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Abstract

We introduce a novel algorithm that decomposes a deformable shape into meaningful parts requiring only a single
input pose. Using modal analysis, we are able to identify parts of the shape that tend to move rigidly. We define a
deformation energy on the shape, enabling modal analysis to find the typical deformations of the shape. We then
find a decomposition of the shape such that the typical deformations can be well approximated with deformation
fields that are rigid in each part of the decomposition. We optimize for the best decomposition, which captures how
the shape deforms. A hierarchical refinement scheme makes it possible to compute more detailed decompositions
for some parts of the shape.
Although our algorithm does not require user intervention, it is possible to control the process by directly changing
the deformation energy, or interactively refining the decomposition as necessary. Due to the construction of the
energy function and the properties of modal analysis, the computed decompositions are robust to changes in pose
as well as meshing, noise, and even imperfections such as small holes in the surface.

Categories and Subject Descriptors (according to ACM CCS): Computational Geometry and Object Modeling
[I.3.5]: Geometric Algorithms, Languages, and Systems—Computational Geometry and Object Modeling [I.3.5]:
Physically-Based Modeling—Simulation and Modeling [I.6.5]: Model Development—

1. Introduction
Decomposing 3D shapes into meaningful parts is a chal-
lenging problem. Segmentation algorithms for 3D geome-
try have wide ranging applications in various branches of
computer graphics. In modeling, meaningful shape decom-
positions allow us to composite new shapes in an intuitive
way [FKS∗04]. In computer animation, new poses can be
created by compositing transformed parts of a given shape
[SZT∗07, BP07]. Moreover, shape segmentations give us a
way to understand [HOP∗05], or compare and match shapes
[GCO06]. In these algorithms, the segmentation provides
knowledge about the semantics of the shape: Good shape
decompositions should partition the shape reflecting func-
tional or logical units. This semantic component makes the
problem a hard one, and in many cases, an ill-posed one.

We are particularly interested in decomposing an ob-
ject into (almost) rigid components. Previous approaches
[JT05, SY07] rely on the input of multiple example poses
and accurate correspondences across these example poses.
However, such data sets are hard to acquire in practice, in
particular if the shapes are scanned from real-world objects.

In this paper, we introduce a novel approach to shape de-
composition that is based on analysis of the typical deforma-
tions of the shape S. We aim to find a partition of the shape
into parts Pi, such that if the parts were rigid components of
an articulated shape A, the typical deformations of S can be
approximated by poses of the articulated shape A.

Our framework for shape decomposition and skeleton ex-
traction is based on the observation that we can extract in-
formation about the typical deformations of a shape from
the shape alone. We therefore only require a single pose to
compute such a partition. Using modal analysis, we compute
the typical deformation modes of the shape. Modal analysis
uses spectral analysis of the Hessian of a deformation en-
ergy to find the shape’s eigenmodes, which form a basis for
the space of possible deformations. By using only the eigen-
modes corresponding to the lowest eigenvalues, we can re-
strict our analysis to the low-energy, low-frequency defor-
mations that are particularly interesting for decomposition
purposes.

We then find a decomposition of the shape by minimiz-
ing the difference between an optimal articulated (piecewise
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rigid) deformation defined on the parts of the decomposition
and each basis vector of the space of typical deformations.
The decomposition that minimizes this approximation error
is our desired result.

We also introduce a method to compute subspaces of de-
formations that locally optimize quality measures defined on
the shape. Using this method, we can compute optimized
part boundaries by considering a subspace of deformations
that optimizes rigidity within the adjacent parts. The same
technique is used to refine the decomposition in a hierarchi-
cal fashion.

Given the output of our decomposition algorithm, we
compute an articulated skeleton of the shape as a step to-
wards an animated articulated model.

Our algorithm computes good decompositions fully auto-
matically, and in fact the examples in this paper were com-
puted with the same parameters, unless otherwise indicated.
Nevertheless, our algorithm is highly controllable, either by
modifying the energy function (e. g. by varying stiffness), or
by manually controlling where and how far to refine.

Our results indicate that the decompositions computed by
our algorithm nicely capture the deformations of the input
shapes. Our method is very robust to different poses, surface
noise, and even handles small imperfections such as holes in
the surface.

The remainder of this paper is structured as follows: After
discussing related work in Section 2, Section 3 will give an
overview of our pipeline. In Section 4, we describe how the
shape is analyzed using modal analysis. Section 5 describes
how to compute a decomposition from the eigenmodes of
the shape. Methods to improve the initial decomposition by
boundary optimization and hierarchical refinement are pre-
sented in Section 6. Section 7 treats skeleton extraction. Our
results are discussed in Section 8.

2. Related Work
Shape segmentation has been treated in scores of publica-
tions in the past. For a good overview of the literature, we
refer the reader to [Sha06]. In this paper, we will restrict the
discussion to papers on logical segmentations or shape de-
compositions, excluding work on patch segmentations used
for parameterization, rendering, or mesh processing.

Probably the most robust way of performing articulated
shape decomposition is to start from multiple registered ex-
ample poses of a given object [JT05, SY07]. Example poses
provide rich information about which points move rigidly
together. However, obtaining complete, registered poses is
hard in some applications, such as the segmentation of a
scanned real-world model.

Given an articulated object, some of the general shape
segmentations [KT03, YLL∗05, LZHM06, LLS∗05, KJS07,
dGGV08] that use local feature descriptors are able to seg-
ment some of the rigid parts. However, these methods com-

pute segmentations based on geometric features on the sur-
face. These features often lie on the boundaries of logical
parts, and thus such algorithms can find functional units in
a shape. Noise, as well as differences in pose are however
likely to distort the resulting segmentations, as purely geo-
metric algorithms have no notion of the actual deformations
a shape undergoes.

Katz et al. [KLT05] compute segmentations based on a
space embedding of the shape using multi-dimensional scal-
ing. The embedding depends on the geodesic distances be-
tween surface points and is therefore independent of pose.
The method relies on finding the core component of the
shape, which works well for bodies of animals and humans,
but is harder to define for more general objects. Decompo-
sition based on the shape diameter function [SSCO08] also
yields segmentations that are mostly independent of pose.

Mortara et al. [MPS∗04] provide an interesting approach
to identifying tubular parts of a shape. Their approach works
even for complicated topologies, however, it is limited to
tubular segments. [LKA06] propose a method for segmen-
tation based on the quality of the skeleton induced by the
decomposition. This yields particularly nice skeletons, but
objects with complex topology can cause trouble. Another
interesting way of computing a skeleton is by topology-
preserving mesh contraction [ATC∗08].

Variational shape segmentation techniques aim to seg-
ment a shape into patches that have some common property.
For example, the points within a patch might be well approx-
imated by a parametric surface [CSAD04, WK05, YLW06]
or kinematic surface [GG04, HOP∗05].

Our method is most closely related to spectral techniques.
Spectral techniques have been used in image segmentation
and clustering (see e. g. [Wei99]). For 3D shapes, spectral
analysis of the Laplacian has been used in shape segmenta-
tion, and promising results were presented [LZ07, Rus07].
Our work provides some background on why the Laplacian
yields good results: The weighted Laplacian is the Hessian
of a linearized thin plate energy.

Modal analysis is a technique which aims to find typ-
ical vibration modes in physical models. In the context
of computer graphics, it has mainly been used to speed
up computations by omitting higher-energy modes, and re-
ducing the problem to a lower-dimensional one (see e. g.
[PW89, JP02, CK05, BJ05]). Besides its obvious uses in
physical modeling, modal analysis has been used in image
matching [SP95], where it proves useful due to its invari-
ance properties. We exploit these same properties to achieve
robustness to noise.

3. Overview
The complete pipeline of our algorithm is illustrated in
Fig. 1. We harness modal analysis, which computes the vi-
bration modes of a deformable model, forming a basis for all
possible deformations. The knowledge about how the shape
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. . .
(a) (b) (c) (d) (e)

Figure 1: Our shape decomposition pipeline. (a) Computing a space of typical deformation modes. (b) Identifying the number
of segments and computing a rough initial segmentation. (c) Optimizing patch boundaries using discriminating deformations.
(d) Hierarchical refinement. (e) Skeleton extraction. Note that non-adjacent patches are distinct, even if they share a color.

deforms is encapsulated in a deformation energy. The defini-
tion of this deformation energy is entirely left to us; we use
the energy function introduced in [SA07].

Modal analysis is a technique based on eigen-
decomposition of the Hessian of the energy function.
The eigenvalues of the Hessian, the eigenmodes of the
shape, provide a basis for the space of possible defor-
mations. The eigenvalue associated with each eigenmode
contains its respective energy content. The deformations that
we are interested in lie in the space spanned by low-energy
modes. These are the first deformations to appear when
the shape is subjected to external forces, making them the
most likely and most common deformations. When used in
physics-based modeling, modal analysis used to restrict de-
formations to the low-energy modes since they are sufficient
to represent common motions (see e. g. [PW89, BJ05]).
Fig. 2 shows the first few eigenmodes of the cow model for
our chosen energy. The deformation modes are represented
as per-vertex displacements.

Given a basis of the space of typical deformations, we
compute an articulation score for each of the eigenmodes.
We use this score to weight the contribution of eigenmodes
to the objective functions, giving more weight to more artic-
ulated eigenmodes. Since our objective functions measure
how well eigenmodes can be approximated by piecewise
rigid functions, this weighting makes sure that we approx-
imate articulated deformations well, instead of diluting our
results by trying to approximate deformations that cannot be
well approximated by piecewise rigid functions.

Using Lloyd clustering with seed points in regions of high
local rigidity, we then compute a partitioning of the shape
that minimizes the weighted approximation error for all low-
energy eigenmodes. In other words, the result of this opti-
mization is a partitioning that is best suited to approximate
all low-energy deformations if we consider its parts rigid.

We can improve the results of our decomposition by re-
fining the part boundaries. For each boundary between a set
of parts, we apply the same clustering technique, but we use
a subspace of the typical deformations that are particularly
well-suited to distinguish between a specific set of adjacent
parts.

The same technique can be applied to hierarchical refine-
ment: by computing a subspace of the low-energy deforma-
tions that is optimal for a specific part P of the decomposi-
tion, we can decompose P the same way we partitioned the
original shape. The eigenvalues of the restricted eigenprob-
lem give us a natural termination criterion.

Once the decomposition is complete, we extract a skele-
ton by associating each part with a rigid bone. A minimum
spanning tree on the connectivity graph of the decomposi-
tion is used to connect the bones with joints. A side product
of our algorithm are association weights that tether the sur-
face to the skeleton. While these weights are no replacement
for rigging weights created by a skilled animator, they are a
good starting point for rigging the model.

4. Deformation Analysis
In order to analyze the deformations of a surface S, let us
consider a discretized version of S defined by a number of
points P = {p1 . . .pN}. The amount of energy necessary to
deform the shape is given by an energy function E(u), where
the deformation u = [uT

1 . . .uT
N ]T consists of displacement

vectors for each of the defining points in P .

Modal analysis [PW89] analyzes the Hessian H = ∂2E
∂u2 of

the deformation energy to infer knowledge about the defor-
mations of S: If we consider the surface to be a dynamic sys-
tem, the eigenspectrum of H gives us information about the
vibration modes (in the eigenvectors vk) and vibration fre-
quencies of S (in the eigenvalues λk). Fig. 2 shows an exam-
ple using the energy function defined below. The eigenvalues
indicate the energy content of the corresponding deforma-
tion mode. Therefore, we are mainly interested in eigenvec-
tors to small eigenvalues. Since these modes have low en-
ergy content, they are the modes that the shape most likely
undergoes: Only little energy is needed to deform the shape
within the space of low-energy deformations, and such de-
formations occur naturally. On the other hand, high-energy
deformations require strong external forces, and are there-
fore uncommon. Note that the eigenvectors to eigenvalue 0
span the space of motions to which the deformation energy is
invariant. In almost all cases, these include rigid-body mo-
tions (a six-dimensional subspace). In the following, these
trivial eigenvectors will be ignored.
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Figure 2: The first 14 non-trivial vibration modes of the Cow2 model using the energy (1). They nicely capture the articulated
structure of the shape, separating body parts such as legs, head, and ears. The deformation fields are shown as vectors vk

i at
each vertex pi.

We will assume that the eigenvalues (and their corre-
sponding normalized eigenvectors) are ordered in ascending
order, i. e. ∀i < j : λi ≤ λ j. The space spanned by the first Nt
nontrivial eigenvectors, which we will also call the space of
typical deformations, shall be denoted as UNt .

4.1. Deformation Energy
In order to perform modal analysis, we require an energy
function. For simplicity, we use an energy defined solely by
the surface, which does not require discretization of the inte-
rior of the shape. We adopt the “as rigid as possible” defor-
mation energy proposed in [SA07], shown in (1). Other shell
energies, such as a thin-shell energy [GHDS03], or an en-
ergy favoring isometric deformations [KMP07] can be used
as well, with similar results. For any set of points P , we de-
fine

EP (u) = ∑
pi∈P

min
ci

∑
j∈Ni

wi j‖ci×(pi−p j)−ui +u j‖2, (1)

Here, Ni = N (pi) = { j : ‖p j − pi‖ < ε} is a set of in-
dices of neighboring points for each point pi. The terms
ci × (pi − p j) are a first-order approximation to a rotation
of ‖ci‖ rad around the axis ci. The best matching ci are com-
puted by shape matching to the neighborhood. The weights
wi j are nonzero only if i ∈ Nj or j ∈ Ni, and should re-
flect sampling density and local geometry; we found that the
simple symmetric wi j = (|Ni|+ |N j|)−1 gives good perfor-
mance.

Common deformations have low energies, and are nicely
represented in the space spanned by the first nontrivial eigen-
vectors UNt = span{v1, . . . ,vNt}, even for small Nt . In prac-
tice, we use Nt ≈ 100.

4.2. Computing the Hessian
In order to perform modal analysis, we need the Hessian
of the deformation energy. Since the energy function uses
a shape matching step, its Hessian is hard to evaluate di-
rectly. To compute the Hessian of any energy that uses such
an optimization step, we can use the following observation:

Given a function g(x) = f (x,y(x)), where y(x) =
argminy f (x,y), the Hessian of g is given by

∂2g
∂x2 (x)= ∂2 f

∂x2 (x,y(x))+ ∂2 f
∂x∂y (x,y(x))·

[
∂2 f
∂y2 (x,y(x))

]−1
· ∂2 f

∂y∂x (x,y(x)). (2)

Please refer to the appendix for a derivation. To apply this
equality, we rewrite our energy function in matrix form:

EP = [uT cT ]
(

L⊗ I3 B
BT C

)[
u
c

]
, (3)

where u contains displacement vectors for all points in P ,
and c contains the optimal vectors c at all points in P . Fur-
thermore, L is the weighted graph Laplacian, in our case

Li j =
{

∑k−wik i = j,
wi j otherwise. (4)

⊗ denotes the standard tensor product and I3 is the 3× 3
idenitity matrix. The matrix B is a block matrix whose 3×3
blocks are defined as

Bi j =
{

(∑i wik(pi−pk))× j = i,(
−wi j(pi−p j)

)
× otherwise, (5)

where we use the notation x× as the matrix associ-
ated with taking the cross product with x. Finally, C =
diag(C1 . . .C|P|) is a block diagonal matrix that contains the
covariance matrices of the point neighborhoods:

Ci = ∑
j∈Ni

wi j(pi−p j) · (pi−p j)
T . (6)

By associating u with x and c with y, we can use (2) to
obtain an expression for the Hessian of EP :

∂2EP
∂u2 = HP = L⊗ I3−BC−1BT , (7)

which we in turn analyze to compute eigenmodes of the
shape. Note that if we omit the shape matching part and sim-
ply compare displacements, the Hessian becomes the Lapla-
cian. Methods based on spectral analysis of the Laplacian
are therefore closely related to a special case of our algo-
rithm for a particular choice of energy function.
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5. Decomposition
Modal analysis provides us with a space of likely, or typi-
cal deformations, UNt , as well as a basis UNt = [v1, . . . ,vNt ]
for this space. We will approximate those basis vectors with
piecewise rigid deformations, and use the approximation er-
ror as an objective function to compute an optimal decom-
position into rigid parts. We have found that weighting the
contributions of the basis vectors to the objective function
greatly improves the results.

In this section, we will describe how we compute articu-
lation scores for each basis vector, and how we cluster the
vertices of our shape into parts such that the objective func-
tion is optimized. The results of this initial decomposition
are further improved by boundary optimization and hierar-
chical refinement as described in Section 6.

5.1. Articulation Scoring
As mentioned above, we are aiming to find one decompo-
sition that can approximate all basis vectors vk. However,
not all basis vectors are equally important, and we have to
choose weights to adjust the contribution of their respective
approximation errors to the objective function.

An obvious strategy for choosing weights ak for vk is to
use their corresponding eigenvalues: ak = 1/

√
λk [Rus07].

This gives higher weights to lower-energy modes.

We found that in our case, much better results are obtained
using a variation: Some deformations can not be well ap-
proximated with piecewise rigid functions. In order to avoid
overfitting to these non-articulated deformations during clus-
tering, we give more weight to basis vectors that are articu-
lated, and therefore should be easy to approximate.

To compute such weights, we first define the local rigid-
ity error for a given deformation vector u at point i as the
contribution of this point to the global energy:

Ei(u) = min
ci

∑
j∈Ni

‖ci× (pi−p j)−ui +u j‖2. (8)

Assembling the square roots of the rigidity errors into a vec-
tor E(u) = [

√
E1(u), . . . ,

√
EN(u)]T , we can use the 1-norm

to define a score for any deformation

a(u) =
1

‖E(u)‖1
(9)

Note that this definition is closely related to using eigenval-
ues, since

√
λk = ‖E(vk)‖2. However, using the 2-norm fa-

vors deformations that are evenly distributed, while in the
1-norm, articulated deformations have lower energies.

Finally, we define the weights for the basis vectors vk as

ak =
a(vk)
amin

, (10)

where amin = mink a(vk). We use the articulation scores
whenever we construct an objective function that is opti-
mized over all basis vectors UNt . Given an arbitrary function

f (u) defined for a deformation field, a convenient short-hand
notation will be

f (UNt ) =
Nt

∑
k=1

ak f (vk) (11)

to denote the weighted objective function considering the
complete subspace UNt .

5.2. Clustering
The decomposition partitions the shape into disjoint patches
P j. We use a variant of k-means clustering to find an optimal
decomposition. For this process, we need strategies to find a
good number of clusters, locations for cluster seeds, and a
local error measure to guide the clustering. We will describe
these components in the following paragraphs.

Since we are aiming to approximate a deformation u with
a piecewise rigid deformation field, we compute an optimal
linearized rigid approximation Tu

P j
(p) = p+ c̄u

j +cu
j ×p for

each part P j of the shape. With each part, we store such
transformations for all basis vectors, Tvk

P j
, k = 1 . . .Nt .

Given a deformation field u and the transformation Tu
P j

,
we can then define a local approximation error for any point
pi with respect to a part P j as

li j(u) = ‖Tu
P j (pi)−pi−ui‖2 = ‖c̄u

j +cu
j ×pi−ui‖2. (12)

We compute the optimal Tu
P j

by choosing c̄u
j and cu

j to
minimize ∑pi∈P j li j(u), which requires solving a linear sys-
tem in a least-squares sense. In the following, we will use
li j(UNt ) as defined by Eq. 11.

Since the number of parts is initially unknown, we start
with only one patch, and add clusters in a greedy fashion.
Whenever a patch is added, we select the new patch seed to
be the surface point that has an above-average local fitting
error li j(UNt ) > lavg with respect to its currently assigned
part P j and minimizes the local rigidity error Ei(UNt ).
Fig. 3 shows some models colored according to local rigid-
ity. Points with high local rigidity tend to lie near the center
of rigid parts of the model, and are therefore good starting
points for the clustering algorithm.

After seed points have been identified, we use a standard
multi-seed breadth-first search to assign all surface points to
clusters. A few iterations of Lloyd relaxation minimize the
local approximation error.

To determine the optimal number of patches, we plot the
logarithm of the maximum local approximation error as a
function of the number of seeds n used. Fig. 4 shows ex-
amples. Note that the maximum fitting error has a spike in
its (discrete) curvature whenever we find a sensible number
of seeds. We therefore pick the number of seed points that
maximizes the discrete curvature.

This strategy reliably finds a good number of seeds for
simple models whose articulated structure is clear. For more
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Figure 3: The points in the models are colored according
to local rigidity. The points with highest local rigidity (red)
lie near the centers of rigid parts.

(a) (b)

Figure 4: The logarithm of the maximum local fitting er-
ror (bottom graph) plotted against the number of patches,
as well as the discrete curvature of the function (top graph).
Good patch counts maximize the discrete curvature.

complicated models, the results can be ambiguous, even
though all possibilities correspond to good segmentations.
If no user guidance is available in an ambiguous case, we
choose the number of patches that is preceded by the biggest
decline in approximation error. Once hierarchical refinement
is used, choosing the right number of patches become much
less important. Our experiments suggest that hierarchical re-
finement leads to the same result independent of the number
of patches chosen in the initial iteration.

6. Patch Optimization
Once we have obtained an initial decomposition, we opti-
mize the parts further by considering deformations from UNt

that are optimized to be particularly useful in the region of
interest. We use these fields for boundary optimization as
well as hierarchical refinement.

6.1. Locally Optimized Deformation Fields
Given a region of interest I, we can compute a subspace
of UNt that contains the deformations that have low energy
content EI within I, while not considering their behavior in
the rest of the shape. As before, we can compute the Hessian
HI , which is simply a restriction of HP to vertices in I.

Analogous to computing the typical deformations of the
complete shape, we now compute a subspace of the typi-
cal deformations that have small deformation energy in I.

Since we are not choosing from the complete space of pos-
sible deformations but from the subspace UNt , this leads to a
generalized eigenproblem

UT
Nt HIUNt x = κUT

Nt SIUNt x, (13)

Where the selection matrix SI = diag(δI)⊗ I3 is a diagonal
matrix with zero entries for all points not in I.

As before, we obtain eigenvalues κk and eigenvectors xk.
The eigenvectors in turn yield deformation vectors zk =
UNt x

k, which we assemble into a matrix UI = [z1, . . . ,zNt ].

When using the locally optimized vector fields, we also
modify the articulation weights ak to consider only rigidity
within I.

6.2. Local Boundary Optimization
In order to refine the boundaries between parts, we define a
kernel region K j and a support region R j for each part P j.
Suppose the maximum local approximation error of points in
P j is RP j = maxpi∈P j li j(UNt ). We define the kernel region
as all points in P j whose local approximation error is small,

K j = {pi ∈ P j | li j(UNt ) <
RP j

4
}. (14)

The support region R j is the largest contiguous set of points
that includes the kernel K j, and contains neither points that
are part of another kernel, nor points with a local approxima-
tion error li j(UNt ) > 2RP j . We compute R j using breadth-
first search.

The boundaries of patches are optimized for groups of
patches whose support regions overlap. These are the small-
est units that can be optimized independently. We start as-
sembling patch groups by forming groups of two patches:
Each pair of neighboring patches {Pi,P j}, where Ri ∩
R j *= ∅, forms one group. If there is a three-way intersec-
tion between patches Pi, P j, and Pk, i. e. Ri ∩R j ∩Rk *=
∅, we remove the two-element groups and add a group
{Pi,P j,Pk}. This procedure is repeated for more complex
intersections, although these are rare. An example of a patch
group with 4 elements is shown in Fig. 5.

For each group G = {P j1 , . . . ,P j|G|}, we compute a ba-
sis of locally optimal deformations UG as described in Sec-
tion 6.1, and reapply the clustering method as described in
Section 5.2 for all parts in G. This redefines the boundaries
between parts in G, while leaving the rest of the segmenta-
tion untouched. Fig. 5 shows an example of this process.

6.3. Hierarchical Refinement
It is straightforward to extend our algorithm to support hi-
erarchical refinement. To refine a part P j, we compute lo-
cally optimized typical deformations UP j as described in
Section 6.1. We then continue with the segmentation pro-
cedure as discussed in Section 5, restricting our operations
to P j only. Fig. 6 shows an example of hierarchical refine-
ment on the dragon’s leg. For non-interactive processing, we
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· · ·
(a) (b) (c)

Figure 5: Optimizing the patch boundaries. (a) A group of
4 patches before the optimization. The support regions of the
leg, tail, and body patches overlap in the gray area; the ker-
nels are colored red, blue, and gold. (b) Optimized local vec-
tor fields are computed to determine the patch boundaries.
(c) Result of the boundary optimization.

· · ·
⇒

Figure 6: A leg of the dragon is refined using deformation
fields optimized for this patch.

stop the hierarchical refinement when the smallest non-zero
eigenvalue κ1 computed for a part P j is greater than the
largest initial eigenvalue computed for the complete shape,
λNt (note that as we restrict P j, κ1 increases). Intuitively,
this criterion stops processing when we cannot find vector
fields from UNt whose restriction to P j is interesting.

Since hierarchical refinement reuses the initial eigenvec-
tors and applies a global termination criterion, the result of
hierarchical refinement is typically independent of the initial
number of patches, making the “correct” number of patches
a much less critical parameter.

7. Skeleton Extraction

The decomposition extracted in the previous sections can be
used to define a skeleton. Each part is associated with a bone
of the skeleton. We will first discuss how to compute associ-
ation weights, before we extract the skeleton structure.

7.1. Association Weights

Association weights determine how the rigid transforma-
tions of the skeleton bones are interpolated onto the surface.
In our case, the transformations are given for the kernel of
each part. We compute weights w(P j,pi) that determine the
contribution of the rigid transformation given for the part P j
to the transformation of pi. We choose these weights to be
local, such that only neighboring parts contribute to the de-
formation of a surface point.

For each point pi, we define a set of neighboring parts
G(pi) = {P j | pi ∈R j}, and compute locally optimized typ-
ical deformation fields UG(pi).

We then find the association weights by minimizing the
difference between deformations created using the skele-
ton and the typical vector fields. Given the (linearized) rigid
transformation Tu

K j
that minimizes the maximum local ap-

proximation error maxpi∈K j li j(u) for some deformation u,
we seek weights w(P j,pi) that minimize

∑
k

∥∥∥pi + zk
i −∑

j
w(P j,pi)Tzk

K j (pi)
∥∥∥

2
, (15)

subject to the positivity and partition of unity. This mini-
mization can be solved efficiently as a quadratic program.

The resulting weights faithfully reproduce the locally op-
timized vector fields. However, since the patch group asso-
ciated with each point changes, there is no formal guaran-
tee that the computed weights are smooth across the surface.
Therefore, we apply a few steps of Laplacian smoothing, and
renormalize the weights.

7.2. Skeleton Structure
While it is obvious that each part of the decomposition
should be associated with one bone of the skeleton, it is
unclear what is the best joint structure connecting these
bones. We use the association weights to connect those
bones whose associated patches overlap most. To this end,
we consider a weighted neighborhood graph of the decom-
position. Each edge in this graph is weighted by

w(P j,Pk) =

[

∑
pi∈P

w(P j,pi)w(Pk,pi)

]−1

. (16)

We then compute the joint structure of the skeleton as the
minimum spanning tree (MST) of the weighted patch neigh-
borhood graph.

We position each node of the MST with the barycenter
of its associated kernel. Each edge in the MST is associ-
ated with a joint, which is positioned at the barycenter of
the boundary curve between the two parts connected by this
joint. Fig. 8 shows skeletons for various models.

8. Results and Discussion
We have tested our segmentation algorithm on various sur-
face models. The results of the segmentations, as well as the
extracted skeletons, are shown in Fig. 8. Table 1 summarizes
timing and model statistics. All timings were measured on
a 3.2 GHz PC with 2GB RAM. The total computation time
is clearly dominated by the eigen-decomposition of the Hes-
sian. This decomposition has to be performed only once per
model, all other steps allow for interactive intervention.

Note that our method is applicable to noisy and even in-
complete models. For demonstration purposes, we perturbed
the vertex positions of the Cow2 model by adding Gaussian
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(a) (b)

(c) (d)

Figure 7: Robustness to noise and sampling. (a) Decom-
position of a uniformly sampled version of the Cow2 model.
(b) With noise and holes added. (c),(d) Irregular sampling.
The right side is sampled more densely than the left. The re-
sulting decomposition shows no appreciable differences to
the uniformly sampled version.

noise (with a variance equal to 1% of the model diagonal)
in normal direction, and carved holes in the side of its body,
head, and legs. As shown in Fig. 7, the segmentation is ro-
bust against these modifications as long as the underlying
articulated structure is not changed. We have also run the de-
composition on a Cow2 model with varying sampling den-
sity. As long as the energy is chosen appropriately, the sur-
face sampling has no influence on the result.

The segmentation produced by our algorithm is also ro-
bust to isometric and/or articulated deformations. The two
elephant models shown in Fig. 8 (a) have significantly dif-
ferent poses, yet the computed segmentations are virtually
identical. This is to be expected since even though the defor-
mation energy is non-linear, the deformation modes do no
change significantly after isometric deformations.

Fig. 8 (b) shows details of the decomposition of the Man
model. The figure shows two possible initial decompositions
(one with 5, one with 12 segments), as well as the final re-
sult of hierarchical refinement. The hierarchical refinement
converges to the same solution independent of the number
of initial parts. This behavior is common, although we can-
not give a formal guarantee due to the properties of the seed
selection and clustering algorithm.

We have computed decompositions for the Horse and Man
model, which we compare to segmentations obtained us-
ing [LZ07], provided by the authors, as well as an implemen-
tation of [KT03]. These segmentations are shown in Fig. 9.

Model N Nc tg tc tb th tw T
Cow1 11273 11 60.2 2.1 2.4 3.1 1.1 68.9
Cow2 16914 8 96.2 1.1 3.1 — 2.1 102.5
Dragon 22502 39 170.1 4.1 4.5 6.1 5.4 190.2
Elephant1 20002 18 120.1 2.1 1.6 4.5 3.2 131.5
Elephant2 20002 18 118.7 2.1 1.7 4.3 2.8 129.8
Horse 19850 15 106.1 1.1 1.2 2.4 1.1 119.1
Man 14603 32 80.4 2.2 2.3 1.7 2.5 89.1
Raptor 22502 33 150.1 4.3 3.2 4.4 3.4 165.4

Table 1: Model statistics and computation times. Shown
are the number of surface points N, the number of clusters
Nc, as well as computation times (in seconds) for the global
typical vector fields tg, clustering tc, boundary refinement tb,
hierarchical refinement th, association weight computation
tw, and total time T .

(a) (b)

(c) (d) (e) (f)

Figure 9: (a) Segmentation of the Horse model using our
method. (b) Using [LZ07]. (c) Using [KT03]. (d) Segmenta-
tion of the Man model using our method. (e) Using [LZ07].
(f) Using [KT03]

Our method captures the articulated nature of the model.
However, small features such as the horse’s ears are sepa-
rated late in the refinement, since their geometric structure
makes them quite stable against deformations. Such features
are more likely to be found by purely geometry-based algo-
rithms, such as [LZ07].

If the desired result is not a decomposition based on the
natural deformations of an object, but one based on surface
texture, or small surface features, our method is of only lim-
ited use. Since our method finds a decomposition that best
approximates the articulated nature of an object, the returned
decomposition in such cases might not correspond to logical
units.
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⇒

⇒

(a) (b)

Figure 8: (a) Decompositions and extracted skeletons for various surface models. Note that non-adjacent patches are distinct
even if they share the same color. (b) The decomposition of the Man model. We can choose either 5 or 12 segments in the initial
clustering step. In both cases, the hierarchical decomposition scheme terminates with the same result shown on the right.

9. Conclusion

We have presented a shape decomposition algorithm based
on optimal approximation of low-energy deformations. The
method extracts the subspace of low-energy deformations
for a given deformation energy. Using the information ob-
tained by analyzing the typical deformations of the shape,
we can compute meaningful shape decompositions using
only a single pose, without resorting to heuristics based on
geometric features.

Our method is robust to noise and even small holes in the
shape. It is therefore possible to apply it directly to scanned
models. We believe our method will be very useful for rapid
prototyping of animated models from real-world models, for
example clay models. Note also that the method is very gen-
eral and can be computed to any surface, or even volumetric
representation, as long as an energy function and sensible
neighborhoods can be defined.

Using the skeletons extracted for each shape, it is possible
to perform deformation transfer between different models.
To accomplish this, it would be necessary to obtain compat-
ible skeletons for different models, with some isomorphism
describing correspondences between joints and bones in ei-
ther model. In the future, we will work on forcing a spe-
cific skeleton layout in order to facilitate deformation trans-
fer from another model.

Note that we have complete freedom in designing the de-
formation energy. In all examples shown in this paper we
have used an energy definition that is uniform across the sur-
face. A possible extension to our method would incorporate
additional knowledge about the structure of the surface into
the deformation energy, for example, by setting lower stiff-
ness weights at joints.
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Appendix A: Derivation for Eq. 2

Given a function g(x) = miny f (x,y), and define y(x) =
argminy f (x,y) such that g(x) = f (x,y(x)).

We observe that by definition, ∂f
∂y (x,y(x)) = 0, for all x.

This means in particular that

∂
∂x

[
∂ f
∂y (x,y(x))

]
=

∂2 f
∂y∂x (x,y(x))+

∂2 f
∂y2 (x) · ∂y

∂x (x) = 0

(17)
and we can therefore express ∂y

∂x (x) as

∂y
∂x (x) =−

[
∂2 f
∂y2 (x,y(x))

]−1

· ∂2 f
∂y∂x (x,y(x)). (18)

Using the chain rule, and using (17) and (18), we can ex-
pand the Hessian of g as

∂2g
∂x2 (x) = ∂2

∂x2 [ f (x,y(x))]

= ∂2 f
∂x2 (x,y(x))+ ∂2 f

∂x∂y (x,y(x))· ∂y
∂x (x)

= ∂2 f
∂x2 (x,y(x))− ∂2 f

∂x∂y (x,y(x))·
[

∂2 f
∂y2 (x,y(x))

]−1
· ∂2 f

∂y∂x (x,y(x)).
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