
Bayesian Visual Analytics: BaVA
FODAVA Technical Report

Leanna House, Scotland Leman, and Chao Han

Abstract

Large, high dimensional datasets generally contain information in small, concen-

trated regions of the data space. To extract this information, it is necessary to draw

on several fields and use a variety of tools. We develop a new analytics framework

that merges two areas of research, Bayesian Statistics and Visual Analytics. Mathe-

matical and statistical disciplines rely on model based formulations which make use of

structured parameterizations; whereas, visualizations of high dimensional data provide

a means for non-quantitative experts to make sense of the data. However, coherent or-

ganization of data displays is often difficult. In the Bayesian Visual Analytics (BaVA)

paradigm, we synthesize these tools to make cohesive visualizations that are adjustable.

We consider display adjustments to be reliable feedback concerning the underlying ana-

lytical approach and necessary for ”sense-making”. This paper will focus on presenting

the BaVA process, the formal descriptions of cognitive and parametric feedback, and

some illuminating examples.
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1 Introduction

Visual Analytics (VA) is “the science of analytical reasoning facilitated by interactive vi-

sual interfaces” (Thomas and Cook, 2005) and combines research in data management and

mining, statistics, information visualization, human cognition, and human-computer inter-

action. It emerged from the effort to assess massive amounts of data efficiently in order

to identify interesting structures and uncover new information. Crucial to any data assess-

ment is “sense-making” (Lederberg, 1989; Thomas and Cook, 2005); i.e., the combining of

external information in data with expert judgement. The goal of this paper is to develop a

framework for analyzing data that relies on both the knowledge/capabilities of experts and

complex quantitative data assessments.

We develop a Bayesian Visual Analytics (BaVA) framework to create visualizations that

enable experts to interact with data, test hypotheses, and formulate knowledge instantly. The

inspiration for our work is that sense-making as defined by Lederberg (1989) and Thomas

and Cook (2005) involves assimilating new information with old and parallels the formulation

of a Bayesian model; a Bayesian model includes prior judgements, a model for external data,

and an assessment of posterior distributions. Additionally, similar to sense-making, posterior

distributions may be updated seamlessly when new or more information becomes available.

Mechanistically, BaVA entails characterizing complex datasets probabilistically and dis-

playing relevant posterior results for experts to assess. If the results fail to reveal known or

intuitive data structure, experts may adjust displays accordingly. The novelty is that we con-

sider display adjustments to be reliable, expert feedback or additional data concerning the

underlying Bayesian model. Thus, we quantify and express the feedback in probabilistic form

so that we can use makes Bayesian sequential updating (Spiegelhalter and Lauritzen, 1990;

West and Harrison, 1997) to adjust the underlying probabilistic model and, subsequently,
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the display.

Critical to the BaVA paradigm is characterizing data using parametric, probabilistic

models while reducing its dimension for visualisation. For example, factor analyses (Cattell,

1965; Press and Shigemasu, 1989; Lewin-Koh and Amemiya, 1998) characterize high dimen-

sional data d as a function of latent reduced dimensional parameters r. Taking a Bayesian

approach to assess d, we recognize that r is uncertain, assign an appropriate or noninforma-

tive (Yang and Berger, 1997) prior distribution, and display a highly probable a posteriori

value for r in a two- or three- dimensional graph. The graphical axes designate a portion

of the parameter space for r, so any coordinate within the axes may represent a realistic

or plausible value for r. In turn, we have the capacity to interpret visual feedback (e.g.,

observation adjustments) parametrically based upon the underlying probabilistic model.

Our quantification of feedback is similar in spirit to the specification of subjective prior

distributions (Buxton, 1978; Goldstein, 2006) in that we parametrize expert judgments (in

our case, display adjustments). Although, unlike standard prior elicitation procedures, we

need not have a facilitator (Garthwaite et al., 2005) and we avoid any ambiguity concerning

the communication between statisticians and experts. Namely, psychological and knowledge-

base barriers may prevent experts from understanding fundamental statistical concepts, in-

cluding expectation and variance, which are arguably essential for specifying realistic prior

distributions (Kadane and Wolfson, 1998; Daneshkhah, 2004). For BaVA, experts need not

understand basic statistics to provide useful feedback. Provided intuitive data visualizations,

they only need to understand their field and make judgements at the observation level; e.g.,

express their judgments concerning pairwise relationships between observations.

For example, a factor modeling approach known as Probabilistic Principal Component

Analysis (PPCA) (Tipping and Bishop, 1999) projects high dimensional data in the direction

with the largest variance to a lower dimensional latent space (similar to Principal Component

Analysis). If a dataset contains clusters of observations, but the within cluster variance is

3



smaller than the between cluster variance, a visualization of the low dimensional latent

data will not reveal the clusters. However, if experts believe that two observations belong

to the same (or different) cluster(s) and proximity on the computer screen is a measure of

similarity, experts have an opportunity to inject their judgements into the statistical analysis

by dragging the observations together (or apart).

The outline for our explanation of BaVA is as follows. We start by reiterating the

motivation for our work in Section 2 based on a simulated example. We then explain Bayesian

fundamentals and establish notation in Section 3. In Section 4, we detail the BaVA process

steps which result in malleable, adaptable displays and apply them to the simulated example

in Section 5. In Section 6, we exemplify the benefits of BaVA for two real-world applications

that are similar in nature to the simulated example and concern the cost of education and

functional genomics. In this section we also propose two procedures that may assist experts to

adjust displays wisely. Since BaVA is a framework and not an application-specific VA tool,

we provide another use of BaVA within the context of Multi-Dimensional Scaling (MDS)

(Torgerson, 1958; Kruskal and Wish, 1978) in Section 7. In this section, we develop an

appropriate probabilistic model that relies on MDS machinery and the means to inject and

parametrise feedback for real-world example. We conclude with a discussion of our work in

Section 8.

2 Motivation for BaVA: Simulated Example

Current visualizations tend to display inflexible, deterministic transformations of data that

inherently separate data visualization from the visual synthesis process. Analysts cannot

manipulate displays to inject domain-specific knowledge into the image and assess the merger

of their expert judgment with the data formally. This may inhibit sense-making when the

data transformation masks known or intuitive data structure.

For example, we simulated a three dimensional dataset d where d = [d1...dn] and di =
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Figure 1: Figure a) is a three dimensional scatter plot of simulated data that contains three
clusters. Plot b) plots the top two Principal components of the data displayed in plot a).

[xi, yi, zi]
′ (d is an n × 3 data matrix and di is a 3 × 1 observation vector). These data

contain three clusters which are easily seen in Figure 1a). Suppose that we want to discover

the clustering structure visually using a display with fewer dimensions. Since a common data

mining (DM) approach used to reduce data dimensions is Principal Components Analysis

(PCA) (Pearson, 1901; Jolliffe, 2002; Torokhti and Friedland, 2009), we plot the top two

principal components in Figure 1b). Alas, the clusters in the two-dimensional plot are

indistinguishable.

Projection based methods are not formally clustering nor structure-discovering algo-

rithms, yet they are still often used for high dimensional visualization. Traditional PCA

projects data in the directions with the largest sample variability, and, for this example, is

not appropriate for uncovering structure. The variance of the simulated data within clus-

ters is larger than the variance between clusters so that the direction in which the data are

projected results in occluded clusters. What can we do?

We propose to use the new BaVA framework for PCA so that the user may manipu-

late/interact with the data and, possibly, help PCA to reveal the hidden structure. Since

BaVA relies fundamentally on Bayesian statistics, we provide a brief summary of Bayes while
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establishing notation in the next section.

3 Formal Bayesian Analysis

Bayesian statistics is founded on rich, philosophical principles (Ramsey, 1926; Savage, 1954;

Jeffreys, 1961; Good, 1983; Jaynes, 1983) that we do not discuss here. Rather, we focus on

the fundamentals of Bayesian inference and how Bayesian statistical models may facilitate

the sense-making process.

In Bayesian statistics, as in classical statistics, the first step is to specify a probability

model or sampling distribution π(d|θ) for data d that depends upon unknown parameter

θ. One of many reasons for which the model is important is that it specifies important

features of the data that are uncertain. In turn, experts may focus on these features and

make assessments of the unknowns that may also be characterized by a prior probability

model, π(θ). Given data d, we apply Bayes’ Rule and update the prior distribution π(θ) to

derive the posterior distribution, π(θ|d).

Inference about θ follow from summaries and interpretations of π(θ|d). One such sum-

mary is a comparison between the prior and posterior distributions. When they are similar,

we could infer that the data support the current understanding of θ; and, when they differ,

the data suggest a need to change the current understanding of θ. Thus, built into the

Bayesian paradigm is a means to assess and update judgements of θ which lends itself nicely

to further updating when more information about θ becomes available.

The procedure of Bayesian sequential updating is straightforward and allows experts

to incorporate new information into a current analysis. For example, let d(1) and d(2)

represent datasets that contain information about θ and were collected at, say, time 1 and

2 respectively. After time 1, a posterior distribution for θ is derived, π(θ|d(1)). After time
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2, we may assess θ as follows:

π(θ|d(1),d(2)) = π(d(2)|θ,d(1))π(θ|d(1))/π(d(2)|d(1)), (1)

When d(1) and d(2) are independent conditional on θ, π(d(2)|θ,d(1)) = π(d(2)|θ). Bayesian

sequential updating is often used for streaming data or in the event that an experiment is

repeated. However, an original dataset, d(1), need not be of the same form as the subsequent

data d(2); e.g., the two datasets may differ in type or units. Within the context of sense-

making, the additional source of information d(2) could consist of additional data collected

later in time or, simply, additional expert judgement.

When experts have the opportunity to synthesize their judgements with data a posteriori,

they may wish to inject additional information into the statistical analysis. Using Bayesian

sequential updating machinery, we develop BaVA so that experts can assess aspects of the

posterior distribution before and after feedback to test new hypotheses and ultimately form

inferences that “make sense.”

4 The BaVA Process

To create and interpret malleable visualizations, we propose a five step procedure that is

displayed in Figure 2. Provided data d, the first step is to characterize it with a probability

model that depends upon θ and derive the posterior distribution of θ. The second step is

to display a posterior estimate(s) of θ in a meaningful, adjustable visualization which we

denote as v. The third step prompts experts to inject feedback by adjusting the display, if

desired. We refer to this manual or visual feedback as cognitive feedback and denote it as

f (c). Since the display is based on the probability models, we can interpret f (c) quantitatively

and parameterize it so that its distribution is a function of θ. We denote the parameterized

feedback as f (p) and consider its specification to be step 4 in Figure 2. The final step is

7



v
3

""EEEEEEEE

d
1

// θ

2
>>|||||||||

f (c)

4}}{{
{{

{{
{{

f (p)
5

__????????

Figure 2: Schematic illustration of the BaVA process.

to update the current probability model using Bayesian sequential updating which, in turn,

allows the procedure to repeat. For the remainder of this section, we describe each step in

detail.

4.1 Step 1: Form Bayesian Inferences

The Bayesian visualization process begins like any typical analysis that is described in Sec-

tion 3; given a sampling distribution π(d|θ) and a set of prior beliefs π(θ), the posterior

distribution π(θ|d) is formed through Bayes’ rule. Although, unlike typical analyses, we

must consider the next step (visualization) in the BaVA process when choosing a reasonable

model for the data. That is, in order for BaVA to be a success, we must select a probability

model that both characterizes the data well and relies on unknowns θ (or a function of the

unknowns) that are able to be graphed in three or fewer dimensions. Often, the dimension

of θ is far less than the dimension of the raw data d, thus sensible, dimension reduction

models are important to the BaVA process.

4.2 Step 2: Construct a Visual Representation

A BaVA display v must satisfy two fundamental criteria. First, the visualization must

be easy to understand and adjust in ways that are intuitive to the user (Icke and Sklar,

2009). Second, any adjustment to the visualization must relate directly to both the data

and inferences formed/tested about θ. For example, we advocate selecting a highly probable
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value (e.g., the posterior mean or maximum a posteriori (MAP) estimate of θ) which we

denote as θ̂ to display. For this paper, we define the visualization v to be a deterministic

transformation of θ̂, v = g(θ̂). Thus, v conditional on θ = θ̂ is known with probability one.

As we discuss in Section 8, future work will explore including the uncertainty in v in the

analysis of θ.

4.3 Steps 3 and 4: Enable User Feedback

Using a malleable visualization, an expert may wish to inject additional knowledge into

the posterior distribution π(θ|d) because 1) the probabilistic model is inadequate for con-

structing reasonable inferences; 2) the transformation g() guiding the visualization masks

important information contained in the data, and/or 3) the user wants to explore alternative

visualizations. We define the information that an expert may wish to inject as feedback f

which we decompose into cognitive f (c) and parametric f (p) feedback; f = {f (c), f (p)}. We

consider f to be an random variable with a distribution that is equal to the joint distribution,

π(f (c), f (p)|v,θ).

4.3.1 Cognitive Feedback

How an expert interacts with a visualization is inherently random. For example, an expert

might choose to adjust a display while considering a set of comparable movements. Thus,

when experts alter a display, they must provide a measure of certainty or a weight to which

we should consider their feedback in the analysis of θ with respect to the current assessment.

Let κ represent the expert specified weight, where κ ∈ [0, 1]. We consider the display adjust-

ment and κ as partial prior specifications (Goldstein and Woof, 2007) for the distribution

π(f (c)|v). It is important to note that we do not need to know the mathematical form of

this distribution.
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4.3.2 Parametric Feedback

We link f (c) to the parameter set θ through a transformation h() and define parametric

feedback as f (p) = h(f (c)), where f (p) has distribution π(f (p)|f (c),θ). We cannot state

h() explicitly because it is application specific, but the specification of h() stems from the

following rational. Information is lost when low dimensional representations, i.e., displays

of θ, are used to portray high dimensional datasets, and the loss is greater for some data

dimensions than others. Adjustments to low dimensional displays suggest a need to re-weight

the data dimensions for the analysis of θ. Thus, crudely, the task of specifying h() entails

identifying the degree to which dimensions in the high-dimensional dataset are represented

in displays and up- or down- weighting the dimensions according to the cognitive feedback.

When selecting a distribution or model for f (p), we consider two issues. First, we must

provide a reasonable model for f (p) that complies with the nature of the expert-provided

information; e.g., the model has an appropriate domain, expectation, and variance for the

data collected from the expert feedback. Second, we must select a model for f (p) that

eases subsequent computation in Section 4.4 so that adjustments to the visualization are

instantaneous. Time consuming Markov Chain Monte Carlo (MCMC) methods are not

ideal.

4.4 Step 5: Update the Model Based on Feedback

At the conclusion of step 4, we have expert feedback f that we would like to include in our

posterior analysis of θ. Thus, we use Bayesian sequential updating as described in Section

3 to assess π(θ|f, v,d),

π(θ|f, v,d) =
π(f, v|θ,d)π(θ|d)∫
π(f, v|θ,d)π(θ|d)dθ

∝ π(f |v,θ)π(v|θ)π(θ|d)

= π(f (p)|f (c),θ)π(f (c)|v)π(v|θ)π(θ|d)

10



Since we stated earlier that, for this paper, we have a deterministic method to create the

visualization v (π(v|θ) = 1) and f (c)|v is independent of θ, π(θ|f, v,d) is

π(θ|f, v,d) ∝ π(f (p)|f (c),θ)π(θ|d).

If π(f (p)|f (c),θ) and π(θ|d) are conjugate, MCMC is obviated and π(θ|f, v,d) is straight-

forward to derive.

The BaVA process is iterative and may continue until the experts are satisfied with their

exploration of the data. To denote the iterations, we may add super scripts to the feedback

and visualizations so that f and v may take values

{v(1), v(2), . . . }, {f (1), f (2), . . . , },

and, at iteration i, we have the posterior π(θ|f (1), . . . , f (i), v(1), . . . , v(i),d). Convergence

of the BaVA process is application and expert specific and marks, possibly, the point of

cognition or the acquisition of knowledge based on the complete merger of judgement and

information in the data. In Sections 5 - 7, we demonstrate how to create a malleable

visualization using the BaVA process in three applications.

5 Simulated Example Continued

In our simulated example, experts need only find the direction in which to rotate the data and

project so that the cluster structure is visible in two dimensions. Since the simulated data

span only p = 3 dimensions, we could use any available software (e.g., ggobi as described in

Swayne et al. (2003); Cook and Swayne (2007)) to view and rotate the data until a useful

projection is found. For high dimensional data (p ≥ 4) however, viewing and rotating the

data is not possible.

For p ≥ 4, we could employ one of several projections methods available including Grand
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Tour (Asimov, 1985), Projection Pursuit (Friedman and Tukey, 1974), and VizRank (Leban

et al., 2006). All three methods have the potential to reveal the best direction in which to

rotate the simulated data, but due to high computational demands, they may not scale well

to assess high-dimensional datasets. For example, Grand Tour provides a sequence of two-

dimensional projections that circumvent the entire data space so that an expert may explore

the data visually from multiple directions. Projection Pursuit and VizRank return only one

projection, but consider every possible data projection first. Specifically, they associate a

measure of “interesting-ness” to every two-dimensional projection on the data dimension

axes and select the projection with the best measure. The benefit of BaVA is that the

choice of projection to display is guided by experts and computational power is minimized

in comparison to standard projection methods.

In our BaVAtized version of Figure 1, we allow the expert to drag data points together or

apart using ggobi and we develop a method that transforms the adjustments into information

regarding the direction and magnitude of a data rotation. In doing so, we re-weight the

raw marginal data variances using Bayesian sequential updating and select the appropriate

direction to project using standard PPCA machinery. The precise BaVA procedure is stated

below.

5.1 Form Bayesian Inferences and Construct Visualization

We start by modeling the data using PPCA (Tipping and Bishop, 1999). PPCA is similar to

PCA in that the both approaches estimate low dimensional projections of high dimensional

datasets, but PPCA relies on probability models rather than deterministic data transforma-

tions. Consider the following probability model for data di conditional on a reduced or q

dimensional vector ri,

di = W ri + µ+ εi, εi ∼ No(0, Ipσ
2) (2)
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where µ represents a p-vector and the mean of d; ri is a q-vector; W is a p×q transformation

matrix; Ip is a p× p identity matrix; and εi represents an error term that has a Multivariate

Normal distribution with mean 0 and isotropic variance Ipσ
2. Parameters ri andW represent

the latent factors of di and factor loadings of d respectively. In Appendix A, we show that

the factors r = {r1, ..., rn} are scaled, noise-free versions of the top q (for the simulated

example, q = 2) principal components (Tipping and Bishop, 1999).

If we assign a Normal prior distribution with mean zero and variance Iq for ri (π(ri) =

No(0, Iq) for all i), the conditional posterior distribution is

π(ri|d,W , σ2) = No(η,Σr), (3)

where η = (W ′W +σ2Iq)
−1W ′(di−µ) and Σr = (σ−2W ′W +σ2Iq)

−1. Based on model (3),

η = {η1, ..., ηn} is a natural, low dimensional parameter to plot for visualization v because

each ηi equals a centered version of data di that is projected to a q dimensional space by

Pr = (W ′W + σ2Iq)
−1W ′,

ηi = Pr(di − µ),

conditional on W , σ2, and µ. To select initial values for these parameters, we specify

reference priors for each and set W , σ2, and µ to their respective MAP estimators, Ŵ , σ̂2,

and µ̂ (which incidentally are equivalent to maximum likelihood estimators (Tipping and

Bishop, 1999)). We describe the full hierarchical model in Appendix A.

Comparable to PCA, the projection Pr depends heavily on the dimensions in d with the

highest variance. To see this, consider µ = 0 (without loss of generality) and the marginal

distribution of d,

π(di|W , σ2, µ) =

∫
No(di|W ri + µ, Ipσ

2)No(ri|0, Iq)dr = No(µ,Σd),
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where, Σd = WW T + Ipσ
2. Notice that both Σd and Pr rely on parameters W and σ2,

and W contains the top eigenvectors of Σd− Ipσ
2. The correspondence between Σd and Pr

suggests that the primary data unknown, or characteristic of d that influences the structure

we see in v, is the variance. Changes in Σd will impact both Pr and v and visa versa. Thus,

v = g(Σ̂d), where Σ̂d represents an estimate for Σd and g(·) represents the means by which

we use Σ̂d to solve for η or another highly probable value for r that we can visualize. Let

manipulations to v reflect feedback concerning Σd.

In the next section, we describe how experts inject feedback and the method we use

to parameterize the feedback, but we must first assess Σd probabilistically. If we specify

π(Σd) ∝ 1 a priori, π(Σd|d) is an Inverse Wishart (IW) distribution,

π(Σd|d) = IW(nSd, p, n− p− 1) (4)

where IW(a, b, c) = |a|−c/2|Σd|−(c+b+1)/2 exp{−tr(aΣd
−1)/2}/2cb/2Γb(c/2) (Γb(·) is a multi-

variate gamma function), Sd = 1
n

∑n
i=1(di− µ)(di− µ)T , and the MAP of Σd is Sd. For the

visualization, we set Σ̂d = Sd. Figure 3a) provides an example.

5.2 Cognitive Feedback

Experts may choose to manipulate Figure 3a) if observations they expected to be different

are close in proximity or observations they expected to by similar are separate. Thus, for

this BaVA example, we allow experts to select two observations and either drag them apart

or together as shown in Figure 3b). For example, suppose experts selected points j and

k and moved them apart as depicted in Figure 3c). Let r̃j and r̃k represent the new, low

dimensional locations of points j and k. The new locations suggest that, despite the current

display, the experts are informed well enough to make the judgement that these points belong

in separate clusters. If the experts believe strongly in the separation, they should specify κ

close to one; close to 0.5 if they are apprehensive; and close to zero otherwise. Note that
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Figure 3: Figure a) plots the posterior mean of rFigure b) shows different adjustments an
expert can make to the visualization including moving points apart or together. Figure c)
displays the adjustment we made; we moved two points apart and mark them by ◦ figure
to exemplify BaVA and Figures d)-f) present updated versions of the display for κ equal to
0.5, 0.7, and 0.9 respectively.
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specifying κ = 0 is comparable to opting not to manipulate the display.

In this paper, we restrict the experts to moving only two points. Future BaVA research

will include more elaborate schemes for injecting cognitive feedback.

5.3 Parametric Feedback

We learned in Section 5.1 that the model parameter driving the structure (or lack there

of) we see in visualization v is the variance matrix Σd and that Figure 3a) was created

conditional on Σd = Sd. Thus, we must interpret adjustments to v as proposed estimates

for the variance of d where f (p) = h(f (c)) is a semi-definite, p× p matrix.

Our interpretation of f (c) depends upon the type of manipulation chosen by the expert.

For example, if experts move points j and k apart, we should conclude that the variance

in the dimensions that are least represented in the display should be larger than what

is estimated by Sd. Similarly, if experts move two points together, the variance in the

dimensions represented largely in v is over-stated. Let Sa and St represent respectively, the

interpreted variance matrices for the apart and together move-types. We assign f (p) to be a

weighted average Sa and St

f (p) = ωSa + (1− ω)St,

where ω ∈ [0, 1]. For the remainder of this section, we explain how to specify ω, Sa, St and

the distribution for f (p)|f (c),Σd.

5.3.1 Specifying ω

The weight ω is determined directly from the ratio of the inter-point distances before and

after the display adjustment f̃ ,

f̃ =
||r̃j − r̃k||2
||rj − rk||2

.

When points are dragged apart, f̃ ≥ 1; and, when points are pushed together, f̃ ≤ 1. Since

f̃ ∈ R, we map f̃ to [0, 1] by ω = 2π−1 arctan(f̃).
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5.3.2 Specifying Sa

We start by learning which dimensions are least explained in v by comparing the raw and

projected marginal discrepancies between points j and k. Let ∆l, ∆
(0)
l , and ∆

(P )
l represent the

raw, marginalized (in vector form), and projected discrepancies in dimension l (l ∈ [x, y, z]

for this example) between points j and k,

∆l = dj,l − dk,l

∆
(0)
l = (0, . . . , 0,

lthposition︷︸︸︷
∆l , 0 . . . , 0)T

∆
(P )
l = Pr∆

(0)
l

where ∆
(0)
l is the result of multiplying the scalar ∆l by the lth unit vector. The ratio of the

vector lengths of ∆
(P )
l and ∆

(0)
l measures the percent of the raw, high dimensional discrepancy

for which the visualization accounts. In turn, ∆
(u)
l where

∆
(u)
l = ∆l(1−

||∆(P )
l ||2

||∆(0)
l ||2

)

represents the amount of the original discrepancy in dimension l that remains unexplained

by the visualization. For example, if ∆
(u)
l is close to zero, the visualization captures the

interpoint discrepancy in dimension l; and, if ∆
(u)
l is comparable to ∆l the visualization fails

to display the interpoint discrepancy in dimension l.

Given ∆ = {∆1, ...,∆p} and ∆(u) = {∆(u)
1 , ...,∆

(u)
p }, we select one of the directions needed

to project data d into q dimensions. We denote this direction by v(u) and define it as

v(u) =
∆ + ∆(u)

||∆ + ∆(u)||2

This definition adds weight (as much as two times) to the dimensions that are least explained
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in the visualization.

To select the remaining q − 1 directions in which to project data d, we proceed in the

spirit of PCA. Note for q = 2, we need only resolve one direction. We suggest calculating

the q− 1 directions that are both orthogonal to v(u) and account for the maximum variation

in d. Within the context of the simulated example, we must find a new orthogonal direction

v(o) that satisfies

v(o) = argmax
v(o)

{
Var[v(o)′d]

}
s.t. v(o)′v(o) = 1 and v(o)′v(u) = 0. (5)

The solution for v(o) is the largest principal direction of Σd that is orthogonal to v(u). The

proof is found in Appendix B. Based on v(u) and v(o), we define Sa as

Sa = [v(o), v(u)][v(o), v(u)]′.

5.3.3 Specifying St

When experts move points j and k together, the implication is that they have similarities

in the high dimensional space that are being lost in the projected space. To guarantee an

ideal projection, we start again with the raw, high dimensional discrepancies ∆. Since the

vector ∆ runs directly through the points dj and dk, we can map dj and dk to the same

set of coordinates in a lower dimensional space if we project the data in the direction of ∆.

Thus, ∆ is an orthogonal vector to the ideal projection plane that is embedded in the high

dimensional space. To identify the projection plane, we solve for two vectors that are both

orthogonal to one another and to ∆. The solution for {v(1), v(2)} in

0 = ∆′v(1) = ∆′v(2) = v(1)′v(2)
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defines an orthogonal basis for the projection plane (proof in Appendix C). Given {v(1), v(2)},

we set St to

St = [v(1), v(2)][v(1), v(2)]′,

Note that both St and Sa have, by definition, only two eigenvectors with non zero eigenvalues,

and these eigenvectors are the defined basis sets.

5.3.4 Specify π(f (p)|f (c),Σd)

Since Wishart (Wi) distributions are defined over the space of semi-definite matrices, we

model f (p) by

f (p)|f (c),Σd ∼Wi(
Σd

ν
, p, ν), (6)

where, Wi(a,b, c)=|f (p)|(c−b−1)/2 exp{−tr(f (p)a−1)/2}/(2bc/2Γb(c/2)), the conditional expec-

tation of f (p) is Σd, and ν = κn/(1 − κ). This model choice is both practical for this

application and, as explained in the following section, computationally convenient.

5.4 Update the Model Based on Feedback

Since we chose to parametrize the feedback using a Wishart Distribution, the sequential

updating step for the distribution of Σd is straightforward,

π(Σd|d, f) = IW(nSd + νf (p), p, n+ ν − p− 1).

The updated MAP estimator for Σd is a weighted average of the parametric feedback f (p)

and the original MAP estimator Sd,

E[Σd|d, f ] =
ν

ν + n
f (p) +

n

ν + n
Sd.

Notice that κ = ν
ν+n

because of our definition for ν in Equation (6).
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Figure 4: In Figure a) the first two latent dimensions from PPCA are plotted for the
education dataset with seven variables: SAT, EXP, FAC, SAL, PER, HSG, and INC. Figure
b) is identical to a) except points of interest have been selected by the square brush. The
two points that appear to be the most similar high dimensionally in the brush are marked
by ’+’; and the two points that appear to be the most different are marked by ’×’. The
measures of similarity and difference are stated in Section 6.1.

6 Two Real-World Examples

In this section, we apply the BaVA methods described in Section 5 to assess two real world

datasets. A vital point in Section 5 is that the success of BaVA relies critically on sound

expert judgement concerning the relationship between two observations. We are confident

that for some applications experts will have immediate, reliable judgments, but there will be

applications when experts need assistance. For the latter cases, we present two approaches

to assess the relationship between two or more points. We explain each approach within the

context of two proceeding examples.

6.1 Cost and Quality of Education

A sensitive issue for tax payers, parents, children, educators, and policy makers is whether

an increase in money devoted to education will increase education quality. Money provides
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a means to buy modern textbooks, employ experienced teachers, and provide a variety of

classes and/or extra curricular activities. Although, do the students who benefit from these

high-priced resources actually improve academically?

In 1999, Dr. Deborah Guber compiled a dataset for pedagogical purposes that addresses

this question (Guber, 1999). Based on the following variables, the dataset summarizes the

academic success, the educational expenses, and other related variables in 1997 for each

U.S. state: the average exam score on the Standard Aptitude Test (SAT); the average

expenditure per pupil (EXP); the average number of faculty per pupil (FAC); the average

salary for teachers (SAL); and the percentage of students taking the SAT (PER). To increase

the complexity of the dataset slightly, we added two variables from the National Center for

Education Statistics (http:nces.ed.gov): the number of high school graduates (HSG) and

the average household income (INC). To assess these data, we investigate the possibility

of observation clusters which might be explained by variables in the dataset. We start by

visualizing the data in two dimensions using PPCA. The initial PPCA projection in Figure

4a) however, does not reveal the presence of any data structure. Thus, we apply PPCA

using the BaVA framework to navigate the dataset.

To navigate the dataset, we need to make judgements concerning the relationship between

two or more observations, yet we are not education experts. Thus, we apply a tool to which

we refer as the “brush” that identifies observations within a small region which way be good

candidates to adjust. Specifically, the brush selects two pairs of observations based on a

measure m that seem to be the most similar and different in the high dimensional dataset

relative to the low dimensional display. Let vectors δ = {δij}i<j<b and γ = {γij}i<j<b

represent respectively the distance between every pair of observations in the high and low

dimensional spaces, where b represents the number of brushed observations. To compare the

vectors, we divide each vector by its maximum so that every element in δ and γ is between

zero and one. We then calculate mij = δij/
√
γij for all (i, j) pairs. If the measure mij is
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small, the low dimensional display exaggerates the true distance between observations i and

j in the high dimensional space. Similarly, if the measure mij is large, the distance between

points i and j in the high dimensional space is greater than what it seems in the display.

The pairs of observations with the minimum and maximum measure m are identified by the

brush. Note, we explored defining mij as either mij = dij/rij or mij = dij − rij, but such

measures were impractical because they were either too sensitive or not sensitive enough to

extreme low dimensional distances (e.g., rij ≈ 0).

For this application, we placed the brush in an area that seemed to be between two

possible clusters in Figure 4b). The observations with minimum m are marked by ’+’ and

observations with maximum m are marked by ’×’. We now have two options: 1) we could

drag the observations with low m closer or 2) we could spread the points with large m apart.

We opted to do the latter and obtained a BaVA-updated view that is displayed in Figure

5a). There are two clusters in Figure 5a). These clusters correspond perfectly with SAT

scores above and below the SAT median.

Those that advocate increasing education budgets might suspect that the clustering struc-

ture in SAT relates to EXP. However, when we re-plot Figure 5a) and label the upper and

lower EXP 50% quantiles in Figure 5b), EXP does not explain the clusters. We repeated

this re-labeling exercise for every variable in the dataset. When we mark the observations

above and below the empirical PER median in Figure 5c), we see that PER and SAT clearly

relate to the formation of clusters in the dataset. Thus, further analyses of SAT and EXP,

must control for PER.

6.2 Functional Genomics

For this section, we consider a microarray dataset (Eisen et al., 1998; Brown et al., 2000;

Leban et al., 2006) that was collected to assess the function of 186 yeast genes in the Saccha-

romyces cerevisiae genome based on comparisons in expression for 79 hybridization experi-

ments. Eisen et al. (1998) suggested that genes with similar expression profiles under varying
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Figure 5: After injecting expert feedback into Figure 4, we obtain Figures a)-c). For frame
of reference, we marked the two points moved to inject feedback by ‘×’ in Figure a). The
configuration of points in each graph are identical, but the observations are labeled differ-
ently. In Figure a), symbols ‘•’ and ‘◦’ mark the upper and lower 50% quantiles for SAT
respectively; in Figure b), symbols ‘•’ and ‘◦’ mark the upper and lower 50% quantiles for
EXP respectively; and in Figure c), symbols ‘•’ and ‘◦’ mark the upper and lower 50%
quantiles for PER respectively. Notice the clusters in each graph correspond with SAT and
PER, but not EXP.
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conditions have the potential to serve the same function. Thus, we may make reasonable

semi-supervised (Chapelle et al., 2006; MacInnes et al., 2010) predictions for the functions of

every gene in the experiment based on a) the known functions for a subset of genes in the ex-

periment and b) the identification of gene clusters based on similar experimental, expression

profiles.

Semi-supervised DM approaches aim to develop classification rules based on the ground-

truth for a subset of the data. Using the ground-truth for only a data subset is clearly less

work than either relying on the ground-truth for all observations or taking a fully unsuper-

vised data-mining approach (MacInnes et al., 2010). Additionally, knowing the ground-truth

for a subset of the data may assist experts to adjust BaVA visualizations appropriately.

Within the context of genomics, semi-supervised learning methods are often reasonable

because public databases are readily available that store detailed information concerning

known genes. For this example, the Munich Information Center of Protein Sequences Yeast

Genome Database (MYGD) lists, among other characteristics, the functions for every gene

in the Saccharomyces cerevisiae genome.

According to the MYGD, the 186 genes of interest belong to one of three functional

classes to which are referred as cytoplasmic respiration (f1), ribosomes (f2), and proteasome

(f3). Yet, when we project the data using PPCA in Figure 6a), only two possible clusters

appear. To adjust the display, we take a semi-supervised approach and use the MYGD to

look-up the functions for 25 genes selected at random from the dataset. The ground-truth

for these genes are shown in Figure 6b) where ‘•’ denotes f1, ‘+’ denotes f2, and ‘�’ denotes

f3. The genes with function f2 cluster nicely, but the genes with functions f1 and f3 do not

separate well in the visualization. Thus, we select and separate two genes with functions

f1 and f3 that are highlighted in red in Figure 6b). Given the separation, we update the

visualization using BaVA machinery which we display in Figure 7.

In Figure 7a) we see that with the exception of two observations (one of which was pre-
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selected and we know its function), three clusters separate clearly. We predict the functions

for each cluster using the ground-truths of the 25 preselected genes and label them in Figure

7a). Since the MYGD includes the functions for all 186 genes, we can compare our predic-

tions to the true genetic functions depicted in Figure 7b). Excluding the point which we do

not label, only one gene is predicted erroneously; our true prediction rate is 0.994.

7 Multidimensional Scaling Example

Thus far, BaVA has been exemplified using projection based methods to reduce data di-

mensionality. In this section, we present the BaVA process for another dimension reduction

technique known as multidimensional scaling (MDS) (Torgerson, 1958; Kruskal and Wish,

1978). The purpose of this section is two fold: 1) to present a different use of BaVA and

2) to exemplify that BaVA is a framework and not a method- or application- specific an-

alytical approach. With thought, we believe that BaVA can be used for a variety of data

structure-seeking techniques in the future.

This section has three subsections. The first subsection will explain MDS and an exten-

sion of MDS known as Weighted MDS (WMDS) (Carroll and Chang, 1970; Schiffman et al.,

1981) briefly. The second subsection will develop the BaVA steps in Section 4 within the

context of MDS. The third subsection will exemplify the MDS version of BaVA to assess a

real-world dataset.

7.1 MDS and WMDS

Using the same notation from previous sections, let d = {d1, ...dn} where d ∈ Rp and r

represent a low dimensional analog of d where r = {r1, ...rn}, r ∈ Rq, and q ≤ 3 < p. In a

typical MDS scheme, one seeks to select points r with pairwise distances that approximate

the same pairwise distances of d. Explicitly, r is the solution to the following optimization
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Figure 6: Both figures display the top two principal components from the Saccharomyces
cerevisiae dataset which contains the expression profiles for 186 genes across 79 hybridization
experiments. In Figure b) we include the true function for 25 genes: ‘•’ denotes f1, ‘+’
denotes f2, and ‘�’ denotes f3. Based on these truths, we opt to adjust two observations
highlighted in red.
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Figure 7: After injecting expert feedback into Figure 6b), we received the above displays.
Figure a) includes the ground-truths for the 25 pre-selected genes: f1=‘•’, f2=‘+’, and
f3=‘�’. Figure a) also highlights in red the observations adjusted to inject feedback. The
large ovals in Figure a) represent the natural clusters that appear. We labeled each oval
based on the semi-supervised prediction procedure. Figure b) labels each observation by their
functions according to the MYGD. Notice that only one observation is predicted incorrectly
in Figure a).
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problem:

r = argmin
r1,...,rn

∑
i<j

|‖ri − rj‖ − δij|,

where δij represents ‖di − dj‖ and ‖ · ‖ represents a vector norm. The solution is invariant

to rotations and reflections and the scale of r is mostly arbitrary. One advantage for MDS

is that the pairwise distances in r help us to understand the pairwise relationships between

observations in the original high dimensional vector space. A pair of observations that are

distant are less related to one another than a pair of observations that are close to one

another.

The distance measure or vector norm ‖·‖ used in MDS may influence the solution for r if

the original distances δij are sensitive to the vector norm selection as well. For our purposes,

we use the L2 norm where

δij =

√√√√ p∑
k=1

(di,k − dj,k)2. (7)

This choice is arbitrary and can be exchanged easily for other norms. The pairwise dis-

tances in r are computed similarly to Equation (7). Let γij represent the distance between

observations i and j in the low dimensional space.

WMDS (Carroll and Chang, 1970; Schiffman et al., 1981) is similar to MDS, but the

dimensions of the data are weighted in order to express the impact of each dimension on δ.

For example, if dimension 1 has a large impact on δ for all i and j, dimension 1 will have

a large weight or impact on the solution for r. Since we use the L2 norm, the weighted

distances are computed as follows:

δ
(ω)
ij =

√√√√ p∑
k=1

ωk(di,k − dj,k)2, (8)
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where δ
(ω)
ij represents the weighted distance between points di and dj; ωk represents the

weight for dimension k; and the weights are constrained by
∑p

k ωk = 1. The weighted

solution for r results from

r = argmin
r1,...,rn

∑
i<j

|‖ri − rj‖ − δ(ω)
ij |, (9)

When ωi = 1/p for i ∈ [1, ..., p] the solution for r is identical to that of classical MDS.

When the dimensions that are relevant for resolving important structure in the data d

are unclear, including ω = {ω1, ...ωp} is a powerful adaptation of MDS. The weight vector w

also provides an excellent avenue to inject feedback when considering BaVA. Experts may

provide information regarding ω directly or use a BaVA version of WMDS and manipulate

observations.

7.2 The BaVA Process Steps for WMDS

The BaVA process includes five steps. We implement the five steps for WMDS.

7.2.1 Steps 1: Form Bayesian Inference

Recall that we use the vector ω to weight important dimensions appropriately when solving

for γ . However, the degree to which dimensions are declared important is confounded by

dimension variance. Thus, we standardize each dimension of data d before we calculate all

pairwise distances δ
(ω)
ij , where ωi = 1/q (i ∈ [1, ..., p]),

We start with a well defined probability model for each high dimensional distance δ
(ω)
ij

given γij. While a reasonable probability model already exists (Oh and Raftery, 2001), we

develop our own to ease the visual updating procedure. Our model simply adds truncated

Gaussian noise with variance σ2 to the discrepancy of the high and low dimensional distances,

π(δ
(ω)
ij |γij, σ2) = 11

[δ
(ω)
ij >0]

No(γij, σ
2), (10)
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where 11[·] has the same meaning as the Dirac Delta function. For this effort, we consider

π(σ2) ∝ 1/σ2 and plug-in the MAP estimator σ̂2. The joint probability model across all

pairwise distances is

π(δ(ω)|γ , σ̂2) ∝ 11[δ(ω)>0] exp{− σ̂
2

2

∑
1≤i<j≤n

(δ
(ω)
ij − γij)2}, (11)

where δ(ω) = {δ(ω)
ij }1≤i<j≤n and γ = {γij}1≤i<j≤n.

Given the prior π(γij) ∝ 11[γij>0], the posterior distribution for γij is

π(γij|δ
(ω)
ij , σ̂

2) = 11[γij>0]No(δ
(ω)
ij , σ̂

2),

so that the joint distribution across all pairs has the same form as Equation (11) and the

MAP equals δ(ω).

7.2.2 Steps 2: Construct Visualization

We do not model r explicitly for visualization. Rather, we assess a posterior estimate of the

visual distances, γ̂ and solve for r using an expression similar to Equation (9),

r = argmin
r1,...,rn

∑
i<j

|‖ri − rj‖ − γ̂ij|. (12)

A natural choice for γ̂ is the map of π(γ |δ(ω), σ̂2). In reference to Section 4.2, the visualiza-

tion v displays r which is a function of γ̂ ; v = g(γ̂).

7.2.3 Steps 3: Cognitive Feedback

Observations that are far apart in the high dimensional space should appear far in the low

dimensional display v, and similarly, observations that are close high dimensionally should

appear close in v. If the display contradicts the judgements of experts for at least l = 3

observations, experts may adjust the l observations accordingly and provide a measure κ
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(κ ∈ [0, 1]) as defined in Section 4.3.1.

Unlike the projection based BaVA in Section 5, experts may manipulate more than two

points. In fact, l ≥ 3 is needed to make noticeable changes in the updated display. Let r̃

and γ̃ define f (c) and represent the set of l manipulated observations and the
(
l
2

)
pairwise

distances respectively.

7.2.4 Step 4: Parametric Feedback

As mentioned previously, display manipulations reflect the distribution of weights across the

dimensions. Thus, we use f (c) to solve for new weights ω̃ and the parametric feedback, f (p).

We use a constrained, gradient search (Mordecai, 1976) to solve for ω̃ in

ω̃ = argmin
ω̃

p∑
i<j≤l

∣∣∣∣∣∣γ̃ij −
√∑

k

ω̃k(di,k − dj,d)2

∣∣∣∣∣∣ ,
such that

∑
k ω̃k = 1. Given ω̃, we re-calculate all high dimensional, weighted pairwise

distances to derive the parametric feedback; i.e., f (p) = δ(ω̃). By Equation (10) f (p) has the

following distribution

π(f (p)|γ , α) = 11[f (p)>0]No(γ , α),

where α = σ̂2(1− κ)/κ. We will justify the expression for α in the next section.

7.3 Step 5: Update the Model Based on Feedback

Recall from Section 7.2.2, we visualize r which we derive from the MAP of π(γ |δ(ω), σ̂2).

We apply Bayesian sequential updating to include f (p) in the posterior analysis of γ ,

π(γ |δ(ω), f (p), σ̂2) ∝ π(f (p)|γ , α)π(γ |δ(ω)) ∝ 11[γ>0]No(µ,Σ),
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where

µ =
σ̂2f (p)

σ̂2 + α
+

αδ(ω)

σ̂2 + α
, Σ = Im

σ̂2 + α

σ̂2α
, (13)

m =
(
n
2

)
, and Im represents an identify matrix of dimension m. Notice that the MAP

estimator µ is a weighted average of f (p) and the data δ(ω). In Section 7.2.4, we solved for

α such that κ = σ̂2(σ̂2 + α)−1.

Based on Steps 1-5 in this section, we have the foundation to apply BaVA MDS. Thus,

we provide an application in the next section.

7.4 MDS Application

To exemplify the benefit of MDS in the BaVA framework, we consider the well known “Iris

Data” (Fisher, 1936). This dataset includes three sets of 50 observations for the following

iris species: Iris setosa, Iris virginica, and Iris versicolor. Four measurements were taken for

each observation including sepal length, sepal width, petal length, and petal width. Since

the species are known, this dataset is often used in both the statistical and machine learning

literature as a benchmark dataset for supervised learning methods, including discriminant

analyses and classification algorithms. Our goal is to take a supervised learning approach

and discover visually (if possible) variables which separate the iris species well.

To meet our goal we apply the steps from Section 7.2. First, we standardize the data and

calculate all pairwise distances δ(ω) based on ω = {0.25, 0.25, 0.25, 0.25}. Second, we solve

for r which we display in Figure 8a) and calculate all low dimensional, pairwise distances

γ . Despite the presence of three iris species, Figure 8a) contains only two clear clusters. We

cannot separate Iris virginica from Iris versicolor when we consider each dimension to be

equally predictive of species. Third, we select six or seven observations (20 observations in

total) at random from each species as displayed in Figure 8a) and inject feedback. Specif-

ically, we cluster the selected observations by species in separate areas of the latent space
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Figure 8: Figure a) displays the initial WMDS projection of the iris dataset where ω =
{0.25, 0.25, 0.25, 0.25}. The observations for Iris setosa, Iris virginica, and Iris versicolor
and denoted by +, • and ◦ respectively. Figures a) also highlights in red the observations
we decided to move to inject feedback. Figure b) displays where we opted to place the
observations. Figure c) presents the updated iris display after injecting feedback. Notice
three visible clusters in Figure c). We add lines to separate the clusters in Figure d).
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(Figure 8b) and set κ = 1. Since this is a supervised learning strategy, we are very confident

in our feedback. Fourth, we solve for ω̃ and α to specify π(f (p)|γ , α). Fifth, we update

π(γ |δ) and display the MAP of π(γ |f (p), δ) in Figure 8c).

We see in Figures 8c) and 8d) that, with the exception of five observations, Iris virginica

andIris versicolor separate nicely. This separation is due to the updated weights which

solved previously to be ω̃ = {0.194, 0.0643, 0.742, 0.000}. According to ω̃, the differences

between the species is explained mainly by petal length (0.742) and sepal length (0.194),

and independent of petal width (0.000).

8 Discussion

Johnson (2004) listed the current top ten scientific visualization research problems, two of

which included the need for integrated problem solving and the development of tools to

enhance human-computer interaction. BaVA is a novel solution for both problems. Unlike

typical data displays that simply communicate analytical results, BaVA visualizations serve

as a means for experts to synthesize information in the data, interact with the data if desired,

and guide automated, analytical procedures.

In effect, experts and machines share the responsibility of knowledge discovery when us-

ing BaVA machinery. Since BaVA relies fundamentally on quantitative characterizations of

the data (e.g., Bayesian statistical models), it has the potential to reveal both unexpected

and expected data structure in visualizations. Experts may learn new information from

unexpected data structures (Zhao et al., 2005; MacInnes et al., 2010) and validate the ana-

lytical procedure informally based on the identification of expected structure. The presence

of expected structure gives experts confidence in the analytical approach. In the event that

a visualization is missing expected structure, experts may include feedback in the analyti-

cal approach via display adjustments. These adjustments include intuitive manipulations of

data points and are not limited to standard interactive procedures such as filtering, zoom-
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ing, distorting, and linking/brushing observations as detailed in Keim (2002). Furthermore,

experts need not understand the statistical underpinnings of BaVA to make adjustments.

With careful thought, the BaVA framework applies to a variety of statistical models,

dimension reducing methods, and data mining techniques. In this paper, we provided three

examples for two dimension reduction methods: PPCA and WMDS. To do so, we used

probabilistic forms of the reduction methods and developed prototypes mainly in ggobi.

These prototypes allow experts to adjust two points in the BaVA application of PPCA

and three or more points in the BaVA application of WMDS. Other types of cognitive

arrangements are possible and constitute future research.

A continuing challenge is the development of BaVA data displays that incorporate visu-

alization uncertainty. We mentioned in Section 4.2 that we condition on a chosen method

to visualize posterior results, yet the visualization itself may contain uncertainty. The visu-

alization v may have distributions π(v|θ) and π(v|d) where

π(v|d) =

∫
π(v|θ)π(θ|d)dθ.

Including visualization uncertainty in displays may influence experts to make adjustments

that they would not have otherwise chosen.

A PPCA

Provided π(W ) ∝ 1, π(µ) ∝ 1, and π(σ2) ∝ σ−2, the posterior distribution of r is

π(r|d) = No
(

(Ŵ
′
Ŵ )−1Ŵ

′
(r − µ̂), σ̂2(Ŵ

′
Ŵ )−1

)
, (14)

where Ŵ , µ̂, and σ̂2 represent the maximum likelihood estimate (MLE) for Equation (2).

Under the isotropic model constraint (Var[εi] = Ipσ
2 for i ∈ [1, ..., n]), we obtain the MLE
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for W as

Ŵ = V (Λ− σIq)
1/2R,

where V are the q largest eigenvectors in Sd, Λ is a diagonal matrix of the associated

eigenvalues (λi, i ∈ [1, ..., q]), and R represents an arbitrary rotation matrix, which for

simplicity can equal the identity matrix. This shows a direct relationship between PCA and

isotropic factor models, since there is a mapping through the orthogonal principal space that

relates the d to the lower dimensional space which contains r.

B Solving for v(o)

Finding a solution for Equation 5 is equivalent to solving the Lagrange multiplier problem:

{v(o), λ1, λ2} = argmax
v(o),λ1,λ2

f(v(o), λ1, λ2),

where

f(v(o), λ1, λ2) = Var[v(o)′d]− λ1(v
(o)′v(o) − 1)− λ2v

(o)′v(u)

= v(o)′Σv(o) − λ1(v
(o)′v(o) − 1)− λ2v

(o)′v(u)

∂f

∂v(o)
= Σv(o) − λ1v

(o) − λ2v
(u) = 0. (15)

When we multiply both the center and right sides of Equation (15) by v(u)′, we obtain

λ2v
(u)′v(u) = 0 (because v(u)′v(o) = 0 by definition) and deduce that λ2 = 0. Substituting

λ2 = 0 in Equation (15) yields Σv(o) = λ1v
(o). Hence, v(o) is an eigenvector of Σ with the

eigenvalue λ1. To determine the exact eigenvector, we recall that we are maximizing the

quantity v(o)′Σv(o) = v(o)′v(o)λ1 = λ1. Thus, v(o) corresponds to the eigenvector of Σ with

the largest eigenvalue.
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C Solve for Basis (v(1), v(2))

Find a basis (v(1), v(2)) that satisfies ∆′v(1) = ∆′v(2) = v(1)′v(2) = 0. Let a = −(
∑p−1

i=1 ∆i)∆
−1
p

and define v(1) as [1p−1, a]′ where 1p−1 represents a p−1 vector of ones. With this definition,

∆′v(1) = 0. Similar to v(1), define v(2) as [1p−2, b, c]
′, where the solution for b and c is

determined by solving the following system:

 ∆p−1 ∆p

1 a


 b

c

 = −

 ∑p−2
i=1 ∆i

p− 2

 .
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