York, 1976.

[9] R. A. Becker and W. S. Cleveland. Brushing scatter- [23] R. D. Snee. Graphical Display of Results of Three-

plots. Technometrics, 29:127-142, 1987. Reprinted in
Dynamic Graphics for Data Analysis, edited by W. S.
Cleveland and M. E. McGill, Chapman and Hall, New

York, 1988.

[10] W. S. Cleveland. Visualiziing Data.
Chicago, 1993.

[11] O. L. Davies. The Design and Analyisis of Industrial
Experiments. Hafner, New York, 2nd edition, 1967.

[12] S. Feiner and C. Beshers.
Metaphors for Exploring n-Dimensional World€2ro-
ceedings of UIST '90 (ACM Symp. on User Interface
Software), pages 76-83, 1990.

Hobart Press,

Worlds within Worlds:

(24]

(25]

(26]

[13] A. E. Freeny and J. M. Landwehr. Graphical Analysis [27]

for a Large Designed Experimenilechnometrics, 37:
1-14, 1995.

Treatment Randomized Block Experimenfiaurnal of
the Royal Satistical Society. Series C, 34:71-77, 1985.

W. J. Youden. Graphical Diagnosis of Interlaboratory
Test Results. Industrial Quality Control, 15:24-28,
1959.

K. Hinkelmann and O. Kempthornéesign and Anal-
ysis of Experiments: Introduction to Experimental De-
sign. Wiley, Chichester, U. K., 1994,

Y. Hung, V. R. Joseph, and S. N. Melkote. Design and
Analysis of Computer Experiments With Branching and
Nested FactorsTechnometrics, 51:366—-376, 2009.

A. C. Shoemaker, K.-L. Tsui, and C. F. J. Wu. Econom-
ical Experimentation Methods for Robust Desidech-
nometrics, 33:415-427, 1991.



REFERENCES

(28]

[29]

(30]

[31]

[32]

[33]

A. E. Vine, S. M. Lewis, A. M. Dean, and D. Brunson.
A Critical Assessment of Two-Stage Group Screening
Through Industrial Experimentatiofiechnometrics, 50:
15-25, 2008.

NIST and SEMATECH. Engineering Statistics Hand-
book, www.itl.nist.gov/div898/handbook/eda/sectionl/
edal5.htm, Verified 2010.

Jr. W. F. Hunt. Experimental Design in Air Quality Man-
agement. In R. D. Snee, L. B. Hare, and J. R. Trout, ed-
itors, Experiments in Industry, pages 89-98. American
Society for Quality Control, Milwaukee, 1985.

P. J. Rousseeuw and K. van Driessen. A Fast Algorithm
for The Minimum Covariance Determinant Estimator.
Technometrics, 41:212—-223, 1999.

O. Nalamasu, A. Freeny, E. Reichmanis, N. J. A. Sloane,
and L. F. Thompson. Optimization of Resist Formula-

tion and Processing with Disulfone Photo Acid Genera-
tors Using Design of Experiments. Technical report, Bell

Laboratories, Murray Hill, New Jersey, U.S.A., 1993.

J. D. LeGrange, S. A. Carter, M. Fuentes, J. Boo, A. E.
Freeny, W. Cleveland, and T. M. Miller. The Depen-

dence of the Electro-Optical Properties of Polymer Dis-
persed Liquid Crystals on the Photopolymerication Pro-
cess.Journal of Applied Physics, 81:5984-5991, 1997.

13



