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Abstract

Maximum likelihood estimators are often of limited practical use due to the intensive computation
they require. We propose a family of alternative estimators that maximize a stochastic variation of
the composite likelihood function. We prove the consistency of the estimators, provide formulas for
their asymptotic variance and computational complexity, and discuss experimental results in the con-
text of Boltzmann machines and conditional random fields. The theoretical and experimental studies
demonstrate the effectiveness of the estimators in achieving a predefined balance between computational
complexity and statistical accuracy.

1 Introduction

Maximum likelihood estimation is by far the most popular point estimation technique in machine learning
and statistics. Assuming that the data consists of n, m-dimensional vectors

D = {X(1), . . . ,X(n)} ⊂ Rm, (1)

and is sampled iid from a parametric distribution pθ0
with θ0 ∈ Θ ⊂ Rr, a maximum likelihood estimator

(mle) θ̂ml
n is a maximizer of the loglikelihood function

ℓn(θ ;D) =
n
∑

i=1

log pθ(X
(i)). (2)

The use of the mle is motivated by its consistency, i.e. θ̂ml
n → θ0 as n → ∞ with probability 1 (Ferguson,

1996). The consistency property ensures that as the number n of samples grows, the estimator will converge
to the true parameter θ0 governing the data generation process.

An even stronger motivation for the use of the mle is that it has an asymptotically normal distribution
with mean vector θ0 and variance matrix (nI(θ0))

−1. More formally, we have the following convergence in
distribution as n→ ∞ (Ferguson, 1996)

√
n (θ̂ml

n − θ0) N(0, I−1(θ0)), (3)

where I(θ) is the r × r Fisher information matrix

I(θ) = E pθ
{∇ log pθ(X)(∇ log pθ(X))⊤} (4)

with ∇f represents the r × 1 gradient vector of f(θ) with respect to θ. The convergence (3) is especially
striking since according to the Cramer-Rao lower bound, the asymptotic variance (nI(θ0))

−1 of the mle is
the smallest possible variance for any estimator. Since it achieves the lowest possible asymptotic variance,
the mle (and other estimators which share this property) is said to be asymptotically efficient.

The consistency and asymptotic efficiency of the mle motivate its use in many circumstances. Unfortu-
nately, in some situations the maximization or even evaluation of the loglikelihood (2) and its derivatives
is impossible due to computational considerations. This has lead to the proposal of alternative estimators
under the premise that a loss of asymptotic efficiency is acceptable–in return for reduced computational
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complexity. Consistency however, is typically viewed as less negotiable and inconsistent estimators should
be avoided if at all possible.

In this paper, we propose a family of estimators, for use in situations where the computation of the mle
is intractable. In contrast to previously proposed approximate estimators, our estimators are statistically
consistent and admit a precise quantification of both computational complexity and statistical accuracy
through their asymptotic variance. Due to the continuous parameterization of the estimator family, we
obtain an effective framework for achieving a predefined problem-specific balance between computational
tractability and statistical accuracy. For the sake of concreteness, we focus on the case of estimating the
parameters associated with Markov random fields. In this case, we provide a detailed discussion of the
accuracy complexity tradeoff and experimental results for the Boltzmann machine and conditional random
fields.

2 Related Work

There is a large body of work dedicated to tractable learning techniques. Two popular categories are
Markov chain Monte Carlo (MCMC) and variational methods. MCMC is a general purpose technique for
approximating expectations and can be used to approximate the normalization term and other intractable
portions of the loglikelihood and its gradient (Casella and Robert, 2004). Variational methods are techniques
for conducting inference and learning based on tractable bounds. Despite the substantial work on MCMC
and variational methods, there are few results that are general enough to be practical while preserving clear
results concerning convergence and approximation rate.

Our work draws on the composite likelihood method for parameter estimation proposed by Lindsay
(1988) which in turn generalized the pseudo likelihood of Besag (1974). A selection of more recent studies
on pseudo and composite likelihood are (Arnold and Strauss, 1991, Liang and Yu, 2003, Varin and Vidoni,
2005, Sutton and McCallum, 2007, Hjort and Varin, 2008). Most of the recent studies in this area examine
the behavior of the pseudo or composite likelihood in a particular modeling situation. We believe that
the present paper is the first to systematically examine statistical and computational tradeoffs in a general
quantitative framework. Possible exceptions are (Zhu and Liu, 2002) which is an experimental study on
texture generation, (Xing et al., 2003) which is focused on inference rather than parameter estimation, and
(Liang and Jordan, 2008) which compares discriminative and generative risks.

3 Stochastic Composite Likelihood

In many cases, the absence of a closed form expression for the normalization term prevents the computation
of the loglikelihood (2) and its derivatives thereby severely limiting the use of the mle. A popular example are
Markov random fields, wherein the computation of the normalization term is often intractable (see Section 5
for more details). In this paper we propose alternative estimators based on the maximization of a stochastic
variation of the composite likelihood.

We start by defining the pseudo loglikelihood function (Besag, 1974) associated with the data D of (1),

pℓn(θ ;D) =

n
∑

i=1

m
∑

j=1

log pθ(X
(i)
j |{X(i)

k : k 6= j}). (5)

The maximum pseudo likelihood estimator (mple) θ̂mpl
n is consistent, but possesses considerably higher

asymptotic variance than that of the mle’s (nI(θ0))
−1. Its main advantage is that it does not require

the computation of the normalization term as it cancels out in the probability ratio defining conditional
distributions

pθ(Xj |{Xk : k 6= j}) = pθ(X)/
∑

X′

j
pθ(X1, . . . ,Xj−1,X

′
j ,Xj+1, . . . ,Xm). (6)

The mle and mple represent two different ways of resolving the tradeoff between asymptotic variance
and computational complexity. The mle has low asymptotic variance but high computational complexity
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while the mple has higher asymptotic variance but low computational complexity. It is desirable to obtain
additional estimators realizing alternative resolutions of the accuracy complexity tradeoff. To this end we
define the stochastic composite likelihood whose maximization provides a family of consistent estimators
with statistical accuracy and computational complexity spanning the entire accuracy-complexity spectrum.

Stochastic composite likelihood generalizes the likelihood and pseudo likelihood functions by constructing
an objective function that is a stochastic sum of likelihood objects. We start by defining the notion of m-pairs
and likelihood objects and then proceed to stochastic composite likelihood.

Definition 1. An m-pair (A,B) is a pair of sets A,B ⊂ {1, . . . , n} satisfying A 6= ∅ = A∩B. The likelihood

object associated with an m-pair (A,B) and X is Sθ(A,B) = log pθ(XA|XB) where XS
def
= {Xj : j ∈ S}. We

similarly define likelihood objects with respect to a dataset D = {X(1), . . . ,X(n)} as

Sθ(n,A,B) =

n
∑

i=1

log pθ(X
(i)
A |X(i)

B ).

The Lindsay (1988) composite loglikelihood function, is a collection of likelihood objects defined by a
finite sequence of m-pairs (A1, B1), . . . , (Ak, Bk)

cℓn(θ ;D) =

k
∑

j=1

Sθ(n,Aj , Bj)

=

n
∑

i=1

k
∑

j=1

log pθ(X
(i)
Aj

|X(i)
Bj

). (7)

There exists a certain lack of flexibility associated with the composite likelihood framework. Since each
likelihood object Sθ(n,A,B) is either selected or not, there is no allowance for some objects to be selected
more frequently than others. Allowing stochastic, rather than deterministic, selection of likelihood objects
provides a higher degree of flexibility and a richer parametric family of estimators. Furthermore, the discrete
parameterization of (7) defined by the sequence (A1, B1), . . . , (Ak, Bk) is less convenient for theoretical
analysis than the continuous parameterization underlying the stochastic composite likelihood.

Definition 2. The stochastic composite loglikelihood (scl) associated with a finite sequence of m-pairs
(A1, B1), . . . , (Ak, Bk) is

scℓn(θ ;D) =
1

n

n
∑

i=1

k
∑

j=1

βjZij log pθ(X
(i)
Aj

|X(i)
Bj

). (8)

where βj > 0 and Zij ∼ Ber(λj) are independent binary Bernoulli rv with parameters λj ∈ [0, 1].

In other words, the scl is a stochastic version of (7) where for each sample X(i), i = 1, . . . , n, the
likelihood objects S(A1, B1), . . . , S(Ak, Bk) are selected independently with probabilities λ1, . . . , λk. The
positive weights βj provide additional flexibility by emphasizing different components more than others.

In analogy to the mle and the mple, the maximum scl estimator (mscle) θ̂msl
n estimates θ0 by maximizing

the scl function. In contrast to the loglikelihood and pseudo loglikelihood functions, the scl function and its
maximizer are random variables that depend on the indicator variables Zij in addition to D. As such, its
behavior should be summarized by examining its expectation or its behavior in the limit n → ∞. Different
selections of the continuous parameters (λ, β) ∈ [0, 1]k × Rk

+ underlying the scl function result in different

asymptotic variance and computational complexity. As a result the accuracy and complexity of θ̂msl
n become

continuous functions over the parametric space [0, 1]k ×Rk
+ which include as special cases the mle, mple, and

maximum quasi likelihood (Hjort and Varin, 2008) estimators. Different selections of (λ, β) ∈ [0, 1]k × Rk
+

represent estimators θ̂msl
n achieving different resolutions of the accuracy-complexity tradeoff.

4 Statistical Properties of θ̂msl
n

The statistical properties of the mscle depend on the selection probabilities and positive weights (λ, β) ∈
[0, 1]k ×Rk

+ while the computational properties depend only on λ. Under some mild conditions θ̂msl
n may be
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shown to be a consistent estimator whose asymptotic distribution is Gaussian with a certain variance matrix
that is larger or equal to the optimal variance expressed by the inverse Fisher information. For simplicity,
we assume that X is discrete and pθ(x) > 0.

Definition 3. A sequence ofm-pairs (A1, B1), . . . , (Ak, Bk) ensures identifiability of pθ if the map {pθ(XAj
|XBj

) :
j = 1, . . . , k} 7→ pθ(X) is injective. In other words, there exists only a single collection of conditionals
{pθ(XAj

|XBj
) : j = 1, . . . , k} that does not contradict the joint pθ(X).

Proposition 1 below generalizes the Shannon-Kolmogorov information inequality.

Proposition 1. Let (A1, B1), . . . , (Ak, Bk) be a sequence of m-pairs that ensures identifiability of pθ, θ ∈ Θ
and α1, . . . , αk positive constants. Then

k
∑

j=1

αk D(pθ(XAj
|XBj

) || pθ′(XAj
|XBj

)) ≥ 0

where equality holds iff θ = θ′.

Proof. The inequality follows from applying Jensen’s inequality for each conditional KL divergence

−D(pθ(XAj
|XBj

) || pθ′(XAj
|XBj

))

= E pθ
log

pθ′(XAj
|XBj

)

pθ(XAj
|XBj

)
≤ logEpθ

pθ′(XAj
|XBj

)

pθ(XAj
|XBj

)

= log 1 = 0.

For equality to hold we need each term to be 0 which follows only if pθ(XAj
|XBj

) ≡ pθ′(XAj
|XBj

) for all j
which, assuming identifiability, holds iff θ = θ′.

Proposition 2. Let λ ∈ [0, 1]k and (A1, B1), . . . , (Ak, Bk) be a sequence of m-pairs for which {(Aj , Bj) :
∀j such that λj > 0} ensures identifiability. We also assume that Θ ⊂ Rr is an open set and pθ(x) > 0 and is

continuous and smooth in θ. Then there exists a strongly consistent sequence of scl maximizers, i.e. θ̂msl
n →θ0

as n→∞ with probability 1.

The proof technique below generalizes Wald’s proof for the consistency of the mle.

Proof. The scl function, modified slightly by a linear combination with a term that is constant in θ is

scℓ′(θ) =
1

n

n
∑

i=1

k
∑

j=1

βj

(

Zij log pθ(X
(i)
Aj

|X(i)
Bj

)

− λj log pθ0
(X

(i)
Aj

|X(i)
Bj

)
)

.

By the strong law of large numbers, the above expression converges as n→ ∞ to its expectation

µ(θ) = −
k
∑

j=1

βjλj D(pθ(XAj
|XBj

) || pθ0
(XAj

|XBj
)).

If we restrict ourselves to the compact set S = {θ : c1 ≤ ‖θ − θ0‖ ≤ c2} then | log pθ(x)| < K(x) <
∞, ∀θ ∈ S. As a result, the conditions for the uniform strong law of large numbers (Ferguson, 1996) hold
on S leading to

P

{

lim
n→∞

sup
θ∈S

|scl′(θ) − µ(θ)| = 0

}

= 1. (9)

By Proposition 1, µ(θ) is non-positive and is zero iff θ = θ0. Since the function µ(θ) is continuous it
attains its negative supremum on the compact S: supθ∈S µ(θ) < 0. Combining this fact with (9) we have that
there exists N such that for all n > N the scl maximizers on S achieves strictly negative values of scℓ′(θ)
with probability 1. However, since scℓ′(θ) can be made to achieve values arbitrarily close to zero under

θ = θ0, we have that θ̂msl
n 6∈ S for n > N . Since c1, c2 were chosen arbitrarily θ̂msl

n → θ0 with probability
1.
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The above proposition indicates that to guarantee consistency, the sequence of m-pairs needs to satisfy
Definition 3. It can be shown that a selection equivalent to the pseudo likelihood function, i.e.,

Ai = {i}, Bi = {1, . . . ,m} \Ai, i = 1, . . . , k, (10)

ensure identifiability and consequently the consistency of the mscle estimator. Furthermore, every selection
of m-pairs that includes as a subset (10) similarly guarantees identifiability and consistency.

Proposition 3. Making the assumptions of Proposition 2 as well as convexity of Θ ⊂ Rr we have

√
n(θ̂msl

n − θ0) N (0,ΥΣΥ) (11)

where Υ−1 =
∑k

j=1 βjλjVar θ0
(Vj), Vj =∇Sθ0

(Aj , Bj), and Σ = Var θ0
(
∑k

j=1 βjλjVj).

The notation Var θ0
(Y ) represents the covariance matrix of the random vector Y under pθ0

while the
notations

p→ , in the proof below denote convergences in probability and in distribution (Ferguson, 1996).

Proof. By the mean value theorem and convexity of Θ there exists η ∈ (0, 1) for which θ′ = θ0 + η(θ̂msl
n − θ0)

and
∇scℓn(θ̂msl

n ) = ∇scℓn(θ0) + ∇2scℓn(θ′)(θ̂msl
n − θ0)

where ∇f(θ) and ∇2f(θ) are the r × 1 gradient vector and r × r matrix of second order derivatives of f(θ).

Since θ̂n maximizes the scl, ∇scℓn(θ̂msl
n ) = 0 and

√
n(θ̂msl

n − θ0) = −√
n(∇2scℓn(θ′))−1∇scℓn(θ0). (12)

By Proposition 2 we have θ̂msl
n

p→ θ0 which implies that θ′
p→ θ0 as well. Furthermore, by the law of large

numbers and the fact that if Wn
p→W then g(Wn)

p→ g(W ) for continuous g,

(∇2scℓn(θ′))−1 p→ (∇2scℓn(θ0))
−1 (13)

p→





k
∑

j=1

βjλjE θ0
∇2Sθ0

(Aj , Bj)





−1

= −





k
∑

j=1

βjλjVar θ0
(∇Sθ0

(Aj , Bj))





−1

.

For the remaining term in (12) we have

√
n∇scℓn(θ0) =

k
∑

j=1

βj

√
n

1

n

n
∑

i=1

Wij

where the random vectors Wij =Zij∇ log pθ(X
(i)
Aj

|X(i)
Bj

) have expectation 0 and variance matrix Var θ0
(Wij) =

λjVar θ0
(∇Sθ0

(Aj , Bj)). By the central limit theorem

√
n

1

n

n
∑

i=1

Wij  N (0, λjVar θ0
(∇Sθ0

(Aj , Bj))) .

The sum
√
n∇scℓn(θ0) =

∑k
j=1 βj

√
n 1

n

∑n
i=1Wij is asymptotically Gaussian as well with mean zero since

it converges to a sum of Gaussian distributions with mean zero. Since in the general case the random
variables

√
n 1

n

∑n
i=1Wij , j = 1, . . . , k are correlated, the asymptotic variance matrix of

√
n∇scℓn(θ0) needs

to account for cross covariance terms leading to

√
n∇scℓn(θ0) N



0,Var θ0





k
∑

j=1

βjλj∇Sθ0
(Aj , Bj)







. (14)

We finish the proof by combining (12), (13) and (14) using Slutsky’s theorem.
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Figure 1: Asymptotic variance matrix, as measured by trace (left) and determinant (right), as a function of
the selection probabilities for different stochastic versions of the scl function.

5 Stochastic Composite Likelihood for Markov Random Fields

Markov random fields (MRF) are some of the more popular statistical models for complex high dimensional
data. Approaches based on pseudo likelihood and composite likelihood are naturally well-suited in this case
due to the cancellation of the normalization term in the probability ratios defining conditional distributions.
More specifically, a MRF with respect to a graph G = (V,E), V = {1, . . . ,m} with a clique set C is given
by the following exponential family model

Pθ(x) = exp

(

∑

C∈C

θCfC(xC) − logZ(θ)

)

,

Z(θ) =
∑

x

exp

(

∑

C∈C

θcfC(xC)

)

. (15)

The primary bottlenecks in obtaining the maximum likelihood are the computations logZ(θ) and ∇ logZ(θ).
Their computational complexity is exponential in the graph’s treewidth and for many cyclic graphs, such as
the Ising model or the Boltzmann machine, it is exponential in |V | = m.

In contrast, the conditional distributions that form the composite likelihood of (15) are given by

Pθ(xA|xB) =

�Z(θ)
∑

x′

(A∪B)c

exp
(

∑

C∈C θCfC((xA, xB , x
′
(A∪B)c)C)

)

�Z(θ)
∑

x′

(A∪B)c

∑

x′′

A

exp

(

∑

C∈C

θCfC((x′′A, xB , x′(A∪B)c)C)

) . (16)

The computation of (16) depends on the size of the sets A and (A∪B)c and their intersections with the
cliques in C. In general, selecting small |Aj | and Bj = (Aj)

c leads to efficient computation of the composite
likelihood and its gradient. For example, in the case of |Aj | = l, |Bj | = m − l with l ≪ m we have that
k ≤ m!/(l!(m − l)!) and the complexity of computing the cℓ(θ) function and its gradient may be shown to
require time that is at most exponential in l and polynomial in m.

Computing the scℓ(θ) function and its gradient depends on the Bernoulli parameters λ ∈ [0, 1]k and the
sequence of m-pairs (A1, B1), . . . , (Ak, Bk). Selecting a sequence of m pairs that includes all Ai = {i}, Bi =
{1, . . . ,m} \ Ai pairs ensures consistency. Adding pairs (Aj , Bj) with larger sets |Aj | enables obtaining a
specific complexity number within a wide spectrum of available complexities by choosing appropriate mixing
parameters λ.
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6 Controlling Efficiency through β

As Proposition 3 indicates, the weight vector β and selection probabilities λ play an important role in the
statistical accuracy of the estimator through its asymptotic variance. The computational complexity, on
the other hand, is determined by λ independently of β. Conceptually, we are interested in resolving the
accuracy-complexity tradeoff jointly for both β, λ before estimating θ by maximizing the scl function. We
simplify this objective by choosing the selection probabilities λ based on available computational resources
and computing time. Since the computational complexity does not depend on β we can then proceed to
select the β that maximizes the statistical accuracy of the estimator given the selection probabilities λ.

Selecting β that minimizes the asymptotic variance is somewhat ambiguous as ΥΣΥ in Proposition 3 is
an r×r positive semidefinite matrix. A common solution is to consider the determinant as a one dimensional
measure of the size of the variance matrix, and minimize

J(β) = log det(ΥΣΥ) = log det Σ + 2 log det Υ (17)

There are two significant drawbacks associated with the optimization of (17). It depends on the true
parameter value θ0 which is not known at training time. Additionally, introducing a secondary optimization
problem into the iterative maximization of the scl function undermines the motivation of scl as a computa-
tionally efficient approximate estimation technique.

We propose to address both issues by constructing an estimator for the determinants log det Σ, log det Υ
based on the empirical variance

Var pθ0
(g(X)) ≈ E p̃(g(X) − E p̃(g(X)))2

where p̃(z) = 1
n

∑

i δ{z=x(i)} is the empirical distribution associated with the available training set. We note

that the corresponding estimators of log det Σ, log det Υ can be computed without the knowledge of θ̂msl
n . As

a consequence, we can determine the optimal β before solving the scl maximization problem.
Estimating log det Σ, log det Υ can be performed very quickly due to a decomposition similar to the

inclusion-exclusion principle. However, we omit the details due to lack of space.

7 Experiments

We demonstrate the asymptotic properties of θ̂msl
n for the Boltzmann machine and explore the complexity-

accuracy tradeoff associated with several stochastic versions of scℓ(θ) for CRFs.

7.1 Boltzmann Machines

We illustrate the improvement in asymptotic variance of the mscle associated with adding higher or-
der likelihood components with increasing probabilities in context of the Boltzmann machine pθ(x) =
exp(

∑

i<j θijxixj − logψ(θ)), x ∈ {0, 1}m. To be able to accurately compute the asymptotic variance we use

m = 5 with θ being a
(

5
2

)

dimensional vector with half the components +1 and half −1. Since the asymptotic

variance of θ̂msl
n is a matrix we summarize its size using either its trace or determinant.

We plot in Figure 1 the asymptotic variance, relative to the minimal variance of the mle, for the cases
of full likelihood (FL), pseudo likelihood (|Aj | = 1) PL1, stochastic combination of pseudo likelihood and
2nd order pseudo likelihood (|Aj | = 2) components αPL2 + (1 − α)PL1, stochastic combination of 2nd
order pseudo likelihood and 3rd order pseudo likelihood (|Aj | = 3) components αPL3 + (1 − α)PL2, and
stochastic combination of 3rd order pseudo likelihood and 4th order pseudo likelihood (|Aj | = 4) components
αPL4 + (1 − α)PL3.

The graph demonstrates the computation-accuracy tradeoff as follows: (a) pseudo likelihood is the fastest
but also the least accurate, (b) full likelihood is the slowest but the most accurate, (c) adding higher order
components reduces the asymptotic variance but also requires more computation, (d) the variance reduces
with the increase in the selection probability α of the higher order component, and (e) adding 4th order
components brings the variance very close the lower limit and with each successive improvement becoming
smaller and smaller according to a law of diminishing returns.
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Figure 2: Train (left) and test (right) loglikelihood contours for maximum scl estimators for the CRF model.
L2 regularization parameters are σ2 = 1 (rows 1,2) and σ2 = 10 (rows 3,4). Rows 1,3 are stochastic mixtures
of full (FL) and pseudo (PL1) loglikelihood components while rows 2,4 are pseudo (PL1) and 2nd order
pseudo.
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Figure 3: Scatter plot representing complexity and negative loglikelihood (left:train, right:test) of scl func-
tions for CRFs with regularization parameter σ2 = 1/2. The points represent different stochastic combina-
tions of full and pseudo likelihood components. The shaded region represents impossible accuracy/complexity
demands.

7.2 Conditional Random Fields

To demonstrate the complexity-accuracy tradeoff in a more realistic scenario we experimented with regular-
ized maximum scl estimators for conditional random fields (CRF). We trained and tested the CRF models
on local sentiment prediction data obtained in Mao and Lebanon (2007). The data consisted of 249 movie
review documents having an average of 30.5 sentences each with an average of 12.3 words from a 12633
word vocabulary. Each sentence was manually labeled as one of five sentimental designations: very negative,
negative, objective, positive, or very positive.

Figure 2 contains the contour plots of train and test loglikelihood as a function of the scl parameters:
weight β and selection probability λ. The likelihood components were mixtures of full and pseudo (|Aj | = 1)
likelihood (rows 1,3) and pseudo and 2nd order pseudo (|Aj | = 2) likelihood (rows 2,4). Aj identifies a set
of labels corresponding to adjacent sentences over which the probabilistic query is evaluated. Results were
averaged over 100 cross validation iterations with 50% train-test split. We used BFGS quasi-Newton method
for maximizing the regularized scl functions. Figure 2 demonstrates how the train loglikelihood increases
with increasing the weight and selection probability of full likelihood in rows 1,3 and of 2nd order pseudo
likelihood in rows 2,4. This increase in train loglikelihood is also correlated with an increase in computational
complexity as higher order likelihood components require more computation.

It is interesting to contrast the test loglikelihood behavior in the case of mild (σ = 10) and stronger
(σ = 1) L2 regularization. In the case of weaker or no regularization, the test loglikelihood shows different
behavior than the train loglikelihood. Adding a lower order component such as pseudo likelihood acts as
a regularizer that prevents overfitting. Thus, in cases that are prone to overfitting reducing higher order
likelihood components improves both performance as well as complexity. This represents a win-win situation
in contrast to the classical view where the mle has the lowest variance and adding lower order components
reduces complexity but increases the variance.

Figure 3 displays the complexity and negative loglikelihoods (left:train, right:test) of different scl esti-
mators, sweeping through λ and β, as points in a two dimensional space. The shaded area near the origin
is unachievable as no scl estimator can achieve high accuracy and low computation at the same time. The
optimal location in this 2D plane is the curved boundary of the achievable region with the exact position
on that boundary depending on the required solution of the computation-accuracy tradeoff. Note that a
particular λ indeed has a dominant β, however relative comparison of λ is meaningless as its choice is a
function of available computational resources and time.
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8 Discussion

The proposed estimator family facilitates computationally efficient estimation in complex graphical models.
In particular, different parameterizations of the stochastic likelihood enables the resolution of the complexity-
accuracy tradeoff in a domain and problem specific manner. The framework is generally suited for Markov
random fields, including conditional graphical models and is theoretically motivated. When the model is
prone to overfit, stochastically mixing lower order components with higher order ones acts as a regularizer
and results in a win-win situation of improving test-set accuracy and reducing computational complexity at
the same time.
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