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Abstract

A number of problems in nonparametric statistics and learning theory can be formulated
as penalized empirical risk minimization over large function classes with penalties depend-
ing on the complexity of the functions (decision rules) involved in the problem. The goal of
mathematical analysis of such procedures is to prove ”oracle inequalities” describing opti-
mality properties of penalized empirical risk minimization with properly designed penalties
as well as its adaptivity to unknown complexity of the problem. This requires a careful
study of local properties of empirical, Rademacher and other stochastic processes indexed
by function classes using the methods of high dimensional probability and asymptotic geo-
metric analysis. Recently, this approach has proved to be especially useful in understanding
of problems of recovery of a target function that has a sparse representation in a given large
dictionary based on noisy measurements of this function at random locations.
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Preface

The purpose of these lecture notes is to provide an introduction to the general theory of

empirical risk minimization with an emphasis on excess risk bounds and oracle inequali-

ties in penalized problems. In the recent years, there have been new developments in this

area motivated by the study of new classes of methods in Machine Learning such as large

margin classification methods (boosting, kernel machines). The main probabilistic tools

involved in the analysis of these problems are concentration and deviation inequalities

by Talagrand along with other methods of empirical processes theory (symmetrization

inequalities, contraction inequality for Rademacher sums, entropy and generic chaining

bounds). Sparse recovery based on ℓ1-type penalization is another active area of research

where the main problems can be stated in the framework of penalized empirical risk

minimization and concentration inequalities and empirical processes tools proved to be

very useful.

My interest in empirical processes started in the late 70s and early 80s. It was largely

influenced by the work of Vapnik and Chervonenkis on Glivenko-Cantelli problem and

on empirical risk minimization in pattern recognition, and, especially, by the results of

Dudley on uniform central limit theorems. Talagrand’s concentration inequality proved

in the 90s was a major result with deep consequences in the theory of empirical pro-

cesses and related areas of statistics, and it inspired many new approaches in analysis of

empirical risk minimization problems.

Over the last years, the work of many people have had a profound impact on my

own research and on my view of the subject of these notes. I was lucky to work together

with several of them and to have numerous conversations and email exchanges with

many others. I am especially thankful to Peter Bartlett, Lucien Birgé, Gilles Blanchard,

Stephane Boucheron, Olivier Bousquet, Richard Dudley, Sara van de Geer, Evarist Giné,

Gabor Lugosi, Pascal Massart, David Mason, Shahar Mendelson, Dmitry Panchenko,

Alexandre Tsybakov, Aad van der Vaart, Jon Wellner and Joel Zinn.

I am thankful to the School of Mathematics, Georgia Institute of Technology and

to the Department of Mathematics and Statistics, University of New Mexico where most

of my work for the past several years have taken place.

The research described in these notes has been supported in part by NSF grants

MSPA-MPS-0624841, DMS-0304861 and CCF-0808863.

I was working on these notes while visiting the Isaac Newton Institute for Mathe-
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matical Sciences in Cambridge in 2008. I am thankful to the Institute for its hospitality.
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1 Introduction

1.1 Abstract Empirical Risk Minimization

Let X,X1, . . . ,Xn, . . . be i.i.d. random variables defined on a probability space (Ω,Σ,P)

and taking values in a measurable space (S,A) with common distribution P. Let Pn de-

note the empirical measure based on the sample (X1, . . . ,Xn) of the first n observations:

Pn := n−1
n
∑

j=1

δXj ,

where δx, x ∈ S is the Diracs’s measure. Let F be a class of measurable functions

f : S 7→ R. In what follows, the values of a function f ∈ F will be interpreted as a “loss”

associated with a certain “action” and the expectation of f(X)

Ef(X) =

∫

S
fdP = Pf

will be viewed as the risk of a certain “decision rule”. We will be interested in the problem

of risk minimization

Pf −→ min, f ∈ F (1.1)

in the cases when the distribution P is unknown and has to be estimated based on the

data (X1, . . . ,Xn). Since the empirical measure Pn is a natural estimator of P, the true

risk can be estimated by the corresponding empirical risk

n−1
n
∑

j=1

f(Xj) =

∫

S
fdPn = Pnf

and the risk minimization problem has to be replaced by the empirical risk minimization:

Pnf −→ min, f ∈ F . (1.2)

Many important methods of statistical estimation such as maximum likelihood and

more general M -estimation are versions of empirical risk minimization. The general the-

ory of empirical risk minimization has started with seminal paper of Vapnik and Chervo-

nenkis [94] (see Vapnik [93] for more references) although some important ideas go back

to much earlier work on asymptotic theory of M -estimation. Vapnik and Chervonenkis

were motivated by applications of empirical risk minimization in pattern recognition

and learning theory that required the development of the theory in a much more general

framework than what was common in statistical literature. Their key idea was to relate
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the quality of the solution of empirical risk minimization problem to the accuracy of ap-

proximation of the true distribution P by the empirical distribution Pn uniformly over

function classes representing losses of decision rules. Because of this, they have studied

general Glivenko-Cantelli problems about convergence of ‖Pn − P‖F to 0, where

‖Y ‖F := sup
f∈F

|Y (f)|

for Y : F 7→ R. Vapnik and Chervonenkis introduced a number of important characteris-

tics of complexity of function classes, such as VC-dimensions and random entropies, that

control the accuracy of empirical approximation. These results along with the develop-

ment of classical limit theorems in Banach spaces in the 60s and 70s led to the general

theory of empirical processes that started with the pathbreaking paper by Dudley [41]

on central limit theorems for empirical measures (see Dudley [42], Pollard [81], van der

Vaart and Wellner [95]).

In the 90s, Talagrand studied isoperimetric inequalities for product measures and,

in particular, he proved a striking uniform version of Bernstein inequality describing

concentration of ‖Pn − P‖F around its expectation (see Talagrand [86, 87]). This was a

real breakthrough in the theory of empirical processes and empirical risk minimization.

At about the same time a concept of oracle inequalities has been developed in nonpara-

metric statistics (see, e.g., Johnstone [52]). In modern statistics, it is common to deal

with a multitude of possible models that describe the same data (for instance, a family

of models for unknown regression functions of varying complexity). An oracle inequality

is a bound on the risk of a statistical estimator that shows that the performance of the

estimator is almost (often, up to numerical constants) as good as it would be if the

statistician had an access to an oracle that knows what the best model for the target

function is. It happened that concentration inequalities provide rather natural proba-

bilistic tools needed to develop oracle inequalities in a number of statistical problems. In

particular, Birgé and Massart [15], Barron, Birgé and Massart [5], and, more recently,

Massart [73, 74] suggested a general approach to model selection in a variety of statis-

tical problems such as density estimation, regression and classification that is based on

penalized empirical risk minimization. They used Talagrand’s concentration and devia-

tion inequalities in a systematic way to establish a number of oracle inequalities showing

some form of optimality of penalized empirical risk minimization as a model selection

tool.

In the recent years, new important classes of algorithms in machine learning have

been introduced that are based on empirical risk minimization. In particular, large mar-
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gin classification algorithms, such as boosting and support vector machines (SVM), can

be viewed as empirical risk minimization over infinite dimensional functional spaces with

special convex loss functions. In an attempt to understand the nature of these classifi-

cation methods and to explain their superb generalization performance, there has been

another round of work on the abstract theory of empirical risk minimization. One of the

main ideas was to use sup-norms or localized sup-norms of the Rademacher processes

indexed by function classes to develop a general approach to measuring the complexities

of these classes (see Koltchinskii [58], Bartlett, Boucheron and Lugosi [8], Koltchinskii

and Panchenko [60], Bousquet, Koltchinskii and Panchenko [23], Bartlett, Bousquet and

Mendelson [7], Lugosi and Wegkamp [70], Bartlett and Mendelson [9]). This resulted in

rather flexible definitions of distribution dependent and data dependent complexities in

an abstract framework as well as more specialized complexities reflecting relevant param-

eters of specific learning machines. Moreover, such complexities have been used as natural

penalties in model selection methods. This approach provided a general explanation of

fast convergence rates in classification and other learning problems, the phenomenon

discovered and studied by several authors, in particular, by Mammen and Tsybakov [72]

and in an influential paper by Tsybakov [91].

1.2 Excess Risk: Distribution Dependent Bounds

Definition 1.1 Let

E(f) := EP (f) := EP (F ; f) := Pf − inf
g∈F

Pg.

This quantity will be called the excess risk of f ∈ F .

Let

f̂ = f̂n ∈ Argminf∈FPnf

be a solution of the empirical risk minimization problem (1.2). The function f̂n is used

as an approximation of the solution of the true risk minimization problem (1.1) and its

excess risk EP (f̂n) is a natural measure of accuracy of this approximation.

It is of interest to find tight upper bounds on the excess risk of f̂n that hold with a

high probability. Such bounds usually depend on certain ”geometric” properties of the

function class F and on various measures of its ”complexity” that determine the accuracy

of approximation of the true risk Pf by the empirical risk Pnf in a neighborhood of a

proper size of the minimal set of the true risk.
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In fact, it is rather easy to describe a general approach to derivation of such bounds

in an abstract framework of empirical risk minimization discussed in these notes. This

approach does give a correct answer in many specific examples. To be precise, define the

δ-minimal set of the risk as

F(δ) := FP (δ) := {f : EP (f) ≤ δ}.

Suppose, for simplicity, that the infimum of the risk Pf is attained at f̄ ∈ F (the

argument can be easily modified if the infimum is not attained in the class). Denote

δ̂ := EP (f̂). Then f̂ , f̄ ∈ F(δ̂) and Pnf̂ ≤ Pnf̄ . Therefore,

δ̂ = EP (f̂) = P (f̂ − f̄) ≤ Pn(f̂ − f̄) + (P − Pn)(f̂ − f̄),

which implies

δ̂ ≤ sup
f,g∈F(δ̂)

|(Pn − P )(f − g)|.

Imagine there exists a nonrandom upper bound

Un(δ) ≥ sup
f,g∈F(δ)

|(Pn − P )(f − g)| (1.3)

that holds uniformly in δ with a high probability. Then, with the same probability, the

excess risk EP (f̂) will be bounded by the largest solution of the inequality δ ≤ Un(δ).

There are many different ways to construct upper bounds on the sup-norms of empirical

processes. A very general approach is based on Talagrand’s concentration inequalities.

Assume for simplicity that functions in the class F take their values in the interval [0, 1].

Based on the L2(P )-diameter DP (F ; δ) of the δ-minimal set F(δ) and the function

φn(F ; δ) := E sup
f,g∈F(δ)

|(Pn − P )(f − g)|,

define

Ūn(δ; t) := K

(

φn(F ; δ) +D(F ; δ)

√

t

n
+
t

n

)

.

Talagrand’s concentration inequality then implies that with some numerical constant

K > 0, for all t > 0,

P

{

sup
f,g∈F(δ)

|(Pn − P )(f − g)| ≥ Ūn(δ; t)
}

≤ e−t.

This observation provides an easy way to construct a function Un(δ) such that (1.3) holds

with a high probability uniformly in δ (first, by defining such a function at a discrete set
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of the values of δ and then extending it to all the values by monotonicity). By solving

the inequality δ ≤ Un(δ), one can construct a bound δ̄n(F) such that the probability

P{EP (f̂n) ≥ δ̄n(F)} is small. Thus, constructing an upper bound on the excess risk

essentially reduces to solving a fixed point equation of the type δ = Un(δ). Such a fixed

point method has been studied, for instance, in Massart [73], Koltchinskii and Panchenko

[60], Bartlett, Bousquet and Mendelson [7], Koltchinskii [59] (and in several other papers

of these authors).

In the case of P -Donsker classes F ,

φn(F ; δ) ≤ E‖Pn − P‖F = O(n−1/2),

which implies that

δ̄n(F) = O(n−1/2).

Moreover, if the diameter D(F ; δ) of the δ-minimal set tends to 0 as δ → 0 (which is

typically the case if the risk minimization problem (1.1) has a unique solution), then, by

asymptotic equicontinuity, we have

lim
δ→0

lim sup
n→∞

n1/2φn(F ; δ) = 0,

which allows to conclude that

δ̄n(F) = o(n−1/2).

It happens that the bound δ̄n(F) is of asymptotically correct order as n → ∞ in many

specific examples of risk minimization problem in statistics and learning theory.

The bounds of this type are distribution dependent (i.e., they depend on the unknown

distribution P ).

1.3 Rademacher Processes and Data Dependent Bounds on Excess

Risk

The next challenge is to construct data dependent upper confidence bounds on the excess

risk EP (f̂) of empirical risk minimizers that depend only on the sample (X1, . . . ,Xn),

but do not depend explicitly on the unknown distribution P. Such bounds can be used

in model selection procedures. Their construction usually requires the development of

certain statistical estimates of the quantities involved in the definition of the distribution

dependent bound δ̄n(F) based on the sample (X1, . . . ,Xn). Namely, we have to estimate

the expectation of the local sup-norm of the empirical process φn(F ; δ) and the diameter

of the δ-minimal set.
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A natural way to estimate the empirical process is to replace it by the Rademacher

process

Rn(f) := n−1
n
∑

j=1

εjf(Xj), f ∈ F ,

where {εj} are i.i.d. Rademacher random variables (i.e., they are symmetric Bernoulli

random variables taking values +1 and −1 with probability 1/2 each) that are also

independent of the data (X1, . . . ,Xn). The process Rn(f), f ∈ F depends only on the

data (and on the independent sequence of Rademacher random variables that can be

simulated). For each f ∈ F , Rn(f) is essentially the “correlation coefficient” between

the values of the function f at data points and independent Rademacher noise. The

fact that the sup-norm ‖Rn‖F of the Rademacher process is ”large” means that there

exists a function f ∈ F that fits the Rademacher noise very well. This usually means

that the class of functions is too complex for the purposes of statistical estimation and

performing empirical risk minimization over such a class is likely to lead to overfitting.

Thus, the size of sup-norms or local sup-norms of the Rademacher process provides

natural data dependent measures of complexity of function classes used in statistical

estimation. Symmetrization inequalities well known in the theory of empirical processes

show that the expected sup-norms of Rademacher processes are within a constant from

the corresponding sup-norms of the empirical process. Moreover, using concentration

inequalities, one can directly relate the sup-norms of these two processes.

The δ-minimal sets (the level sets) of the true risk involved in the construction of

bounds δ̄n(F) can be estimated by the level sets of the empirical risk. This is based on

ratio type inequalities for the excess risk, i.e., on bounding the following probabilities

P

{

sup
f∈F ,EP (f)≥δ

∣

∣

∣

∣

EPn(f)

EP (f)
− 1

∣

∣

∣

∣

≥ ε

}

.

This problem is closely related to the study of ratio type empirical processes (see Giné,

Koltchinskii and Wellner [49], Giné and Koltchinskii [50] and references therein). Finally,

the L2(P )-diameter of the δ-minimal sets of P can be estimated by the L2(Pn)-diameter

of the δ-minimal sets of Pn. Thus, we can estimate all the distribution dependent pa-

rameters involved in the construction of δ̄n(F) by their empirical versions and, as a

result, construct data-dependent upper bounds on the excess risk EP (f̂) that hold with

a guaranteed high probability. The proofs of these facts heavily rely on Talagrand’s

concentration inequalities for empirical processes.
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1.4 Penalized Empirical Risk Minimization and Oracle Inequalities

The data-dependent bounds on the excess risk can be used in general model selection

techniques in abstract empirical risk minimization problems. In such problems, there is

a need to deal with minimizing the risk over a very large class of functions F , and there

is a specified family (”a sieve”) of subclasses {Fα, α ∈ A} of varying complexity that

are used to approximate functions from F . Often, classes Fα correspond to different

statistical models. Instead of one empirical risk minimization problem (1.2) one has to

deal now with a family of problems

Pnf −→ min, f ∈ Fα, α ∈ A, (1.4)

that has a set of solutions {f̂n,α : α ∈ A}. In many cases, there is a natural way to measure

the quality of the solution of each of the problems (1.4). For instance, it can be based

on distribution dependent upper bounds δ̄n(α) = δ̄n(Fα) on the excess risk EP (Fα; f̂n,α)

discussed above. The goal of model selection is to provide a data driven (adaptive) choice

α̂ = α̂(X1, . . . ,Xn) of model index α such that the empirical risk minimization over the

class Fα̂ results in an estimator f̂ = f̂n,α̂ with the nearly ”optimal” excess risk EP (F ; f̂).

One of the most important approaches to model selection is based on penalized empirical

risk minimization, i.e. on solving the following problem

α̂ := argminα∈A

[

min
f∈Fα

Pnf + π̂n(α)

]

, (1.5)

where π̂n(α), α ∈ A are properly chosen complexity penalties. Often, π̂n(α) is designed

as a data dependent upper bound on δ̄n(α), the ”desired accuracy” of empirical risk

minimization for the class Fα. This approach has been developed under several differ-

ent names (Vapnik-Chervonenkis structural risk minimization, method of sieves, etc.).

Sometimes, it is convenient to write penalized empirical risk minimization problem in

the following form

f̂ := argminf∈F

[

Pnf + pen(n; f)

]

,

where pen(n; ·) is a real valued complexity penalty defined on F . Denoting, for each

α ∈ R,

Fα := {f ∈ F : pen(n; f) = α}

and defining π̂n(α) = α, the problem can be again rewritten as (1.5).
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The bounds on the excess risk of f̂ = f̂n,α̂ of the following type (with some constant

C)

EP (F ; f̂ ) ≤ C inf
α∈A

[

inf
f∈Fα

EP (f) + δ̄n(α)

]

(1.6)

that hold with a high probability are often used to express the optimality of model

selection. The meaning of these inequalities can be explained as follows. Imagine that

the minimum of the true risk in the class F is attained in a subclass Fα for some

α = α(P ). If there were an oracle that knew the model index α(P ), then with the help

of the oracle one could achieve the excess risk at least as small as δ̄n(α(P )). The model

selection method for which the inequality (1.6) holds is not using the help of the oracle.

However, it follows from (1.6) that the excess risk of the resulting estimator is upper

bounded by Cδ̄n(α(P )) (which is within a constant of the performance of the oracle).

1.5 Concrete Empirical Risk Minimization Problems

Density estimation. The most popular method of statistical estimation, the maximum

likelihood method, can be viewed as a special case of empirical risk minimization. Let

µ be a σ-finite measure on (S,A) and let P be a statistical model, i.e., P is a family of

probability densities with respect to µ. In particular, P can be a parametric model with

a parameter set Θ, P = {p(θ, ·) : θ ∈ Θ}. A maximum likelihood estimator of unknown

density p∗ ∈ P based on i.i.d. observations X1, . . . ,Xn sampled from p∗ is a solution of

the following empirical risk minimization problem

n−1
n
∑

j=1

(

− log p(Xj)

)

−→ min, p ∈ P. (1.7)

Another popular approach to density estimation is based on the following penalized

empirical risk minimization problem

− 2

n

n
∑

j=1

p(Xj) + ‖p‖2
L2(µ) −→ min, p ∈ P. (1.8)

This approach can be explained as follows. The best L2(µ)- approximation of the density

p∗ is obtained by solving

‖p− p∗‖2
L2(µ) = −2

∫

S
pp∗dµ+ ‖p‖2

L2(µ) + ‖p∗‖2
L2(µ) −→ min, p ∈ P.

The integral
∫

S pp∗dµ = Ep(X) can be estimated by n−1
∑n

j=1 p(Xj), leading to problem

(1.8). Of course, in the case of complex enough models P, there might be a need in

complexity penalization in (1.7) and (1.8).
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Prediction problems. Empirical risk minimization is especially useful in a variety

of prediction problems. In these problems, the data consists of i.i.d. couples (X1, Y1), . . . (Xn, Yn)

in S×T with common distribution P. Assume that T ⊂ R. Given another couple (X,Y )

sampled from P, the goal is to predict Y based on an observation of X. To formalize

this problem, introduce a loss function ℓ : T × R 7→ R+. Given g : S 7→ R, denote

(ℓ • g)(x, y) := ℓ(y, g(x)), which will be interpreted as a loss suffered as a result of using

g(x) to predict y. Then the risk associated with ”action” g is defined as

P (ℓ • g) = Eℓ(Y, g(X)).

Given a set G of possible actions g, we want to minimize the risk:

P (ℓ • g) −→ min, g ∈ G.

The risk can be estimated based on the data (X1, Y1), . . . , (Xn, Yn), which leads to the

following empirical risk minimization problem

Pn(ℓ • g) = n−1
n
∑

j=1

ℓ(Yj, g(Xj)) −→ min, g ∈ G.

Introducing the notation f := ℓ • g and setting F := {ℓ • g : g ∈ G}, one can rewrite the

problems in the form (1.1), (1.2).

Regression and classification are two most common examples of prediction problems.

In regression problems, the loss function is usually defined as ℓ(y;u) = φ(y − u), where

φ is, most often, nonnegative, even and convex function with φ(0) = 0. The empirical

risk minimization becomes

n−1
n
∑

j=1

φ(Yj − g(Xj)) −→ min, g ∈ G.

The choice φ(u) = u2 is by far the most popular and it means fitting the regression

model using the least square method.

In the case of binary classification problems, T := {−1, 1} and it is natural to

consider a class G of binary functions (classifiers) g : S 7→ {−1, 1} and to use the binary

loss ℓ(y;u) = I(y 6= u). The risk of a classifier g with respect to the binary loss

P (ℓ • g) = P{Y 6= g(X)}

is just the probability to misclassify and, in learning theory, it is known as the generaliza-

tion error. A binary classifier that minimizes the generalization error over all measurable
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binary functions is called the Bayes classifier and its generalization error is called the

Bayes risk. The corresponding empirical risk

Pn(ℓ • g) = n−1
n
∑

j=1

I(Yj 6= g(Xj))

is known as the training error. Minimizing the training error over G

n−1
n
∑

j=1

I(Yj 6= g(Xj)) −→ min, g ∈ G

is, usually, a computationally intractable problem (with an exception of very simple

families of classifiers G) since the functional to be minimized lacks convexity, smoothness

or any other form of regularity.

Large margin classification. Large margin classification methods are based on

the idea of considering real valued classifiers g : S 7→ R instead of binary classifiers and

replacing the binary loss by a convex “surrogate loss”. A real valued classifier g can be

easily transformed into binary: g 7→ sign(g). Define ℓ(y, u) := φ(yu), where φ : R 7→ R+

is a convex nonincreasing function such that φ(u) ≥ I(−∞,0](u), u ∈ R. The product

Y g(X) is called the margin of classifier g on the training example (X,Y ). If Y g(X) ≥ 0,

(X,Y ) is correctly classified by g, otherwise the example is misclassified. Given a convex

set G of classifiers g : S 7→ R the risk minimization problem becomes

P (ℓ • g) = Eφ(Y g(X)) −→ min, g ∈ G

and its empirical version is

Pn(ℓ • g) = n−1
n
∑

j=1

φ(Yjg(Xj)) −→ min, g ∈ G, (1.9)

which are convex optimization problems.

It is well known that, under very mild conditions on the “surrogate loss” φ (so called

classification calibration,see, e.g., [10]) the solution g∗ of the problem

P (ℓ • g) = Eφ(Y g(X)) −→ min, g : S 7→ R

possesses the property that sign(g∗) is the Bayes classifier. Thus, it becomes plausible that

the empirical risk minimization problem (1.9) with a large enough and properly chosen

convex function class G would have a solution ĝ such that the generalization error of
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the binary classifier sign(ĝ) is close enough to the Bayes risk. Because of the nature of

the loss function (heavy penalization for negative and even small positive margins), the

solution ĝ tends to be a classifier with most of the margins on the training data positive

and large, which explains the name “large margin classifiers”.

Among common choices of the surrogate loss function are φ(u) = e−u (the expo-

nential loss), φ(u) = log2(1 + e−u) (the logit loss) and φ(u) = (1 − u) ∨ 0 (the hinge

loss).

A possible choice of class G is

G := conv(H) :=

{ N
∑

j=1

λjhj ,N ≥ 1, λj ≥ 0,

N
∑

j=1

λjhj , hj ∈ H
}

,

where H is a given base class of classifiers. Usually, H consists of binary classifiers and

it is a rather simple class class such that the direct minimization of the training error

over H is computationally tractable. The problem (1.9) is then solved by a version of

gradient descent algorithm in functional space. This leads to a family of classification

methods called boosting (also, voting methods, ensemble methods, etc). Classifiers output

by boosting are convex combinations of base classifiers and the whole method is often

interpreted in machine learning literature as a way to combine simple base classifiers into

more complex and powerful classifiers with a much better generalization performance.

Another popular approach is based on penalized empirical risk minimization in a

reproducing kernel Hilbert space (RKHS) HK generated by a symmetric nonnegatively

definite kernel K : S × S 7→ R. For instance, using the square of the norm as a penalty

results in the following problem:

n−1
n
∑

j=1

φ(Yjg(Xj)) + ε‖g‖2
HK

−→ min, g ∈ HK , (1.10)

where ε > 0 is a regularization parameter. In the case of hinge loss φ(u) = (1 − u) ∨ 0

the method is called support vector machine (SVM). By the basic properties of RKHS, a

function g ∈ HK can be represented as g(x) = 〈g,K(x, ·)〉HK
. Because of this, it is very

easy to conclude that the solution ĝ of (1.10) must be in the linear span of functions

K(X1, ·), . . . ,K(Xn, ·). Thus, the problem (1.10) is essentially a finite dimensional convex

problem (in the case of hinge loss, it becomes a quadratic programming problem).
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1.6 Sparse Recovery Problems

Let H = {h1, . . . , hN} be a given set of functions from S into R called a dictionary.

Given λ ∈ R
N , denote fλ =

∑N
j=1 λjhj . Suppose that a function f∗ ∈ l.s.(H) is observed

at random points X1, . . . ,Xn with common distribution Π,

Yj = f∗(Xj), j = 1, . . . , n

being the observations. The goal is to find a representation of f∗ in the dictionary, i.e.,

to find λ ∈ R
N such that

fλ(Xj) = Yj , j = 1, . . . , n. (1.11)

In the case when the functions in the dictionary are not linearly independent, such a

representation does not have to be unique. Moreover, if N > n, the system of linear

equations (1.11) is underdetermined and the set

L :=
{

λ ∈ R
N : fλ(Xj) = Yj, j = 1, . . . , n

}

is a nontrivial affine subspace of R
N . However, even in this case, the following problem

still makes sense:

‖λ‖ℓ0 =
N
∑

j=1

I(λj 6= 0) −→ min, λ ∈ L. (1.12)

In other words, the goal is to find the sparsest solution of the linear system (1.11).

In general, the sparse recovery problem (1.12) is not computationally tractable since

solving such a nonconvex optimization problem essentially requires searching through

all 2N coordinate subspaces of R
N and then solving the corresponding linear systems.

However, the following problem

‖λ‖ℓ1 =
N
∑

j=1

|λj | −→ min, λ ∈ L. (1.13)

is convex, and, moreover, it is a linear programming problem. It happens that for some

dictionaries H and distributions Π of design variables the solution of problem (1.13)

is unique and coincides with the sparsest solution λ∗ of the problem (1.12) (provided

that ‖λ∗‖ℓ0 is sufficiently small). This fact is closely related to some problems in convex

geometry concerning the neighborliness of convex polytopes.

More generally, one can study sparse recovery problems in the case when f∗ does

not necessarily belong to the linear span of the dictionary H and it is measured at
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random locations Xj with some errors. Given i.i.d. sample (X1, Y1), . . . , (Xn, Yn) and a

loss function ℓ, this naturally leads to the study of the following penalized empirical risk

minimization problem

λ̂ε := argminλ∈RN

[

Pn(ℓ • fλ) + ε‖λ‖ℓ1
]

(1.14)

which is an empirical version of the problem

λε := argminλ∈RN

[

P (ℓ • fλ) + ε‖λ‖ℓ1
]

, (1.15)

where ε > 0 is a regularization parameter. It is assumed that the loss function ℓ(y;u)

is convex with respect to u which makes the optimization problems (1.14) and (1.15)

convex. This framework includes sparse recovery in both regression and large margin

classification contexts. In the case of regression with quadratic loss ℓ(y, u) = (y − u)2,

this penalization method has been called LASSO in statistical literature. The sparse

recovery algorithm (1.13) can be viewed as a version of (1.14) with quadratic loss and

with ε = 0.

Another popular method of sparse recovery introduced recently by Candes and Tao

[29] and called the Dantzig selector is based on solving the following linear programming

problem

λ̂ε ∈ Argminλ∈Λ̂ε‖λ‖ℓ1 ,

where

Λ̂ε :=

{

λ ∈ R
N : max

1≤k≤N

∣

∣

∣

∣

n−1
n
∑

j=1

(fλ(Xj) − Yj)hk(Xj)

∣

∣

∣

∣

≤ ε/2

}

.

Note that the conditions defining the set Λ̂ε are just necessary conditions of extremum

in the LASSO-optimization problem

n−1
n
∑

j=1

(Yj − fλ(Xj))
2 + ε‖λ‖ℓ1 −→ min, λ ∈ R

N ,

so, the Dantzig selector is closely related to LASSO.

We will also study some other types of penalties that can be used in sparse recovery

problems such as ‖λ‖pℓp with a suitable value of p > 1 and entropy penalty
∑N

j=1 λj log λj

that can be used for sparse recovery in the convex hull of the dictionary H.
Our goal will be to establish oracle inequalities showing that the methods of this

type allow one to find a sparse approximation of the target function (when it exists).
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2 Empirical and Rademacher Processes

The empirical process is defined as

Zn := n1/2(Pn − P )

and it can be viewed as a random measure. However, more often, it has been viewed as

a stochastic process indexed by a function class F :

Zn(f) = n1/2(Pn − P )(f), f ∈ F

(see Dudley [42] or van der Vaart and Wellner [95]).

The Rademacher process indexed by a class F was defined in Section 1.3 as

Rn(f) := n−1
n
∑

i=1

εif(Xi), f ∈ F ,

{εi} being i.i.d. Rademacher random variables (i.e., εi takes the values +1 and −1 with

probability 1/2 each) independent of {Xi}.
It should be mentioned that certain measurability assumptions are required in the

study of empirical and Rademacher processes. In particular, under these assumptions,

such quantities as ‖Pn − P‖F are properly measurable random variables. We refer to

the books of Dudley [42], Chapter 5 and van der Vaart and Wellner [95], Section 1.7

for precise formulations of these measurability assumptions. Some of the bounds derived

and used below hold even without the assumptions of this nature, if the expectation is

replaced by outer expectation, as it is often done, for instance, in [95]. Another option

is to “define”

E‖Pn − P‖F := sup

{

E‖Pn − P‖G : G ⊂ F ,G is finite

}

,

which provides a simple way to get around the measurability difficulties. Such an ap-

proach has been frequently used by Talagrand (see, e.g., [88]). In what follows, it will be

assumed that measurability problems have been resolved in one of these ways.

2.1 Symmetrization Inequalities

The following important inequality reveals close relationships between empirical and

Rademacher processes.

20



Theorem 2.1 For any class F of P -integrable functions and for any convex function

Φ : R+ 7→ R+

EΦ

(

1

2
‖Rn‖Fc

)

≤ EΦ
(

‖Pn − P‖F
)

≤ EΦ
(

2‖Rn‖F
)

,

where Fc := {f − Pf : f ∈ F}. In particular,

1

2
E‖Rn‖Fc ≤ E‖Pn − P‖F ≤ 2E‖Rn‖F .

Proof. Assume that the random variables X1, . . . Xn are defined on a probability

space (Ω̄, Σ̄, P̄). We will also need two other probability spaces: (Ω̃, Σ̃, P̃) and (Ωε,Σε,Pε).

The main probability space on which all the random variables are defined will be denoted

(Ω,Σ,P) and it will be the product space

(Ω,Σ,P) = (Ω̄, Σ̄, P̄) × (Ω̃, Σ̃, P̃) × (Ωε,Σε,Pε).

The corresponding expectations will be denoted by Ē, Ẽ,Eε and E. Let (X̃1, . . . , X̃n) be

an independent copy of (X1, . . . ,Xn). Think of random variables X̃1, . . . , X̃n as being

defined on (Ω̃, Σ̃, P̃). Denote P̃n the empirical measure based on (X̃1, . . . , X̃n) (it is an

independent copy of Pn). Then ẼP̃nf = Pf and, using Jensen’s inequality,

EΦ
(

‖Pn − P‖F
)

= ĒΦ
(

‖Pn − ẼP̃n‖F
)

= ĒΦ
(

‖Ẽ(Pn − P̃n)‖F
)

≤

ĒẼΦ
(

‖Pn − P̃n‖F
)

= ĒẼΦ

(∥

∥

∥

∥

n−1
n
∑

j=1

(δXj − δX̃j )

∥

∥

∥

∥

F

)

.

Since X1, . . . ,Xn, X̃1, . . . , X̃n are i.i.d., the distribution of (X1, . . . ,Xn, X̃1, . . . , X̃n) is

invariant with respect to all permutations of the components. In particular, one can

switch any couple Xj , X̃j . Because of this,

ĒẼΦ

(
∥

∥

∥

∥

n−1
n
∑

j=1

(δXj − δX̃j )

∥

∥

∥

∥

F

)

= ĒẼΦ

(
∥

∥

∥

∥

n−1
n
∑

j=1

σj(δXj − δX̃j )

∥

∥

∥

∥

F

)

,

for arbitrary choice of σj = +1 or σj = −1. Define now i.i.d. Rademacher random

variables on (Ωε,Σε,Pε) (thus, independent of (X1, . . . ,Xn, X̃1, . . . , X̃n)). Then, we have

ĒẼΦ

(∥

∥

∥

∥

n−1
n
∑

j=1

(δXj − δX̃j )

∥

∥

∥

∥

F

)

= EεĒẼΦ

(∥

∥

∥

∥

n−1
n
∑

j=1

εj(δXj − δX̃j )

∥

∥

∥

∥

F

)
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and the proof can be completed as follows:

EΦ
(

‖Pn − P‖F
)

≤ EεĒẼΦ

(∥

∥

∥

∥

n−1
n
∑

j=1

εj(δXj − δX̃j )

∥

∥

∥

∥

F

)

≤

1

2
EεĒΦ

(

2

∥

∥

∥

∥

n−1
n
∑

j=1

εjδXj

∥

∥

∥

∥

F

)

+
1

2
EεẼΦ

(

2

∥

∥

∥

∥

n−1
n
∑

j=1

εjδX̃j

∥

∥

∥

∥

F

)

= EΦ
(

2‖Rn‖F
)

.

The proof of the lower bound is similar.

The upper bound is called the symmetrization inequality and the lower bound is

often called the desymmetrization inequality. These inequalities were introduced to the

theory of empirical processes by Giné and Zinn [47] (an earlier form of Rademacher

symmetrization was used by Koltchinskii [57]) and Pollard [80]). The desymmetrization

inequality is often used together with the following elementary lower bound (in the case

of Φ(u) = u)

E‖Rn‖Fc ≥ E‖Rn‖F − sup
f∈F

|Pf | E|Rn(1)| ≥

≥ E‖Rn‖F − sup
f∈F

|Pf | E
1/2|n−1

n
∑

j=1

εj |2 ≥ E‖Rn‖F −
supf∈F |Pf |√

n
.

2.2 Comparison Inequalities for Rademacher Sums

Given a set T ⊂ R
n and i.i.d. Rademacher variables εi, i = 1, 2, . . . , it is of interest to

know how the expected value of the sup-norm of Rademacher sums indexed by T

Rn(T ) := E sup
t∈T

∣

∣

∣

∣

n
∑

i=1

tiεi

∣

∣

∣

∣

depends on the geometry of the set T.

The following beautiful comparison inequality for Rademacher sums is due to Tala-

grand (see Ledoux and Talagrand [68], Theorem 4.12).

Theorem 2.2 Let T ⊂ R
n and let ϕi : R 7→ R, i = 1, . . . , n be functions such that

ϕi(0) = 0 and

|ϕi(u) − ϕi(v)| ≤ |u− v|, u, v ∈ R

(i.e., ϕi is a contraction). For all convex nondecreasing functions Φ : R+ 7→ R+,

EΦ

(

1

2
sup
t∈T

∣

∣

∣

∣

n
∑

i=1

ϕi(ti)εi

∣

∣

∣

∣

)

≤ EΦ

(

sup
t∈T

∣

∣

∣

∣

n
∑

i=1

tiεi

∣

∣

∣

∣

)

.
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Proof. First, we prove that for a nondecreasing convex function Φ : R 7→ R+ and

for an arbitrary A : T 7→ R

EΦ

(

sup
t∈T

[

A(t) +

n
∑

i=1

ϕi(ti)εi

])

≤ EΦ

(

sup
t∈T

[

A(t) +

n
∑

i=1

tiεi

])

. (2.1)

We start with the case n = 1. Then, the bound is equivalent to the following

EΦ
(

sup
t∈T

[t1 + εϕ(t2)]
)

≤ EΦ
(

sup
t∈T

[t1 + εt2]
)

for an arbitrary set T ⊂ R
2 and an arbitrary contraction ϕ. One can rewrite it as

1

2

(

Φ
(

sup
t∈T

[t1 + ϕ(t2)]
)

+ Φ
(

sup
t∈T

[t1 − ϕ(t2)]
)

)

≤ 1

2

(

Φ
(

sup
t∈T

[t1 + t2]
)

+ Φ
(

sup
t∈T

[t1 − t2]
)

)

.

If now (t1, t2) ∈ T denote a point where supt∈T [t1 +ϕ(t2)] is attained and (s1, s2) ∈ T is

a point where supt∈T [t1 − ϕ(t2)] is attained, then it is enough to show that

Φ
(

t1 + ϕ(t2)
)

+ Φ
(

s1 − ϕ(s2)
)

≤ Φ
(

sup
t∈T

[t1 + t2]
)

+ Φ
(

sup
t∈T

[t1 − t2]
)

(if the suprema are not attained, one can easily modify the argument). Clearly, we have

the following conditions:

t1 + ϕ(t2) ≥ s1 + ϕ(s2) and t1 − ϕ(t2) ≤ s1 − ϕ(s2).

First consider the case when t2 ≥ 0, s2 ≥ 0 and t2 ≥ s2. In this case, we will prove that

Φ
(

t1 + ϕ(t2)
)

+ Φ
(

s1 − ϕ(s2)
)

≤ Φ
(

t1 + t2

)

+ Φ
(

s1 − s2

)

, (2.2)

which would imply the bound. Indeed, for

a := t1 + ϕ(t2), b := t1 + t2, c := s1 − s2, d := s1 − ϕ(s2),

we have a ≤ b and c ≤ d since

ϕ(t2) ≤ t2, ϕ(s2) ≤ s2

(by the assumption that ϕ is a contraction and ϕ(0) = 0). We also have that

b− a = t2 − ϕ(t2) ≥ s2 − ϕ(s2) = d− c,

because again ϕ is a contraction and t2 ≥ s2. Finally, we have

a = t1 + ϕ(t2) ≥ s1 + ϕ(s2) ≥ s1 − s2 = c.
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Since the function Φ is nondecreasing and convex, its increment over the interval [a, b]

is larger than its increment over the interval [c, d] ([a, b] is longer than [c, d] and a ≥ c),

which is equivalent to (2.2).

If t2 ≥ 0, s2 ≥ 0 and s2 ≥ t2, it is enough to use the change of notations (t, s) 7→ (s, t)

and to replace ϕ with −ϕ.
The case t2 ≤ 0, s2 ≤ 0 can be now handled by using the transformation (t1, t2) 7→

(t1,−t2) and changing the function ϕ accordingly.

We have to consider the case t2 ≥ 0, s2 ≤ 0 (the only remaining case t2 ≤ 0, s2 ≥ 0

would again follow by switching the names of t and s and replacing ϕ with −ϕ). In this

case, we have

ϕ(t2) ≤ t2, −ϕ(s2) ≤ −s2,

which, in view of monotonicity of Φ, immediately implies

Φ
(

t1 + ϕ(t2)
)

+ Φ
(

s1 − ϕ(s2)
)

≤ Φ
(

t1 + t2

)

+ Φ
(

s1 − s2

)

.

This completes the proof of (2.1) in the case n = 1.

In the general case, we have

EΦ

(

sup
t∈T

[

A(t) +

n
∑

i=1

ϕi(ti)εi

])

= Eε1,...,εn−1EεnΦ

(

sup
t∈T

[

A(t) +

n−1
∑

i=1

ϕi(ti)εi + εnϕ(tn)

])

.

The expectation Eεn (conditional on ε1, . . . , εn−1) can be bounded using the result in

the case n = 1. This yields (after changing the order of integration)

EΦ

(

sup
t∈T

[

A(t) +

n
∑

i=1

ϕi(ti)εi

])

≤ EεnEε1,...,εn−1Φ

(

sup
t∈T

[

A(t) + εntn +

n−1
∑

i=1

ϕi(ti)εi

])

.

The proof of (2.1) can now be completed by an induction argument.

Finally, to prove the inequality of the theorem, it is enough to write

EΦ

(

1

2
sup
t∈T

∣

∣

∣

∣

n
∑

i=1

ϕi(ti)εi

∣

∣

∣

∣

)

= EΦ

(

1

2

[(

sup
t∈T

n
∑

i=1

ϕi(ti)εi

)

+

+

(

sup
t∈T

n
∑

i=1

ϕi(ti)(−εi)
)

+

])

≤

1

2

[

EΦ

((

sup
t∈T

n
∑

i=1

ϕi(ti)εi

)

+

)

+ EΦ

((

sup
t∈T

n
∑

i=1

ϕi(ti)(−εi)
)

+

)]

,

where a+ := a ∨ 0. Applying the inequality (2.1) to the function u 7→ Φ(u+), which is

convex and nondecreasing, completes the proof.
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We will frequently use a corollary of the above comparison inequality that provides

upper bounds on the moments of the sup-norm of Rademacher process Rn on the class

ϕ ◦ F := {ϕ ◦ f : f ∈ F}

in terms of the corresponding moments of the sup-norm of Rn on F and Lipschitz

constant of function ϕ.

Theorem 2.3 Let ϕ : R 7→ R be a contraction satisfying the condition ϕ(0) = 0. For all

convex nondecreasing functions Φ : R+ 7→ R+,

EΦ

(

1

2
‖Rn‖ϕ◦F

)

≤ EΦ
(

‖Rn‖F
)

.

In particular,

E‖Rn‖ϕ◦F ≤ 2E‖Rn‖F .

The inequality of Theorem 2.3 will be called the contraction inequality for Rademacher

processes.

A simple rescaling of the class F allows one to use the contraction inequality in the

case of an arbitrary function ϕ satisfying the Lipschitz condition

|ϕ(u) − ϕ(v)| ≤ L|u− v|

on an arbitrary interval (a, b) that contains the ranges of all the functions in F . In this

case, the last bound of Theorem 2.3 takes the form

E‖Rn‖ϕ◦F ≤ 2LE‖Rn‖F .

This implies, for instance, that

E sup
f∈F

∣

∣

∣

∣

n−1
n
∑

i=1

εif
2(Xi)

∣

∣

∣

∣

≤ 4UE sup
f∈F

∣

∣

∣

∣

n−1
n
∑

i=1

εif(Xi)

∣

∣

∣

∣

(2.3)

provided that the functions in the class F are uniformly bounded by a constant U.

2.3 Concentration Inequalities

A well known, simple and useful concentration inequality for functions

Z = g(X1, . . . ,Xn)
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of independent random variables with values in arbitrary spaces is valid under so called

bounded difference condition on g : there exist constants cj, j = 1, . . . , n such that for all

j = 1, . . . , n and all x1, x2, . . . , xj , x
′
j , . . . , xn

∣

∣

∣
g(x1, . . . , xj−1, xj, xj+1, . . . , xn) − g(x1, . . . , xj−1, x

′
j , xj+1, . . . , xn)

∣

∣

∣
≤ cj . (2.4)

Theorem 2.4 Bounded difference inequality. Under the condition (2.4),

P{Z − EZ ≥ t} ≤ exp

{

− 2t2
∑n

j=1 c
2
j

}

and

P{Z − EZ ≤ −t} ≤ exp

{

− 2t2
∑n

j=1 c
2
j

}

.

A standard proof of this inequality is based on bounding the exponential moment

Eeλ(Z−EZ), using the following martingale difference representation

Z − EZ =

n
∑

j=1

[

E(Z|X1, . . . ,Xj) − E(Z|X1, . . . ,Xj−1)

]

,

then using Markov inequality and optimizing the resulting bound with respect to λ > 0.

In the case when Z = X1 + · · · + Xn, the bounded difference inequality coincides

with Hoeffding inequality for sums of bounded independent random variables.

For a class F of functions uniformly bounded by a constant U, the bounded difference

inequality immediately implies the following bounds for ‖Pn−P‖F , providing a uniform

version of Hoeffding inequality.

Theorem 2.5 For all t > 0,

P

{

‖Pn − P‖F ≥ E‖Pn − P‖F +
tU√
n

}

≤ exp{−t2/2}

and

P

{

‖Pn − P‖F ≤ E‖Pn − P‖F − tU√
n

}

≤ exp{−t2/2}.

Developing uniform versions of Bernstein’s inequality happened to be a much harder

problem that was solved in famous papers by Talagrand [86, 87] on concentration in-

equalities for product measures and empirical processes.
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Theorem 2.6 Talagrand’s inequality. Let X1, . . . ,Xn be independent random vari-

ables in S. For any class of functions F on S that is uniformly bounded by a constant

U > 0 and for all t > 0

P

{

∣

∣

∣

∣

∥

∥

∥

n
∑

i=1

f(Xi)
∥

∥

∥

F
−E

∥

∥

∥

n
∑

i=1

f(Xi)
∥

∥

∥

F

∣

∣

∣

∣

≥ t

}

≤ K exp

{

− 1

K

t

U
log

(

1 +
tU

V

)}

,

where K is a universal constant and V is any number satisfying

V ≥ E sup
f∈F

n
∑

i=1

f2(Xi).

Using symmetrization inequality and contraction inequality for the square (2.3), it

is easy to show that in the case of i.i.d. random variables X1, . . . ,Xn with distribution

P

E sup
f∈F

n
∑

i=1

f2(Xi) ≤ n sup
f∈F

Pf2 + 8UE

∥

∥

∥

∥

n
∑

i=1

εif(Xi)

∥

∥

∥

∥

F
. (2.5)

The right hand side of this bound is a common choice of the quantity V involved in

Talagrand’s inequality. Moreover, in the case when Ef(X) = 0, the desymmetrization

inequality yields

E

∥

∥

∥

∥

n
∑

i=1

εif(Xi)

∥

∥

∥

∥

F
≤ 2E

∥

∥

∥

∥

n
∑

i=1

f(Xi)

∥

∥

∥

∥

F
.

As a result, one can use Talagrand’s inequality with

V = n sup
f∈F

Pf2 + 16UE

∥

∥

∥

∥

n
∑

i=1

f(Xi)

∥

∥

∥

∥

and the size of

∥

∥

∥

∥

∑n
i=1 f(Xi)

∥

∥

∥

∥

F
is now controlled it terms of its expectation only.

This form of Talagrand’s inequality is especially convenient and there have been

considerable efforts to find explicit and sharp values of the constants in such inequalities.

In particular, we will frequently use the bounds proved by Bousquet [22] and Klein [54]

(in fact, Klein and Rio [55] provide an improved version of this inequality). Namely, for

a class F of measurable functions from S into [0, 1] (by a simple rescaling [0, 1] can be

replaced by any bounded interval) the following bounds hold for all t > 0 :

Bousquet bound.

P

{

‖Pn − P‖F ≥ E‖Pn − P‖F +

√

2
t

n

(

σ2
P (F) + 2E‖Pn − P‖F

)

+
t

3n

}

≤ e−t.
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Klein-Rio bound

P

{

‖Pn − P‖F ≤ E‖Pn − P‖F −
√

2
t

n

(

σ2
P (F) + 2E‖Pn − P‖F

)

− t

n

}

≤ e−t.

Here

σ2
P (F) := sup

f∈F

(

Pf2 − (Pf)2
)

.

Concentration inequalities can be also applied to the Rademacher process which

can be viewed as an empirical process based on the sample (X1, ε1), . . . , (Xn, εn) in the

space S × {−1, 1} and indexed by the class of functions F̃ := {f̃ : f ∈ F}, where

f̃(x, u) := f(x)u, (x, u) ∈ S × {−1, 1}.

3 Bounding Expected Sup-Norms of Empirical and Rademacher

Processes

In what follows, we will use a number of bounds on expectation of suprema of empir-

ical and Rademacher processes. Because of symmetrization inequalities, the problems

of bounding expected suprema for these two stochastic processes are equivalent. The

bounds are usually based on various complexity measures of function classes (such as

linear dimension, VC-dimension, shattering numbers, uniform covering numbers, ran-

dom covering numbers, bracketing numbers, etc). It would be of interest to develop the

bounds with precise dependence on such geometric parameters as the L2(P )-diameter of

the class. Combining the bounds on expected suprema with Talagrand’s concentration

inequalities yields exponential inequalities for the tail probabilities of sup-norms.

3.1 Subgaussian Processes

Recall that a random variable Y is called subgaussian with parameter σ2, or Y ∈ SG(σ2),

iff for all λ ∈ R

EeλY ≤ eλ
2σ2/2.

Normal random variable with mean 0 and variance σ2 belongs to SG(σ2). If ε is Rademacher

r.v., then ε ∈ SG(1).

The next proposition gives two simple and important properties of subgaussian

random variables (see, e.g., [95], Section 2.2.1 for the proof of property (ii)).
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Proposition 3.1 (i) If Y1, . . . , Yn are independent random variables and Yj ∈ SG(σ2
j ),

then

Y1 + · · · + Yn ∈ SG(σ2
1 + · · · + σ2

n).

(ii) For arbitrary Y1, . . . , YN , N ≥ 2 such that Yj ∈ SG(σ2
j ), j = 1, . . . ,N,

E max
1≤j≤N

|Yj | ≤ C max
1≤j≤N

σj
√

logN,

where C is a numerical constant.

Let (T, d) be a pseudo-metric space and Y (t), t ∈ T be a stochastic process. It is

called subgaussian with respect to d iff, for all t, s ∈ T, Y (t) − Y (s) ∈ SG(d2(t, s)).

Denote D(T ) = D(T, d) the diameter of the space T. Let N(T, d, ε) be the ε-covering

number of (T, d), i.e., the minimal number of balls of radius ε needed to cover T. Let

M(T, d, ε) be the ε-packing number of (T, d), i.e., the largest number of points in T

separated from each other by at least a distance of ε. Obviously,

N(T, d, ε) ≤M(T, d, ε) ≤ N(T, d, ε/2), ε ≥ 0.

As always,

H(T, d, ε) = logN(T, d, ε)

is called the ε-entropy of (T, d).

Theorem 3.1 (Dudley’s entropy bounds). If Y (t), t ∈ T is a subgaussian process

with respect to d, then the following bounds hold with some numerical constant C > 0 :

E sup
t∈T

Y (t) ≤ C

∫ D(T )

0
H1/2(T, d, ε)dε

and for all t0 ∈ T

E sup
t∈T

|Y (t) − Y (t0)| ≤ C

∫ D(T )

0
H1/2(T, d, ε)dε.

The proof is based on the well known chaining method (see, e.g., [68], Section 11.1)

that also leads to more refined generic chaining bounds (see Talagrand [88]). For Gaussian

processes, the following lower bound is also true (see [68], Section 3.3).
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Theorem 3.2 (Sudakov’s entropy bound). If Y (t), t ∈ T is a Gaussian process and

d(t, s) := E
1/2(X(t) −X(s))2, t, s ∈ T,

then the following bound holds with some numerical constant C > 0 :

E sup
t∈T

Y (t) ≥ C sup
ε>0

εH1/2(T, d, ε).

In addition to Gaussian processes, Rademacher sums provide another important

example of subgaussian processes.

Given T ⊂ R
n, define

Y (t) :=

n
∑

i=1

εiti, t = (t1, . . . , tn) ∈ T,

where {εi} are i.i.d. Rademacher random variables. The stochastic process Y (t), t ∈ T

is called the Rademacher sum indexed by T. It is a subgaussian process with respect to

the Euclidean distance in R
n :

d(t, s) =

( n
∑

i=1

(ti − si)
2

)1/2

.

The following result by Talagrand is a version of Sudakov’s type lower bound for

Rademacher sums (see [68], Section 4.5).

Denote

R(T ) := Eε sup
t∈T

∣

∣

∣

∣

∣

n
∑

i=1

εiti

∣

∣

∣

∣

∣

.

Theorem 3.3 (Talagrand). There exists a universal constant L such that

R(T ) ≥ 1

L
δH1/2(T, d, δ) (3.1)

whenever

R(T ) sup
t∈T

‖t‖ℓ∞ ≤ δ2

L
. (3.2)
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3.2 Finite Classes of Functions

Suppose F is a finite class of measurable functions uniformly bounded by a constant

U > 0. Let N := card(F) ≥ 2. Denote

σ2 := sup
f∈F

Pf2.

Theorem 3.4 There exist universal constants K1,K2 such that

E‖Rn‖F ≤ K1U

√

logN

n
.

and

E‖Rn‖F ≤ K2

[

σ

√

logN

n

∨

U
logN

n
.

]

Proof. Conditionally on X1, . . . ,Xn, the random variable

√
nRn(f) =

1√
n

n
∑

j=1

εjf(Xj), f ∈ F

is subgaussian with parameter ‖f‖L2(Pn). Therefore, it follows from Proposition 3.1 that

Eε‖Rn‖F ≤ K sup
f∈F

‖f‖L2(Pn)

√

logN

n
.

The first bound now follows since

sup
f∈F

‖f‖L2(Pn) ≤ U.

To prove the second bound, denote

F2 := {f2 : f ∈ F}

and observe that

sup
f∈F

‖f‖L2(Pn) ≤ sup
f∈F

‖f‖L2(P ) +
√

‖Pn − P‖F2 ,

which implies

E sup
f∈F

‖f‖L2(Pn) ≤ σ +
√

E‖Pn − P‖F2 .

Using symmetrization and contraction inequalities, we get

E‖Pn − P‖F2 ≤ 2E‖Rn‖F2 ≤ 8UE‖Rn‖F .

31



Hence,

E‖Rn‖F ≤ KE sup
f∈F

‖f‖L2(Pn)

√

logN

n
≤ K

(

σ +
√

8UE‖Rn‖F
)

√

logN

n
.

The result now follows by bounding the solution with respect to E‖Rn‖F of the above

inequality.

The result can be also deduced from the following theorem (it is enough to take

q = logN).

Theorem 3.5 There exists a universal constants K such that for all q ≥ 2

E
1/q‖Rn‖qF ≤ E

1/q‖Rn‖qℓq(F) := E
1/q
∑

f∈F
|Rn(f)|q ≤

K

[

σ
(q − 1)1/2N1/q

n1/2

∨

U
(q − 1)N2/q

n

]

.

Proof. We will need the following simple property of Rademacher sums: for all

q ≥ 2,

E
1/q

∣

∣

∣

∣

n
∑

i=1

αiεi

∣

∣

∣

∣

q

≤ (q − 1)1/2
( n
∑

i=1

α2
i

)1/2

(see, e.g., de la Pena and Giné [32], p. 21). Using this inequality, we get

Eε‖Rn‖qF ≤
∑

f∈F
Eε|Rn(f)|q ≤ (q − 1)q/2n−q/2

∑

f∈F
‖f‖qL2(Pn) ≤

(q − 1)q/2n−q/2N

(

sup
f∈F

Pnf
2

)q/2

≤ (q − 1)q/2n−q/2N

(

σ2 + ‖Pn − P‖F2

)q/2

.

This easily implies

E
1/q‖Rn‖qF ≤ E

1/q
∑

f∈F
|Rn(f)|q ≤

(q − 1)1/2n−1/2N1/q21/2−1/q

(

σ + E
1/q‖Pn − P‖q/2F2

)

. (3.3)

It remains to use symmetrization and contraction inequalities to get

E
1/q‖Pn − P‖q/2F2 ≤ 2U1/2

E
1/q‖Rn‖q/2F ≤ 2U1/2

√

E1/q‖Rn‖qF ,

to substitute this bound into (3.3) and to solve the resulting inequality for E
1/q‖Rn‖qF

to complete the proof.
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3.3 Shattering Numbers and VC-classes of sets

.

Let C be a class of subsets of S. Given a finite set F ⊂ S, denote

∆C(F ) := card{C ∩ F},

where

C ∩ F :=
{

C ∩ F : C ∈ C
}

.

Clearly,

∆C(F ) ≤ 2card(F ).

If ∆C(F ) = 2card(F ), it is said that F is shattered by C. The numbers ∆C(F ) are called

the shattering numbers of the class C.
Define

mC(n) := sup

{

∆C(F ) : F ⊂ S, card(F ) ≤ n

}

.

Clearly,

mC(n) ≤ 2n, n = 1, 2, . . .

and if, for some n, mC(n) < 2n, then mC(k) < 2k for all k ≥ n.

Let

V (C) := min{n ≥ 1 : mC(n) < 2n}.

If mC(n) = 2n for all n ≥ 1, set V (C) = ∞. The number V (C) is called the Vapnik-

Chervonenkis dimension (or the VC-dimension) of class C. If V (C) < +∞, then C is

called the Vapnik-Chervonenkis class (or VC-class). It means that no set F of cardinality

n ≥ V (C) is shattered by C.
Denote

(

n

≤ k

)

:=

(

n

0

)

+ · · · +
(

n

k

)

.

The following lemma (proved independently in somewhat different forms by Sauer,

Shelah, and also by Vapnik and Chervonenkis) is one of the main combinatorial facts

related to VC-classes.

Theorem 3.6 (Sauer’s Lemma). Let F ⊂ S, card(F ) = n. If

∆C(F ) >

(

n

≤ k − 1

)

,

then there exists a subset F ′ ⊂ F, card(F ′) = k such that F ′ is shattered by C.
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The Sauer’s Lemma immediately implies that, for a VC-class C,

mC(n) ≤
(

n

≤ V (C) − 1

)

,

which can be further bounded by

(

ne
V (C)−1

)V (C)−1

.

We will view P and Pn as functions defined on a class C of measurable sets C 7→
P (C), C 7→ Pn(C) and the Rademacher process will be also indexed by sets:

Rn(C) := n−1
n
∑

j=1

εjIC(Xj).

For Y : C 7→ R, we still write ‖Y ‖C := supC∈C |Y (C)|.
Denote F := {IC : C ∈ C}.

Theorem 3.7 There exists a numerical constant K > 0 such that

E‖Pn − P‖C ≤ KE

√

log ∆C(X1, . . . ,Xn)

n
≤ K

√

E log ∆C(X1, . . . ,Xn)

n
.

The drawback of this result is that it does not take into account the ”size” of the

sets in class C. A better bound is possible in the case when, for all C ∈ C, P (C) is small.

We will derive such an inequality in which the size of E‖Pn −P‖C is controlled in terms

of random shattering numbers ∆C(X1, . . . ,Xn) and of

‖P‖C = sup
C∈C

P (C)

(and which implies the inequality of Theorem 3.7).

Theorem 3.8 There exists a numerical constant K > 0 such that

E‖Pn − P‖C ≤ K‖P‖1/2
C E

√

log ∆C(X1, . . . ,Xn)

n

∨

K
E log ∆C(X1, . . . ,Xn)

n
≤

K‖P‖1/2
C

√

E log ∆C(X1, . . . ,Xn)

n

∨

K
E log ∆C(X1, . . . ,Xn)

n
.

Proof. Let

T :=

{

(IC(X1), . . . , IC(Xn)) : C ∈ C
}

.

Clearly,

card(T ) = ∆C(X1, . . . ,Xn)
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and

Eε‖Rn‖C = Eε sup
t∈T

∣

∣

∣

∣

n−1
n
∑

i=1

εiti

∣

∣

∣

∣

.

For all t ∈ T, n−1
∑n

i=1 εiti is a subgaussian random variable with parameter n−1‖t‖ℓ2 .
Therefore, by Proposition 3.1,

Eε sup
t∈T

∣

∣

∣

∣

n−1
n
∑

i=1

εiti

∣

∣

∣

∣

≤ Kn−1 sup
t∈T

‖t‖ℓ2
√

log ∆C(X1, . . . ,Xn).

Note that

n−1 sup
t∈T

‖t‖ℓ2 = n−1/2(sup
C∈C

Pn(C))1/2.

Hence,

Eε‖Rn‖C ≤ Kn−1/2
E‖Pn‖1/2

C

√

log ∆C(X1, . . . ,Xn) ≤

Kn−1/2
E

√

‖Pn − P‖C + ‖P‖C
√

log ∆C(X1, . . . ,Xn) ≤

Kn−1/2
E

√

‖Pn − P‖C
√

log ∆C(X1, . . . ,Xn) +Kn−1/2
√

‖P‖CE

√

log ∆C(X1, . . . ,Xn).

By symmetrization inequality,

E‖Pn − P‖C ≤ 2K
√

2n−1/2
E

√

‖Pn − P‖C
√

log ∆C(X1, . . . ,Xn)+

2K
√

2n−1/2
√

‖P‖CE

√

log ∆C(X1, . . . ,Xn) ≤

2Kn−1/2
√

E‖Pn − P‖C
√

E log ∆C(X1, . . . ,Xn)+

2Kn−1/2
√

‖P‖CE

√

log ∆C(X1, . . . ,Xn),

where we also used Cauchy-Schwarz inequality. It remains to solve the resulting inequality

with respect to E‖Pn − P‖C (or just to upper bound its solution) to get the result.

In the case of VC-classes,

log ∆C(X1, . . . ,Xn) ≤ logmC(n) ≤ KV (C) log n

with some numerical constant K > 0. Thus, Theorem 3.8 yields the bound

E‖Pn − P‖C ≤ K

(

‖P‖1/2
C

√

V (C) log n

n

∨ V (C) log n

n

)

.
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However, this bound is not sharp: the logarithmic factor involved in it can be eliminated.

To this end, the following bound on the covering numbers of a VC-class C is needed. For

an arbitrary probability measure Q on (S,A), define the distance

dQ(C1, C2) = Q(C1△C2), C1, C2 ∈ C.

Theorem 3.9 There exists a universal constant K > 0 such that for any VC-class

C ⊂ A and for all probability measures Q on (S,A)

N(C; dQ; ε) ≤ KV (C)(4e)V (C)

(

1

ε

)V (C)−1

, ε ∈ (0, 1).

This result is due to Haussler and it is an improvement of an earlier bound by Dudley

(the proof and precise references can be found, e.g., in van der Vaart and Wellner [95]).

By Theorem 3.9, we get

N(C; dPn ; ε) ≤ KV (C)(4e)V (C)

(

1

ε

)V (C)−1

, ε ∈ (0, 1).

Using this fact one can prove the following inequality:

E‖Pn − P‖C ≤ K

(

‖P‖1/2
C

√

log
K

‖P‖C

√

V (C)

n

∨ V (C) log K
‖P‖C

n

)

.

We are not giving its proof here. However, in the next section, we establish more general

results for VC-type classes of functions (see (3.13)) that do imply the above bound.

3.4 Upper Entropy Bounds

Let N(F ;L2(Pn); ε) denote the minimal number of L2(Pn)-balls of radius ε covering F .
Denote

σ2
n := sup

f∈F
Pnf

2.

Theorem 3.10 The following bound holds with a numerical constant C > 0 :

E‖Rn‖F ≤ C√
n

E

∫ 21/2σn

0

√

logN(F ;L2(Pn); ε)dε.

Proof. Conditionally on X1, . . . ,Xn, the process

√
nRn(f) =

1√
n

n
∑

j=1

εjf(Xj), f ∈ F
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is subgaussian with respect to the distance of the space L2(Pn). Hence, it follows from

Theorem 3.1 that

Eε‖Rn‖F ≤ Cn−1/2

∫ 21/2σn

0

√

logN(F ;L2(Pn); ε)dε. (3.4)

Taking expectation of both sides, yields the result.

Following Giné and Koltchinskii [50], we will derive from Theorem 3.10 several

bounds under more special conditions on the random entropy. Assume that the functions

in F are uniformly bounded by a constant U > 0 and let F ≤ U denote a measurable

envelope of F , i.e.

|f(x)| ≤ F (x), x ∈ S, f ∈ F .

We will assume that σ2 is a number such that

sup
f∈F

Pf2 ≤ σ2 ≤ ‖F‖2
L2(P )

Most often, we will use

σ2 = sup
f∈F

Pf2.

Let H : [0,∞) 7→ [0,∞) be a regularly varying function of exponent 0 ≤ α < 2,

strictly increasing for u ≥ 1/2 and such that H(u) = 0 for 0 ≤ u < 1/2.

Theorem 3.11 If, for all ε > 0, n ≥ 1 and ω ∈ Ω,

logN(F , L2(Pn), ε) ≤ H

(‖F‖L2(Pn)

ε

)

, (3.5)

then there exists a constant C > 0, that depends only on H, such that

E‖Rn‖F ≤ C

[

σ√
n

√

H
(2‖F‖L2(P )

σ

)

∨ U

n
H
(2‖F‖L2(P )

σ

)

]

. (3.6)

In particular, if, for some C1 > 0,

nσ2 ≥ C1U
2H

(

2‖F‖L2(P )

σ

)

,

then

E‖Rn‖F ≤ Cσ√
n

√

H

(

2‖F‖L2(P )

σ

)

(3.7)

with a constant C > 0 that depends only on H and C1.
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Proof. Without loss of generality, assume that U = 1 (otherwise the result follows

by a simple rescaling of the class F). Given function H, we will use constants CH > 0,

DH > 0, AH > 0 for which

sup
v≥1

∫∞
v u−2

√

H(u)du

v−1
√

H(v)

∨

1 ≤ CH ,

∫ ∞

1
u−2

√

H(u) du ≤ DH

sup
v≥2

logDHv/(4CH
√

H(v))

v2

∨

1 ≤ AH .

The bound of Theorem 3.10 implies that with some numerical constant C > 0 (the value

of C might change from place to place)

E‖Rn‖F ≤ Cn−1/2
E

∫ 21/2σn

0

√

logN(F , L2(Pn), ε)dε

≤ 21/2Cn−1/2
E

∫ σn

0

√

H

(‖F‖L2(Pn)

ε

)

dε

≤ 21/2Cn−1/2
E

∫ σn

0

√

H

(

2‖F‖L2(P )

ε

)

dε I
(

‖F‖L2(Pn) ≤ 2‖F‖L2(P )

)

+

21/2Cn−1/2
E

∫ σn

0

√

H

(‖F‖L2(Pn)

ε

)

dε I
(

‖F‖L2(Pn) > 2‖F‖L2(P )

)

. (3.8)

It is very easy to bound the second term in the sum. First note that

∫ σn

0

√

H

(‖F‖L2(Pn)

ε

)

dε ≤ ‖F‖L2(Pn)

∫ 1

0

√

H(1/u)du ≤ DH‖F‖L2(Pn).

Then use Hölder’s inequality and Bernstein’s inequality to get

n−1/2
E





∫ σn

0

√

H

(‖F‖L2(Pn)

ε

)

dεI
(

‖F‖L2(Pn) > 2‖F‖L2(P )

)



 ≤

DHn
−1/2‖F‖L2(P ) exp

{

−9

8
n‖F‖2

L2(P )

}

≤ DH

2n
. (3.9)

Bounding the first term is slightly more complicated. Recall the notation

F2 := {f2 : f ∈ F}.

Using symmetrization and contraction inequalities, we get

Eσ2
n ≤ σ2 + E‖Pn − P‖F2 ≤ σ2 + 2E‖Rn‖F2 ≤ σ2 + 8E‖Rn‖F =: B2. (3.10)
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Since, for nonincreasing h, the function

u 7→
∫ u

0
h(t)dt

is concave, we have, by the properties of H, that

n−1/2
E

∫ σn

0

√

H

(

2‖F‖L2(P )

ε

)

dε I(‖F‖L2(Pn) ≤ 2‖F‖L2(P )) ≤

n−1/2
E

∫ σn∧2‖F‖L2(P )

0

√

H

(

2‖F‖L2(P )

ε

)

dε

≤ n−1/2

∫ (Eσ2
n)1/2∧2‖F‖L2(P )

0

√

H

(

2‖F‖L2(P )

ε

)

dε

≤ n−1/2

∫ B∧2‖F‖L2(P )

0

√

H

(

2‖F‖L2(P )

ε

)

dε

≤ CHn
−1/2B

√

H

(

2‖F‖L2(P )

B ∧ 2‖F‖L2(P )

)

. (3.11)

Taking into account that

sup
f∈F

Pf2 ≤ σ2 ≤ ‖F‖2
L2(P ),

we deduce from inequality (3.11)

n−1/2
E





∫ σn

0

√

H

(‖F‖L2(Pn)

ε

)

dεI
(

‖F‖L2(Pn) ≤ 2‖F‖L2(P )

)





≤ CHn
−1/2σ

√

H

(

2‖F‖L2(P )

σ

)

+
√

8CHn
−1/2

√

E‖Rn‖F
(

√

H

(

2‖F‖L2(P )

σ

)

∧

√

√

√

√H

(

2‖F‖L2(P )
√

8E‖Rn‖F ∧ 2‖F‖L2(P )

))

.

We will use the last bound together with inequalities (3.8) and (3.9). Denote

E := E‖Rn‖F .

Then, we have either

E ≤ CDHn
−1,
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or

E ≤ CCH
σ√
n

√

H(2‖F‖L2(P ))

σ

or

E ≤ CC2
Hn

−1

[

H

(

2‖F‖L2(P )

σ

)

∧

(

H

(‖F‖L2(P )√
2E

)

∨

H(1)

)]

.

To complete the proof, it is enough to solve the resulting inequalities for E, using the

following simple fact: if

Ψ(v) := v/H(1/
√
v), 0 < v ≤ 1,

then

Ψ−1(u) ≤ u(H(1/
√
u) ∨ 1), 0 < u ≤ 1/H(1).

The next bounds follow from Theorem 3.11 with σ2 := supf∈F Pf
2. If for some

A > 0, V > 0 and for all ε > 0,

N(F ;L2(Pn); ε) ≤
(

A‖F‖L2(Pn)

ε

)V

, (3.12)

then with some universal constant C > 0 (for σ2 ≥ const n−1)

E‖Rn‖F ≤ C

[

√

V

n
σ

√

log
A‖F‖L2(P )

σ

∨ V U

n
log

A‖F‖L2(P )

σ

]

. (3.13)

If for some A > 0, ρ ∈ (0, 1) and for all ε > 0,

logN(F ;L2(Pn); ε) ≤
(

A‖F‖L2(Pn)

ε

)2ρ

, (3.14)

then

E‖Rn‖F ≤ C

[Aρ‖F‖ρL2(P )√
n

σ1−ρ∨ A2ρ/(ρ+1)‖F‖2ρ/(ρ+1)
L2(P ) U (1−ρ)/(1+ρ)

n1/(1+ρ)

]

. (3.15)

The inequalities of this type can be found in Talagrand [85], Einmahl and Mason

[43], Giné and Guillou [48], Mendelson [76], Giné, Koltchinskii and Wellner [49]. Theorem

3.11 is given in Giné and Koltchinskii [50] (in a slightly more precise form).

A function class F is called VC-subgraph iff
{

{(x, t) : 0 ≤ f(x) ≤ t} ∪ {(x, t) : 0 ≥ f(x) ≥ t} : f ∈ F
}
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is a VC-class. For a VC-subgraph class F the following bound holds with some constants

A,V > 0 and for all probability measures Q on (S,A) :

N(F ;L2(Q); ε) ≤
(

A‖F‖L2(Q)

ε

)V

, ε > 0 (3.16)

(see, e.g., van der Vaart and Wellner [95], Theorem 2.6.7). Of course, this uniform cov-

ering numbers condition does imply (3.12) and, as a consequence, (3.13).

We will call the function classes satisfying (3.12) VC-type classes.

If H is VC-type, then its convex hull conv(H) satisfies (3.14) with ρ := V
V+2 (see van

der Vaart and Wellner [95], Theorem 2.6.9). More precisely, the following result holds.

Theorem 3.12 Let H be a class of measurable functions on (S,A) with a measurable

envelope F and let Q be a probability measure on (S,A). Suppose that F ∈ L2(Q) and

N(H;L2(Q); ε) ≤
(

A‖F‖L2(Q)

ε

)V

, ε ≤ ‖F‖L2(Q).

Then

logN(conv(H);L2(Q); ε) ≤
(

B‖F‖L2(Q)

ε

)2V/(V +2)

, ε ≤ ‖F‖L2(Q)

for some constant B that depends on A and V.

So, one can use the bound (3.15) for F ⊂ conv(H). Note that in this bound the

envelope F of the class H itself should be used rather than an envelope of a subset F of

its convex hull (which might be smaller than F ).

A number of other bounds on expected suprema of empirical and Rademacher pro-

cesses (in particular, in terms of so called bracketing numbers) can be found in van der

Vaart and Wellner [95], Dudley [42].

3.5 Lower Entropy Bounds

In this section, lower bounds on E‖Rn‖F expressed in terms of entropy of the class F
will be proved. Again, we follow the paper by Giné and Koltchinskii [50]. Assume, for

simplicity, that the functions in F are uniformly bounded by 1. In what follows, the

function H satisfies the conditions of Theorem 3.11. Denote σ2 = supf∈F Pf
2.

Under the notations of Section 3.4, we introduce the following condition: with some

constant c > 0

logN(F , L2(P ), σ/2) ≥ cH

(‖F‖L2(P )

σ

)

. (3.17)
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Theorem 3.13 Let F satisfy condition (3.5). There exist a universal constant B > 0

and a constant C1 that depends only on H such that

E‖Rn‖F ≥ B
σ√
n

√

logN(F , L2(P ), σ/2) (3.18)

provided that

nσ2 ≥ C1U
2H

(

6‖F‖L2(P )

σ

)

. (3.19)

Moreover, if in addition (3.17) holds, then, for some constants C2 depending only on c

and C3 depending only on H, and for all n for which condition (3.19) holds,

C2
σ√
n

√

H

(‖F‖L2(P )

σ

)

≤ E‖Rn‖F ≤ C3
σ√
n

√

H

(

2‖F‖L2(P )

σ

)

. (3.20)

Proof. Without loss of generality, we can assume that U = 1. The general case

would follow by a simple rescaling. First note that, under the assumptions of the theorem,

inequality (3.7) holds, so, we have with some constant C depending only on H

E‖Rn‖F ≤ C
σ√
n

√

H

(

2‖F‖L2(P )

σ

)

.

This already proves the right hand side of inequality (3.20).

It follows from Theorem 3.3 that

Eε‖Rn‖F ≥ 1

8L

σ√
n

√

logN(F , L2(Pn), σ/8), (3.21)

as soon as

Eε‖Rn‖F ≤ σ2

64L
. (3.22)

To use this result, we will derive a lower bound on the right hand side of (3.21) and an

upper bound on the left hand side of (3.22) that hold with a high probability. Let us

bound first the right hand side of (3.21).

Let

M := M(F , L2(P ), σ/2)

(recall that M(F , L2(P ), σ/2) denotes the σ/2-packing number of the class F ⊂ L2(P )).

We apply the law of large numbers to M functions in a maximal σ/2-separated subset

of F and also to the envelope F. It implies that, for all ε > 0, there exists n and ω such

that

M(F , L2(P ), σ/2) ≤M(F , L2(Pn(ω)), (1 − ε)σ/2) ≤ N(F , L2(Pn(ω)), (1 − ε)σ/4)
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and

‖F‖L2(Pn(ω)) ≤ (1 + ε)‖F‖L2(P ).

Take ε = 1/5. Then, by (3.5),

M(F , L2(P ), σ/2) ≤ exp

{

H

(

6‖F‖L2(P )

σ

)}

. (3.23)

Let f1, . . . , fM be a maximal subset of F such that

P (fi − fj)
2 ≥ σ2/4 for all 1 ≤ i 6= j ≤M.

In addition, we have

P (fi − fj)
4 ≤ 4P (fi − fj)

2 ≤ 16σ2.

Bernstein’s inequality implies that

P

{

max
1≤i6=j≤M

(

nP (fi − fj)
2 −

n
∑

k=1

(fi − fj)
2(Xk)

)

>
8

3
t+

√
32tnσ2

}

≤M2e−t.

Let t = δnσ2. Since P (fi − fj)
2 ≥ σ2/4 and (3.23) holds, we get

P

{

min
1≤i6=j≤M

1

n

n
∑

k=1

(fi − fj)
2(Xk) ≤ σ2

(

1/4 − 8δ/3 −
√

32δ
)

}

≤ exp

{

2H

(

3‖F‖L2(P )

σ

)

− δnσ2

}

.

For δ = 1/(32 · 83), this yields

P

{

min
1≤i6=j≤M

Pn(fi − fj)
2 ≤ σ2

16

}

≤ exp

{

H

(

6‖F‖L2(P )

σ

)

− nσ2

32 · 83

}

. (3.24)

Denote

E1 :=

{

M(F , L2(Pn), σ/4) ≥M

}

.

On this event,

N(F , L2(Pn), σ/8) ≥M(F , L2(Pn), σ/4) ≥M = M(F , L2(P ), σ/2) ≥ N(F , L2(P ), σ/2)

and

P(E1) ≥ 1 − exp

{

H

(

6‖F‖L2(P )

σ

)

− nσ2

32 · 83

}

. (3.25)
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Using symmetrization and contraction inequalities and conditions (3.19), we have

E‖Pn − P‖F2 ≤ 2E‖Rn‖F2 ≤ 8E‖Rn‖F ≤ C
σ√
n

√

H

(

2‖F‖L2(P )

σ

)

≤ 6σ2 (3.26)

(with a proper choice of constant C1 in (3.19)). Next, Bousquet’s version of Talagrand’s

inequality yields the bound

P

{

‖Pn − P‖F2 ≥ 6σ2 + σ

√

26t

n
+

t

3n

}

≤ e−t.

We take t = 26nσ2. Then

P
{

‖Pn − P‖F2 ≥ 41σ2
}

≤ exp{−26nσ2}.

Denote

E2 :=

{

σ2
n = sup

f∈F
Pnf

2 < 42σ2

}

. (3.27)

Then

P(E2) > 1 − exp{−26nσ2}. (3.28)

Also, by Bernstein’s inequality, the event

E3 = {‖F‖L2(Pn) ≤ 2‖F‖L2(P )} (3.29)

has probability

P(E3) ≥ 1 − exp

{

−9

4
n‖F‖2

L2(P )

}

. (3.30)

On the event E2 ∩E3, (3.4) and (3.19) yields that with some constant C depending only

on H (C might change its value from place to place):

Eε‖Rn‖F ≤ C√
n

∫

√
2σn

0

√

H

(‖F‖L2(Pn)

ε

)

dε

≤ C√
n

∫

√
84σ

0

√

H

(

2‖F‖L2(P )

ε

)

dε ≤ C√
n

∫ 2σ

0

√

H

(

2‖F‖L2(P )

ε

)

dε

≤ C
σ√
n

√

H

(‖F‖L2(P )

σ

)

<
σ2

64L
(3.31)

(again, with a proper choice of constant C1 in (3.19)). It follows from (3.21)-(3.31) that

E‖Rn‖F ≥ 1

8L

σ√
n

√

logN(F , L2(P ), σ/2)P(E1 ∩ E2 ∩E3) (3.32)

44



and that

P(E1 ∩ E2 ∩ E3) ≥

1 − exp

{

H

(

6‖F‖L2(P )

σ

)

− nσ2

32 · 83

}

− exp{−26nσ2} − exp{−9nσ2/4}.

This last probability is larger than 1/2 by condition (3.19) with a proper value of C1.

Thus, (3.32) implies inequality (3.18). The left hand side of inequality (3.20) now follows

from (3.18) and (3.17), completing the proof.

3.6 Function Classes in Hilbert Spaces

Suppose that L is a finite dimensional subspace of L2(P ) with dim(L) = d. Denote

ψL(x) :=
1√
d

sup
f∈L,‖f‖L2(P )≤1

|f(x)|.

We will use the following Lp-version of Hoffmann-Jørgensen inequality: for all inde-

pendent mean zero random variables Yj, j = 1, . . . , n with values in a Banach space B

and with E‖Yj‖p < +∞ for some p ≥ 1,

E
1/p

∥

∥

∥

∥

n
∑

j=1

Yj

∥

∥

∥

∥

p

≤ Kp

(

E

∥

∥

∥

∥

n
∑

j=1

Yj

∥

∥

∥

∥

+ E
1/p
(

max
1≤i≤n

‖Yi‖
)p
)

, (3.33)

where Kp is a constant depending only on p (see Ledoux and Talagrand [68], Theorem

6.20).

Proposition 3.2 Let

F := {f ∈ L : ‖f‖L2(P ) ≤ R}.

Then

E‖Rn‖F ≤ E
1/2‖Rn‖2

F = R

√

d

n
.

Moreover, there exists a universal constant K such that whenever

E max
1≤i≤n

ψ2
L(Xi) ≤

n

K2
,

we have

E‖Rn‖F ≥ 1

K
R

√

d

n
.
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Proof. Let φ1, . . . , φd be an orthonormal basis of L. Then

‖Rn‖F := sup
f∈L,‖f‖L2(P )≤R

|Rn(f)| = sup

{∣

∣

∣

∣

Rn

( d
∑

j=1

αjφj

)∣

∣

∣

∣

:

d
∑

j=1

α2
j ≤ R2

}

=

sup

{
∣

∣

∣

∣

d
∑

j=1

αjRn(φj)

∣

∣

∣

∣

:

d
∑

j=1

α2
j ≤ R2

}

= R

( d
∑

j=1

R2
n(φj)

)1/2

.

Therefore,

E‖Rn‖2
F = R2

d
∑

j=1

ER2
n(φj),

and the first statement follows since

ER2
n(φj) =

Pφ2
j

n

1

n
, j = 1, . . . , n.

The proof of the second statement follows from the first statement and inequality (3.33),

which immediately yields

R

√

d

n
= E

1/2‖Rn‖2
F ≤ K2

(

E‖Rn‖F +R

√

d

n

1√
n

E
1/2 max

1≤i≤n
ψ2
L(Xi)

)

,

and the result follows with K = 2K2.

Let K be a symmetric nonnegatively definite square integrable kernel on S×S and

let HK be the corresponding reproducing kernel Hilbert space (RKHS), i.e., HK is the

completion of the linear span of functions {K(x, ·) : x ∈ S} with respect to the following

inner product:
〈

∑

i

αiK(xi, ·),
∑

j

βjK(yi, ·)
〉

K

=
∑

i,j

αiβjK(xi, yj).

Let

F := {f ∈ HK : ‖f‖K ≤ 1 and ‖f‖L2(P ) ≤ r}

Let AK denote the linear integral operator from L2(P ) into L2(P ) with kernel K,

AKf(x) =

∫

S
K(x, y)f(y)P (dy),

and let {λi} denote its eigenvalues arranged in decreasing order and {φi} denote the

corresponding L2(P )-orthonormal eigenfunctions.

The following result is due to Mendelson [77].
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Proposition 3.3 There exist universal constants C1, C2 > 0 such that

C1

(

n−1
∞
∑

j=1

(λj ∧ r2)
)1/2

≤ E
1/2‖Rn‖2

F ≤ C2

(

n−1
∞
∑

j=1

(λj ∧ r2)
)1/2

.

In addition, there exists a universal constant C such that

E‖Rn‖F ≥ 1

C

(

n−1
∞
∑

j=1

(λj ∧ r2)
)1/2

−
√

supx∈SK(x, x)

n
.

Proof. By the well known properties of RKHS,

F =

{ ∞
∑

k=1

ckφk : c = (c1, c2, . . . ) ∈ E1 ∩ E2

}

,

where

E1 :=

{

c :

∞
∑

k=1

c2k
λk

≤ 1

}

and E2 :=

{

c :

∞
∑

k=1

c2k
r2

≤ 1

}

.

In other words, the set E1 is the ellipsoid in ℓ2 (with the center at the origin) with

”half-axes”
√
λk and E2 is the ellipsoid with ”half-axes” r (a ball of radius r). Let

E :=

{

c :

∞
∑

k=1

c2k
λk ∧ r2

≤ 1

}

denote the ellipsoid with ”half-axes”
√
λk ∧ r. A straightforward argument shows that

E ⊂ E1 ∩ E2 ⊂
√

2E .

Hence,

sup
c∈E

∣

∣

∣

∣

Rn

( ∞
∑

k=1

ckφk

)
∣

∣

∣

∣

≤ ‖Rn‖F ≤
√

2 sup
c∈E

∣

∣

∣

∣

Rn

( ∞
∑

k=1

ckφk

)
∣

∣

∣

∣

.

Also, we have

sup
c∈E

∣

∣

∣

∣

Rn

( ∞
∑

k=1

ckφk

)
∣

∣

∣

∣

2

= sup
c∈E

∣

∣

∣

∣

∞
∑

k=1

ck√
λk ∧ r

(

√

λk ∧ r
)

Rn(φk)

∣

∣

∣

∣

2

=
∞
∑

k=1

(

λk ∧ r2
)

R2
n(φk).

Hence,

E sup
c∈E

∣

∣

∣

∣

Rn

( ∞
∑

k=1

ckφk

)∣

∣

∣

∣

2

=

∞
∑

k=1

(

λk ∧ r2
)

ER2
n(φk).
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Since Pφ2
k = 1, ER2

n(φk) = 1
n , so, we get

E sup
c∈E

∣

∣

∣

∣

Rn

( ∞
∑

k=1

ckφk

)
∣

∣

∣

∣

2

= n−1
∞
∑

k=1

(λk ∧ r2),

and the first bound follows.

The proof of the second bound is based on the observation that

sup
f∈F

|f(x)| ≤
√

sup
x∈S

K(x, x)

and on the same application of Hoffmann-Jørgensen inequality as in the previous propo-

sition.

A similar result with the identical proof holds for data-dependent Rademacher com-

plexity Eε‖Rn‖F . In this case, let {λ(n)
i } be the eigenvalues (arranged in decreasing order)

of the random matrix

(

n−1K(Xi,Xj)

)n

i,j=1

(equivalently, of the integral operator from

L2(Pn) into L2(Pn) with kernel K).

Proposition 3.4 There exist universal constants C1, C2 > 0 such that

C1

(

n−1
n
∑

j=1

(λ
(n)
j ∧ r2)

)1/2

≤ E
1/2
ε ‖Rn‖2

F ≤ C2

(

n−1
n
∑

j=1

(λ
(n)
j ∧ r2)

)1/2

.

In addition, there exists a universal constant C such that

Eε‖Rn‖F ≥ 1

C

(

n−1
n
∑

j=1

(λ
(n)
j ∧ r2)

)1/2

−
√

supx∈SK(x, x)

n
.

4 Excess Risk Bounds

In this section, we develop distribution dependent and data dependent upper bounds on

the excess risk EP (f̂n) of an empirical risk minimizer

f̂n := argminf∈FPnf.

We will assume that such a minimizer exists (a simple modification of the results is

possible if f̂n is an approximate solution of (1.2)). Our approach to this problem has

been already outlined in the Introduction and it is closely related to the recent work of

Massart [73], Koltchinskii and Panchenko [60], Bartlett, Bousquet and Mendelson [7],

Bousquet, Koltchinskii and Panchenko [23], Koltchinskii [59], Bartlett and Mendelson

[9].
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4.1 Distribution Dependent Bounds and Ratio Bounds for Excess Risk

To simplify the matter, assume that the functions in F take their values in [0, 1]. Recall

that the set

FP (δ) :=
{

f ∈ F : EP (f) ≤ δ
}

is called the δ-minimal set of the risk P. In particular, FP (0) is its minimal set.

Define ρP : L2(P ) × L2(P ) 7→ [0,+∞) such that

ρ2
P (f, g) ≥ P (f − g)2 − (P (f − g))2, f, g ∈ L2(P ).

Usually, ρP is also a (pseudo)metric, such as

ρ2
P (f, g) = P (f − g)2 or ρ2

P (f, g) = P (f − g)2 − (P (f − g))2.

Under the notations of the Introduction,

D(δ) := DP (F ; δ) := sup
f,g∈F(δ)

ρP (f, g)

is the ρP -diameter of the δ-minimal set. Also, denote

F ′(δ) :=
{

f − g : f, g ∈ F(δ)
}

and

φn(δ) := φn(F ;P ; δ) := E‖Pn − P‖F ′(δ).

Let {δj}j≥0 be a decreasing sequence of positive numbers with δ0 = 1 and let {tj}j≥0

be a sequence of positive numbers. For δ ∈ (δj+1, δj ], define

Un(δ) := φn(δj) +

√

2
tj
n

(D2(δj) + 2φn(δj)) +
tj
2n
. (4.1)

Finally, denote

δn(F ;P ) := sup{δ ∈ (0, 1] : δ ≤ Un(δ)}.

It is easy to check that

δn(F , P ) ≤ Un(δn(F , P )).

Obviously, the definitions of Un and δn(F , P ) depend on the choice of {δj} and {tj}.
We start with the following simple inequality that provides a distribution dependent

upper bound on the excess risk EP (f̂n).
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Theorem 4.1 For all δ ≥ δn(F ;P ),

P{E(f̂n) > δ} ≤
∑

δj≥δ
e−tj .

Proof. It is enough to assume that δ > δn(F ;P ) (otherwise, the result follows by

continuity). Denote δ̂ := E(f̂n). If δ̂ ≥ δ ≥ ε > 0 and g ∈ F(ε), we have

δ̂ = P f̂n− inf
g∈F

Pg ≤ P (f̂n−g)+ε ≤ Pn(f̂n−g)+(P −Pn)(f−g)+ε ≤ ‖Pn−P‖F ′(δ̂) +ε.

By letting ε→ 0, this gives δ̂ ≤ ‖Pn − P‖F ′(δ̂). Denote

En,j :=

{

‖Pn − P‖F ′(δj) ≤ Un(δj)

}

.

It follows from Bousquet’s version of Talagrand’s inequality that P(En,j) ≥ 1− e−tj . Let

En :=
⋂

δj≥δ
En,j.

Then

P(En) ≥ 1 −
∑

δj≥δ
e−tj .

On the event En, for all σ ≥ δ, ‖Pn − P‖F ′(σ) ≤ Un(σ), which holds by the definition

of Un(δ) and monotonicity of the function δ 7→ ‖Pn − P‖F ′(δ). Thus, on the event {δ̂ ≥
δ}⋂En, we have

δ̂ ≤ ‖Pn − P‖F ′(δ̂) ≤ Un(δ̂),

which implies that δ ≤ δ̂ ≤ δn(F ;P ), contradicting the assumption that δ > δn(F ;P ).

Therefore, we must have {δ̂ ≥ δ} ⊂ Ecn, and the result follows.

We now turn to uniform bounds on the ratios of the excess empirical risk of a

function f ∈ F to its true excess risk. The excess empirical risk is defined as

Ên(f) := EPn(f).

Given ψ : R+ 7→ R+, denote

ψ♭(δ) := sup
σ≥δ

ψ(σ)

σ
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and

ψ♯(ε) := inf

{

δ > 0 : ψ♭(δ) ≤ ε

}

.

These transformations will be called the ♭-transform and the ♯-transform of ψ, respec-

tively.

It happens that, with a high probability, the quantity

sup
f∈F ,E(f)≥δ

∣

∣

∣

∣

Ên(f)

E(f)
− 1

∣

∣

∣

∣

can be bounded from above by the function δ 7→ Vn(δ) := U ♭n(δ).

Theorem 4.2 For all δ ≥ δn(F ;P ),

P

{

sup
f∈F ,E(f)≥δ

∣

∣

∣

∣

Ên(f)

E(f)
− 1

∣

∣

∣

∣

> Vn(δ)

}

≤
∑

δj≥δ
e−tj .

Proof. Consider the event En defined in the proof of Theorem 4.1. For this event

P(En) ≥ 1 −
∑

δj≥δ
e−tj ,

so, it is enough to prove that the inequality

sup
f∈F ,E(f)≥δ

∣

∣

∣

∣

Ên(f)

E(f)
− 1

∣

∣

∣

∣

≤ Vn(δ)

holds on the event En. To this end, note that on this event, by the proof of Theorem 4.1,

f̂n ∈ F(δ). For all f ∈ F such that σ := E(f) ≥ δ, for arbitrary ε ∈ (0, δ) and g ∈ F(ε),

the following bounds hold:

σ = E(f) ≤ Pf − Pg + ε ≤ Pnf − Png + (P − Pn)(f − g) + ε ≤

Ên(f) + ‖Pn − P‖F ′(σ) + ε ≤ Ên(f) + Un(σ) + ε ≤ Ên(f) + Vn(δ)σ + ε,

which means that on the event En the condition E(f) ≥ δ implies that

Ên(f) ≥
(

1 − Vn(δ)
)

E(f).

Similarly, on the En, the condition σ := E(f) ≥ δ implies that

Ên(f) = Pnf − Pnf̂n ≤ Pf − P f̂n + (Pn − P )(f − f̂n) ≤
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≤ E(f) + Un(σ) ≤ E(f) + Vn(δ)σ =
(

1 + Vn(δ)
)

E(f),

and the result follows.

A convenient choice of sequence {δj} is δj := q−j, j ≥ 0 with some fixed q > 1.

If tj = t > 0, j ≥ 0, the corresponding functions Un(δ) and Vn(δ) will be denoted by

Un(δ; t) and Vn(δ; t), and δn(F ;P ) will be denoted by δn(t).

The following corollary is obvious.

Corollary 4.1 For all t > 0 and for all δ ≥ δn(t),

P{E(f̂n) ≥ δ} ≤
(

logq
q

δ

)

e−t

and

P

{

sup
f∈F ,E(f)≥δ

∣

∣

∣

∣

Ên(f)

E(f)
− 1

∣

∣

∣

∣

> Vn(δ; t)

}

≤
(

logq
q

δ

)

e−t.

It follows from the definition of δn(t) that δn(t) ≥ t
n . Because of this, the proba-

bilities in Corollary 4.1 can be bounded from above by logq
n
t exp{−t} (which depends

neither on the class F , nor on P ). Most often, the logarithmic factor in front of the expo-

nent does not create a problem: in typical applications δn(t) is upper bounded by δn+ t
n ,

where δn is larger than log logn
n . Adding log logn to t is enough to eliminate the impact

of the logarithm. However, if δn = O(n−1), the presence of the logarithmic factor would

result in a suboptimal bound. To tackle this difficulty, we will use a slightly different

choice of {δj}, {tj}.
For q > 1 and t > 0, denote

V t
n(σ) := 2q

[

φ♭n(σ) +
√

(D2)♭(σ)

√

t

nσ
+

t

nσ

]

, σ > 0.

Let

σtn := σtn(F ;P ) := inf{σ : V t
n(σ) ≤ 1}.

Theorem 4.3 For all t > 0

P{E(f̂n) > σtn} ≤ Cqe
−t

and for all σ ≥ σtn

P

{

sup
f∈F ,E(f)≥σ

∣

∣

∣

∣

Ên(f)

E(f)
− 1

∣

∣

∣

∣

> V t
n(σ)

}

≤ Cqe
−t,
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where

Cq :=
q

q − 1
∨ e.

Proof. Let σ > σtn. Take δj = q−j, j ≥ 0 and tj := t
δj
σ for some t > 0, σ > 0.

The function Un(δ), the quantity δn(F , P ), etc, now correspond to this choice of the

sequences {δj}, {tj}. Then, it is easy to verify that for all δ ≥ σ

Un(δ)

δ
≤ 2q

[

sup
δj≥σ

φn(δj)

δj
+ sup
δj≥σ

D(δj)
√

δj

√

tδj
nσδj

+
tδj
nσδj

]

≤ 2q

[

sup
δ≥σ

φn(δ)

δ
+ sup

δ≥σ

D(δ)√
δ

√

t

nσ
+

t

nσ

]

=

2q

[

φ♭n(σ) +
√

(D2)♭(σ)

√

t

nσ
+

t

nσ

]

= V t
n(σ). (4.2)

Since σ > σtn and the function V t
n is strictly decreasing, we have V t

n(σ) < 1 and, for all

δ > σtn,

Un(δ) ≤ V t
n(σ)δ < δ.

Therefore, σtn ≥ δn(F ;P ). It follows from Theorem 4.1 that

P{E(f̂n) ≥ σ} ≤
∑

δj≥σ
e−tj .

The right hand side can be now bounded as follows:

∑

δj≥σ
e−tj =

∑

δj≥σ
exp

{

−tδj
σ

}

≤
∑

j≥0

e−tq
j

=

e−t +
q

q − 1

∞
∑

j=1

q−je−tq
j
(qj − qj−1) ≤ e−t +

1

q − 1

∫ ∞

1
e−txdx =

e−t +
1

q − 1

1

t
e−t ≤ q

q − 1
e−t, t ≥ 1. (4.3)

This implies the first bound for t ≥ 1 and it is trivial for t ≤ 1 because of the definition

of constant Cq.

To prove the second bound use Theorem 4.2 and note that, by (4.2), Vn(σ) ≤ V t
n(σ).

The result follows from Theorem 4.2 and (4.3).

The result of Lemma 4.1 below is due to Massart [73, 74] (we formulate it in a

slightly different form). Suppose that F is a class of measurable functions from S into
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[0, 1] and f∗ : S 7→ [0, 1] is a measurable function such that with some numerical constant

D > 0

D(Pf − Pf∗) ≥ ρ2
P (f, f∗) ≥ P (f − f∗)

2 − (P (f − f∗))
2, (4.4)

where ρP is a (pseudo)metric. The assumptions of this type are frequently used in model

selection problems (see Section 6.3). They describe the link between the excess risk (or

the approximation error) Pf − P∗ and the variance of the ”loss” f − f∗. This particular

form of bound (4.4) is typical in regression problems with L2-loss (see Section 5.1): the

link function in this case is just the square. In some other problems, such as classification

under ”low noise” assumption other link functions are also used (see Section 5.3).

Assume, for simplicity, that the infimum of Pf over F is attained at a function

f̄ ∈ F (the result can be easily modified if this is not the case). Let

ωn(δ) := ωn(F ; f̄ ; δ) := E sup
f∈F ,ρ2P (f,f̄)≤δ

|(Pn − P )(f − f̄)|.

Lemma 4.1 There exists a constant K > 0 such that for all ε ∈ (0, 1] and for all t > 0

σtn(F ;P ) ≤ ε(inf
F
Pf − Pf∗) +

1

D
ω♯n

(

ε

KD

)

+
KD

ε

t

n
.

Proof. Note that

φn(δ) = E‖Pn − P‖F ′(δ) ≤ 2E sup
f∈F(δ)

|(Pn − P )(f − f̄)|.

For f ∈ F(δ),

ρP (f, f̄) ≤ ρP (f, f∗) + ρP (f̄ , f∗) ≤
√

D(Pf − Pf∗) +
√

D(P f̄ − Pf∗) ≤

≤
√

D(Pf − P f̄) + 2
√

D(P f̄ − Pf∗) ≤
√
Dδ + 2

√
D∆ ≤

√

2D(δ + 4∆),

where

∆ := P f̄ − Pf∗ = inf
F
Pf − Pf∗.

As a result, it follows that

D(δ) ≤ 2
√
D(

√
δ + 2

√
∆) ≤

√

8D(δ + 4∆)

and

φn(δ) ≤ 2ωn

(

2D(δ + 4∆)
)

.
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We will now bound the functions φ♭n(σ) and (D2)♭(σ) involved in the definition of V t
n(σ)

(see the proof of Theorem 4.3). Denote τ := ∆
σ . Then

φ♭n(σ) = sup
δ≥σ

φn(δ)

δ
≤ 2 sup

δ≥σ

ωn

(

2D(1 + 4τ)δ

)

δ
= 4D(1 + 4τ)ω♭n

(

2D(1 + 4τ)σ

)

and also

(D2)♭(σ) = sup
δ≥σ

D2(δ)

δ
≤ sup

δ≥σ

8D(δ + 4∆)

δ
≤ 8D(1 + 4τ).

Therefore,

V t
n(σ) ≤ 2q

[

4D(1 + 4τ)ω♭n

(

2D(1 + 4τ)σ

)

+ 2
√

2D
√

1 + 4τ

√

t

nσ
+

t

nσ

]

.

Suppose that, for some ε ∈ (0, 1], we have σ ≥ ε∆ implying that τ ≤ 1
ε . Then we can

upper bound V t
n(σ) as follows:

V t
n(σ) ≤ 2q

[

20D

ε
ω♭n

(

2Dσ

)

+ 2
√

10

√

tD

nεσ
+

t

nσ

]

.

As soon as

σ ≥ 1

2D
ω♯n

(

ε

KD

)

∨ KDt

nε

with a sufficiently large K, the right hand side of the last bound can be made smaller

than 1. Thus, σtn is upper bounded either by ε∆, or by the expression

1

2D
ω♯n

(

ε

KD

)

∨ KDt

nε
,

which implies the bound of the lemma.

Remark. By increasing the value of the constant K it is easy to upper bound the

quantity sup{σ : V t
n(σ) ≤ 1/2} in exactly the same way.

The next statement follows immediately from Lemma 4.1 and Theorem 4.3.

Proposition 4.1 There exists a large enough constant K > 0 such that for all ε ∈ (0, 1]

and all t > 0

P

{

P f̂ − Pf∗ ≥ (1 + ε)(inf
F
Pf − Pf∗) +

1

D
ω♯n

(

ε

KD

)

+
KD

ε

t

n

}

≤ Cqe
−t.
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Let us call ψ : R+ 7→ R+ a function of concave type if it is nondecreasing and

u 7→ ψ(u)
u is decreasing. If, in addition, for some γ ∈ (0, 1), u 7→ ψ(u)

uγ is decreasing,

ψ will be called a function of strictly concave type (with exponent γ). In particular, if

ψ(u) := ϕ(uγ), or ψ(u) := ϕγ(u), where ϕ is a nondecreasing strictly concave function

with ϕ(0) = 0, then ψ is of concave type for γ = 1 and of strictly concave type for γ < 1.

Proposition 4.2 Let δj := q−j, j ≥ 0 for some q > 1. If ψ is a function of strictly

concave type with some exponent γ ∈ (0, 1), then

∑

j:δj≥δ

ψ(δj)

δj
≤ cγ,q

ψ(δ)

δ
,

where cγ,q is a constant depending only on q, γ.

Proof. Note that

∑

j:δj≥δ

ψ(δj)

δj
=
∑

j:δj≥δ

ψ(δj)

δγj δ
1−γ
j

≤ ψ(δ)

δγ

∑

j:δj≥δ

1

δ1−γj

=

=
ψ(δ)

δ

∑

j:δj≥δ

(

δ

δj

)1−γ
≤ ψ(δ)

δ

∑

j≥0

q−j(1−γ) = cγ,q
ψ(δ)

δ
.

Assume that φn(δ) ≤ φ̌n(δ) and D(δ) ≤ Ď(δ), δ > 0, where φ̌n is a function of

strictly concave type with some exponent γ ∈ (0, 1) and Ď is a concave type function.

Define

Ǔn(δ; t) := Ǔn,t(δ) := Ǩ

(

φ̌n(δ) + Ď(δ)

√

t

n
+
t

n

)

with some numerical constant Ǩ. Then Ǔn(·; t) is also a function of strictly concave type..

In this case, it is natural to define

V̌n(δ; t) := Ǔ ♭n,t(δ) =
Ǔn(δ; t)

δ
and δ̌n(t) := Ǔ ♯n,t(1).

Theorem 4.4 There exists a constant Ǩ in the definition of the function Ǔn(δ; t) such

that for all t > 0

P{E(f̂n) ≥ δ̌n(t)} ≤ e−t

and for all δ ≥ δ̌n(t),

P

{

sup
f∈F ,E(f)≥δ

∣

∣

∣

∣

Ên(f)

E(f)
− 1

∣

∣

∣

∣

≥ V̌n(δ; t)

}

≤ e−t.
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Proof. It is similar to the proof of Theorem 4.2, but now our goal is to avoid using

the concentration inequality repeatedly for each value of δj since this leads to a loga-

rithmic factor. The trick was previously used in Massart [73] and in Ph.D. dissertation

of Bousquet (see also Bartlett, Bousquet and Mendelson [7]). Define

Gδ :=
⋃

σ≥δ

δ

σ

{

f − g : f, g ∈ F(σ)
}

.

Then the functions in Gδ are bounded by 1 and

σP (Gδ) ≤ sup
σ≥δ

δ

σ
sup

f,g∈F(σ)
σP (f − g) ≤ δ sup

σ≥δ

Ď(σ)

σ
≤ Ď(δ),

since Ď is of concave type. Also, since φ̌n is of strictly concave type, Proposition 4.2

gives

E‖Pn − P‖Gδ = E sup
j:δj≥δ

sup
σ∈(δj+1,δj ]

δ

σ
‖Pn − P‖F ′(σ) ≤

≤ q
∑

j:δj≥δ

δ

δj
E‖Pn − P‖F ′(δj) ≤ qδ

∑

j:δj≥δ

φ̌n(δj)

δj
≤ qcγ,qφ̌n(δ).

Now Talagrand’s concentration inequality implies that there exists an event E of prob-

ability P(E) ≥ 1− e−t such that on this event ‖Pn −P‖Gδ ≤ Ǔn(δ; t) (the constant Ǩ in

the definition of Ǔn(δ; t) should be chosen properly). Then, on the event E, for all σ ≥ δ,

‖Pn − P‖F ′(σ) ≤
σ

δ
Ǔn(δ; t) ≤ V̌n(δ; t)σ.

The rest repeats the proof of theorems 4.2 and 4.1.

In the next theorem, we consider empirical risk minimization problems over Donsker

classes of functions under the assumption that, roughly speaking, the true risk has unique

minimum and, as a consequence, the δ-minimal sets F(δ) shrink to a set consisting of a

single function as δ → 0. Essentially, it will be shown that in such cases the excess risk

is of the order oP(n−1/2).

Theorem 4.5 If F is a P -Donsker class and

DP (F ; δ) → 0 as n→ ∞,

then

EP (f̂n) = oP(n−1/2) as n→ ∞.
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Proof. If F is a P -Donsker class, then the sequence of empirical processes

Zn(f) := n1/2(Pnf − Pf), f ∈ F

is asymptotically equicontinuous, i.e., for all ε > 0

lim
δ→0

lim sup
n→∞

P

{

sup
ρP (f,g)≤δ,f,g∈F

∣

∣

∣
Zn(f) − Zn(g)

∣

∣

∣
≥ ε

}

= 0.

(see, e.g., van der Vaart and Wellner [95], Section 2.1.2). This also implies (in the case

of uniformly bounded classes, by an application of Talagrand’s concentration inequality)

that

lim
δ→0

lim sup
n→∞

E sup
ρP (f,g)≤δ,f,g∈F

∣

∣

∣
Zn(f) − Zn(g)

∣

∣

∣
= 0.

Since DP (F ; δ) → 0 as δ → 0, it follows that

lim
δ→0

lim sup
n→∞

n1/2φn(F ;P ; δ) = lim
δ→0

lim sup
n→∞

n1/2
E‖Pn − P‖F ′(δ) ≤

lim
δ→0

lim sup
n→∞

E sup
ρP (f,g)≤D(F ;δ),f,g∈F

∣

∣

∣
Zn(f) − Zn(g)

∣

∣

∣
= 0. (4.5)

Let now {δj} be a decreasing sequence such that D(δj) ≤ e−(j+1) and let

tj := t+ 2 log log
1

D(δj)
≤ t+ 2 log(j + 1).

Let δtn denote the corresponding quantity δn(F ;P ) and U tn the corresponding function

Un (as they were defined before Theorem 4.1). Then it follows from Theorem 4.1 that

P{EP (f̂n) > δtn} ≤
∑

δj≥δtn

e−tj ≤
∑

j≥0

e−tj ≤
∑

j≥0

e−t−2 log(j+1) =
∑

j≥1

j−2e−t ≤ 2e−t.

The definition of U tn and the relationship (4.5) imply that, for all t > 0,

lim
δ→0

lim sup
n→∞

n1/2U tn(δ) = 0.

We also have

U tn(1) = O(n−1/2)

since

φn(1) ≤ 2E‖Pn − P‖F = O(n−1/2)

for a Donsker class F and D(1) < +∞. Therefore, the definition of δtn implies that

δtn ≤ U tn(δ
t
n) ≤ U tn(1) → 0 as n→ ∞
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and

lim sup
n→∞

n1/2δtn ≤ lim sup
n→∞

n1/2U tn(δ
t
n) = lim

δ→0
lim sup
n→∞

n1/2U tn(δ) = 0.

As a result, for all t > 0,

δtn = o(n−1/2).

Then, it is easy to show that there is a choice of t = τn → ∞ (slowly enough) such that

δτnn = o(n−1/2).

The claim of the theorem now follows from the bound

P{EP (f̂n) > δτnn } ≤ 2e−τn → 0 as n→ ∞.

There is another version of the proof that is based on Theorem 4.3.

The condition D(F ; δ) → 0 as δ → 0 is quite natural when the true risk minimization

problem (1.1) has unique solution. In this case, such quantities as δn(F ;P ) often give

correct (in a minimax sense) convergence rate for the excess risk in risk minimization

problems. However, if the minimum in (1.1) is not unique, the diameter D(δ) of the

δ-minimal set is bounded away from 0. In such cases, δn(F ;P ) is bounded from below

by c
√

1
n . At the same time, the optimal convergence rate of the excess risk to 0 is often

better than this (in fact, it can be close to n−1, e.g., in classification problems).

4.2 Rademacher Complexities and Data Dependent Bounds on Excess

Risk

In a variety of statistical problems, it is crucial to have data dependent upper and lower

confidence bounds on the sup-norm of the empirical process ‖Pn−P‖F for a given func-

tion class F . This random variable is a natural measure of the accuracy of approximation

of unknown distribution P by its empirical distribution Pn. However, ‖Pn−P‖F depends

on the unknown distribution P and, hence, it can not be used directly. It happens that

it is easy to construct rather simple upper and lower bounds on ‖Pn − P‖F in terms of

the sup-norm of Rademacher process ‖Rn‖F . The last random variable depends only on

the data X1, . . . ,Xn and on random signs ε1, . . . , εn that are independent of X1, . . . ,Xn

and are easy to simulate. Thus, ‖Rn‖F can be used as a data dependent complexity

measure of the class F that allows one to estimate the accuracy of approximation of P

by Pn based on the data. This bootstrap type approach was introduced independently
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in Koltchinskii [58] and Bartlett, Boucheron and Lugosi [8] and it was used to develop

a general method of model selection and complexity regularization in learning theory. It

is based on the following simple bounds. Their proof is very elementary and relies only

on the symmetrization and bounded difference inequalities.

Assume that the functions in the class F are uniformly bounded by a constant

U > 0.

Theorem 4.6 For all t > 0,

P

{

‖Pn − P‖F ≥ 2‖Rn‖F +
3tU√
n

}

≤ exp

{

− t
2

2

}

and

P

{

‖Pn − P‖F ≤ 1

2
‖Rn‖F − 2tU√

n
− U

2
√
n

}

≤ exp

{

− t
2

2

}

.

Proof. Denote

Zn := ‖Pn − P‖F − 2‖Rn‖F .

Then, by symmetrization inequality, EZn ≤ 0 and applying bounded difference inequality

to random variable Zn easily yields

Zn ≥ EZn +
3tU√
n

≤ exp

{

− t
2

2

}

,

which implies the first bound.

The second bound is proved similarly by considering the random variable

Zn := ‖Pn − P‖F − 1

2
‖Rn‖F − U

2
√
n

and using symmetrization and bounded difference inequalities.

Note that other versions of bootstrap, most notably, the classical Efron’s bootstrap,

can be also used in a similar way (see Fromont [44]).

The major drawback of Theorem 4.6 is that the error term does not take into account

the size of the variance of functions in the class F . In some sense, this is a data dependent

version of uniform Hoeffding inequality and what is often needed is a data dependent

version of uniform Bernstein type inequality. We provide such a result below. It can be

viewed as a statistical version of Talagrand’s concentration inequality. Recently, Giné

and Nickl [51] used some inequalities of similar nature in adaptive density estimation.
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Denote

σ2
P (F) := sup

f∈F
Pf2 and σ2

n(F) := sup
f∈F

Pnf
2.

Theorem 4.7 There exists a numerical constant K > 0 such that for all t ≥ 1 with

probability at least 1 − e−t the following bounds hold:

∣

∣

∣

∣

‖Rn‖F − E‖Rn‖F
∣

∣

∣

∣

≤ K

[

√

t

n

(

σ2
n(F) + U‖Rn‖F

)

+
tU

n

]

, (4.6)

E‖Rn‖F ≤ K

[

‖Rn‖F + σn(F)

√

t

n
+
tU

n

]

, (4.7)

σ2
P (F) ≤ K

(

σ2
n(F) + U‖Rn‖F +

tU

n

)

(4.8)

and

σ2
n(F) ≤ K

(

σ2
P (F) + UE‖Rn‖F +

tU

n

)

. (4.9)

Also, for all t ≥ 1 with probability at least 1 − e−t

E‖Pn − P‖F ≤ K

[

‖Rn‖F + σn(F)

√

t

n
+
tU

n

]

(4.10)

and

∣

∣

∣

∣

‖Pn − P‖F − E‖Pn − P‖F
∣

∣

∣

∣

≤ K

[

√

t

n

(

σ2
n(F) + U‖Rn‖F

)

+
tU

n

]

. (4.11)

Proof. It is enough to consider the case when U = 1/2. The general case then

follows by rescaling. Using Talagrand’s concentration inequality (to be specific, Klein-

Rio bound), we claim that on an event E of probability at least 1 − e−t

E‖Rn‖F ≤ ‖Rn‖F +

√

2t

n

(

σ2
P (F) + 2E‖Rn‖F

)

+
t

n
, (4.12)

which implies that

E‖Rn‖F ≤ ‖Rn‖F + σP (F)

√

2t

n
+
t

n
+ 2

√

1

2
E‖Rn‖F

2t

n
≤

≤ ‖Rn‖F + σP (F)

√

2t

n
+
t

n
+

1

2
E‖Rn‖F +

2t

n
,

or

E‖Rn‖F ≤ 2‖Rn‖F + 2
√

2σP (F)

√

t

n
+

6t

n
. (4.13)
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We will now upper bound σ2
P (F) in terms of σ2

n(F). Denote F2 := {f2 : f ∈ F}.
Again, we apply Talagrand’s concentration inequality (namely, Bousquet’s bound) and

show that on an event F of probability at least 1 − e−t

σ2
P (F) = sup

f∈F
Pf2 ≤ sup

f∈F
Pnf

2 + ‖Pn − P‖F2 ≤

≤ σ2
n(F) + E‖Pn − P‖F2 +

√

2t

n

(

σ2
P (F) + 2E‖Pn − P‖F2

)

+
t

3n
,

where we also used the fact that

sup
f∈F2

VarP (f2) ≤ sup
f∈F

Pf2 = σ4
P (F) < sup

f∈F
Pf2 = σ2

P (F)

since the functions from F are uniformly bounded by U = 1/2. Using symmetrization

inequality and then contraction inequality for Rademacher processes, we get

E‖Pn − P‖F2 ≤ 2E‖Rn‖F2 ≤ 8E‖Rn‖F2 .

Hence,

σ2
P (F) ≤ σ2

n(F) + 8E‖Rn‖F + σP (F)

√

2t

n
+ 2

√

8t

n
E‖Rn‖F +

t

3n
≤

≤ σ2
n(F) + 9E‖Rn‖F + σP (F)

√

2t

n
+

9t

n
,

where the inequality 2
√
ab ≤ a + b, a, b ≥ 0 was applied. Next we use bound (4.13) on

E‖Rn‖F to get

σ2
P (F) ≤ σ2

n(F) + 18‖Rn‖F + 19σP (F)

√

2t

n
+

100t

n
.

As before, we bound the term 19σP (F)
√

2t
n = 2 × 19σP (F)√

2

√

t
n using the inequality

2ab ≤ a2 + b2, which gives

σ2
P (F) ≤ 1

2
σ2
P (F) + σ2

n(F) + 18‖Rn‖F +
500t

n
.

As a result, the following bound holds on the event E ∩ F :

σ2
P (F) ≤ 2σ2

n(F) + 36‖Rn‖F +
1000t

n
. (4.14)

It also implies

σP (F) ≤
√

2σn(F) + 6
√

‖Rn‖F + 32

√

t

n
.
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We use this bound on σP (F) in terms of σn(F) to derive from (4.13) that

E‖Rn‖F ≤ 2‖Rn‖F + 4σn(F)

√

t

n
+

+12
√

2
√

‖Rn‖F
√

t

n
+

100t

n
≤ 3‖Rn‖F + 4σn(F)

√

t

n
+

172t

n
.

The last bound holds on the same event E∩F of probability at least 1−2e−t. This implies

inequalities (4.7) and (4.8) of the theorem. Inequality (4.6) follows from Talagrand’s

inequality, specifically, from combination of Klein-Rio inequality (4.12), the following

application of Bousquet’s inequality

‖Rn‖F ≤ E‖Rn‖F +

√

2t

n

(

σ2
P (F) + 2E‖Rn‖F

)

+
t

3n
(4.15)

and bounds (4.7), (4.8) that have been already proved. The proof of the next inequality

(4.9) is another application of symmetrization, contraction and Talagrand’s concentra-

tion and is similar to the proof of (4.8). The last two bounds follow from the inequalities

for the Rademacher process and symmetrization inequality.

Under the assumption t ≥ 1, the exponent in the expression for probability can

be written as e−t without a constant in front of it. The constant can be removed by

increasing the value of K.

We will use the above tools to construct data dependent bounds on the excess risk.

As in the previous section, we assume that the functions in the class F are uniformly

bounded by 1. First we show that the δ-minimal sets of the risk can be estimated by

the δ-minimal sets of the empirical risk provided that δ is not too small, which is a

consequence of Theorem 4.2. Let

F̂n(δ) := FPn(δ)

be the δ-minimal set of Pn.

Lemma 4.2 Let δ⋄n be a number such that δ⋄n ≥ U ♯n
(

1
2

)

. There exists an event of prob-

ability at least 1 −∑δj≥δ⋄n e
−tj such that on this event, for all δ ≥ δ⋄n,

F(δ) ⊂ F̂n(3δ/2) and F̂n(δ) ⊂ F(2δ).
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Proof. It easily follows from the definitions that δ⋄n ≥ δn(F ;P ). Denote

En :=
⋂

δj≥δ⋄n

En,j,

where En,j are the events defined in the proof of Theorem 4.1. Then

P(En) ≥ 1 −
∑

δj≥δ⋄n

e−tj .

It follows from the proof of Theorem 4.2, that, on the event En, for all f ∈ F with

E(f) ≥ δ⋄n,
1

2
≤ Ên(f)

E(f)
≤ 3

2
.

By the proof of Theorem 4.2, on the same event

‖Pn − P‖F ′(δ⋄n) ≤ Un(δ
⋄
n).

Therefore, on the event En,

E(f) ≤ 2Ên(f) ∨ δ⋄n, f ∈ F , (4.16)

which implies that, for all δ ≥ δ⋄n, F̂n(δ) ⊂ F(2δ). On the other hand, on the same

event En, for all f ∈ F , the assumption E(f) ≥ δ⋄n implies that Ên(f) ≤ 3
2E(f) and the

assumption E(f) ≤ δ⋄n implies that

Ên(f) ≤ E(f) + ‖Pn − P‖F ′(δ⋄n) ≤ E(f) + Un(δ
⋄
n) ≤ δ⋄n + Vn(δ

⋄
n)δ

⋄
n ≤ 3

2
δ⋄n.

Thus, for all f ∈ F ,
Ên(f) ≤ 3

2

(

E(f) ∨ δ⋄n
)

, (4.17)

which implies that on the event En, for all δ ≥ δ⋄n, F(δ) ⊂ F̂n(3δ/2).

Now we are ready to define an empirical version of excess risk bounds. It will be

convenient to use the following definition of ρP :

ρ2
P (f, g) := P (f − g)2.

Given a decreasing sequence {δj} of positive numbers with δ0 = 1 and a sequence {tj}
of real numbers, tj ≥ 1, define

Ūn(δ) := K̄

(

φn(δj) +D(δj)

√

tj
n

+
tj
n

)

, δ ∈ (δj+1, δj ], j ≥ 0,
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where K̄ = 2. Comparing this with the definition (4.1) of the function Un, it is easy to

check that Un(δ) ≤ Ūn(δ), δ ∈ (0, 1]. As a consequence, if we define δ̄n := Ū ♯n(1/2), then

δn(F ;P ) ≤ δ̄n.

Empirical versions of the functions D and φn are defined by the following relation-

ships:

D̂n(δ) := sup
f,g∈F̂n(δ)

ρPn(f, g) and φ̂n(δ) := ‖Rn‖F̂ ′
n(δ).

Also, let

Ûn(δ) := K̂

(

φ̂n(ĉδj) + D̂n(ĉδj)

√

tj
n

+
tj
n

)

, δ ∈ (δj+1, δj ], j ≥ 0,

Ũn(δ) := K̃

(

φn(c̃δj) +D(c̃δj)

√

tj
n

+
tj
n

)

, δ ∈ (δj+1, δj ], j ≥ 0,

where 2 ≤ K̂ ≤ K̃, ĉ, c̃ ≥ 1 are numerical constants. Define

V̄n(δ) := Ū ♭n(δ), V̂n(δ) := Û ♭n(δ), Ṽn(δ) := Ū ♭n(δ)

and

δ̂n := Û ♯n(1/2), δ̃n := Ũ ♯n(1/2).

The constants in the definitions of the functions Ūn and Ũn can be chosen in such a way

that for all δ Un(δ) ≤ Ūn(δ) ≤ Ũn(δ), which yields the bound δn(F ;P ) ≤ δ̄n ≤ δ̃n. Since

the definitions of the functions Un, Ūn, Ũn differ only in the constants, it is plausible

that the quantities δn(F ;P ), δ̄n, δ̃n are of the same order (in fact, it can be checked in

numerous examples).

We will prove that with a high probability, for all δ, Ūn(δ) ≤ Ûn(δ) ≤ Ũn(δ),

so, Ûn provides a data-dependent upper bound on Ūn and Ũn provides a distribution

dependent upper bound on Ûn. This implies that, with a high probability, δ̄n ≤ δ̂n ≤ δ̃n,

which provides a data dependent bound δ̂n on the excess risk EP (f̂n) which is of correct

size (up to a constant) in many cases.

Theorem 4.8 With the above notations,

P

{

δ̄n ≤ δ̂n ≤ δ̃n

}

≥ 1 − 3
∑

δj≥δ̄n

exp{−tj}.
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Proof. The proof follows from the inequalities of Theorem 4.7 and Lemma 4.2 in

a rather straightforward way. Note that δ̄n ≥ U ♯n(1/2), so we can use it as δ⋄n in Lemma

4.2. Denote H the event introduced in the proof of this lemma (it was called En in the

proof). Then

P(H) ≥ 1 −
∑

δj≥δ̄n

e−tj

and, on the event H,

F(δ) ⊂ F̂n(3δ/2) and F̂n(δ) ⊂ F(2δ)

for all δ ≥ δ̄n.

First, the values of δ and t will be fixed. At the end, the resulting bounds will be

used for δ = δj and t = tj. We will apply the inequalities of Theorem 4.7 to the function

class F ′(δ). It easily follows from bound (4.10) that there exists an event F = F (δ) of

probability at least 1 − e−t such that, on the event H ∩ F,

E‖Pn − P‖F ′(δ) ≤ K

[

‖Rn‖F̂ ′
n(3/2δ) + D̂n

(3

2
δ
)

√

t

n
+
t

n

]

with a properly chosen K. Recalling the definition of Ūn and Ûn, the last bound im-

mediately implies that with a straightforward choice of numerical constants K̂, ĉ, the

inequality Ūn(δ) ≤ Ûn(δ). holds on the event H ∩ F.
Quite similarly, using the inequalities of Theorem 4.7 (in particular, using bound

(4.9) to control the ”empirical” diameter D̂(δ) in terms of the ”true” diameter D(δ))

and also the desymmetrization inequality, it is easy to see that there exists an event

G = G(δ) of probability at least 1 − e−t such that the inequality Ûn(δ) ≤ Ũn(δ) holds

on H ∩G with properly chosen numerical constants K̃, c̃ in the definition of Ũn.

Using the resulting inequalities for δ = δj ≥ δ̄n yields

P(E) ≥ 1 − 3
∑

δj≥δ̄n

exp{−tj},

where

E :=

{

∀δj ≥ δ̄n : Ūn(δj) ≤ Ûn(δj) ≤ Ũn(δj)

}

⊃
⋃

j:δj≥δ̄n

(H ∩ F (δj) ∩G(δj)).

By the definitions of Ūn, Ûn and Ũn, this also implies that, on the event E,

Ūn(δ) ≤ Ûn(δ) ≤ Ũn(δ)
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for all δ ≥ δ̄n. By simple properties of ♯-transform, we conclude that δ̄n ≤ δ̂n ≤ δ̃n on

the event E, which completes the proof.

It is easily seen from the proof of Theorem 4.8 and from the definitions and con-

structions of the events involved in this proof as well as in the proofs of Theorem 4.2 and

Lemma 4.2 that on an event E of probability at least 1 − p, where p = 3
∑

δj≥δ̄n e
−tj ,

the following conditions hold:

(i) δ̄n ≤ δ̂n ≤ δ̃n;

(ii) E(f̂) ≤ δ̄n;

(iii) for all f ∈ F ,
E(f) ≤ 2Ên(f) ∨ δ̄n

and

Ên(f) ≤ 3

2

(

E(f) ∨ δ̄n
)

;

(iv) for all δ ≥ δ̄n,

‖Pn − P‖F ′(δ) ≤ Un(δ).

Sometimes it is convenient to deal with different triples (δ̄n, δ̂n, δ̃n) (defined in terms

of various complexity measures of the class F) that still satisfy conditions (i)-(iv) with a

high probability. In fact, to satisfy conditions (ii)-(iv) it is enough to choose δ̄n in such

a way that

(v) δ̄n ≥ U ♯n(1/2).

This is reflected in the following definition.

Definition 4.1 Suppose sequences {δj}, {tj} and the corresponding function Un are

given. We will call δ̄n that depends on F and P an admissible distribution depen-

dent bound on excess risk iff it satisfies condition (v), and, as a consequence, also

conditions (ii)-(iv). If (ii)-(iv) hold on an event E such that P(E) ≥ 1 − p, then δ̄n will

be called an admissible bound of confidence level 1− p. A triple (δ̄n, δ̂n, δ̃n), such that δ̄n

and δ̃n depend on F and P, δ̂n depends on F and X1, . . . ,Xn, and, for some p ∈ (0, 1),

conditions (i)-(v) hold on an event E with P(E) ≥ 1 − p, will be called a triple bound

on the excess risk of confidence level 1 − p.

Such triple bounds will be used later in model selection methods based on penalized

empirical risk minimization.
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We conclude this section with a simple example showing that in the multiple minima

case the distribution dependent excess risk bounds developed in the previous section are

not always sharp. Moreover, there is a difficulty in estimation of the level sets of the risk

(the δ-minimal sets), which was of importance in constructing data dependent excess

risk bounds. Some more subtle geometric characteristics of the class F that can be used

in such cases to recover the correct convergence rates were suggested in Koltchinskii [59].

However, the development of the theory of excess risk bounds in the multiple minima

case remains an open problem.

Recall the definition of δn(t) in Corollary 4.1.

Proposition 4.3 Let S := {0, 1}N+1 and P be the uniform distribution on {0, 1}N+1.

Let F := {fj : 1 ≤ j ≤ N + 1}, where

fj(x) = xj , x = (x1, . . . , xN+1) ∈ {0, 1}N+1.

Then the following statements hold for an empirical risk minimizer f̂ :

(i) EP (f̂) = 0;

(ii) with some c > 0,

δn(t) ≥ c

(

√

logN

n
+

√

t

n

)

;

(iii) for any ε > 0 there exists N0 such that, for N0 ≤ N ≤ √
n and for δ = 0.25

√

logN
n ,

the inclusion F(0) ⊂ F̂n(δ) does not hold with probability at least 1 − ε.

Proof. For k 6= j, P (fk − fj)
2 = 1/2. Thus, DP (F ; δ) = 1/2. At the same time,

φn(δ) = E sup
f,g∈F

|(Pn − P )(f − g)| = E max
1≤k,j≤N

|(Pn − P )(fk − fj)|.

It is easy to check that the last expectation is of the order c
√

logN
n . It implies that the

value of δn(t) is of the order c

(

√

logN
n +

√

t
n

)

. The excess risk E(f) is equal to 0 for all

f ∈ F . In particular, E(f̂n) = 0. Thus, the bound δn(t) is not sharp.

To show that (iii) holds, note that

P

{

F(0) ⊂ F̂n(δ)
}

= P

{

F̂n(δ) = F
}

=

P

{

∀j, 1 ≤ j ≤ N + 1 : Pnfj ≤ min
1≤k≤N+1

Pnfk + δ

}

≤
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≤ P

{

∀j, 1 ≤ j ≤ N : Pnfj ≤ PnfN+1 + δ

}

= P

{

∀j, 1 ≤ j ≤ N : νn,j ≤ νn + δn

}

,

where νn, νn,j, 1 ≤ j ≤ N are i.i.d. binomial random variables with parameters n and

1/2. Therefore,

P

{

F(0) ⊂ F̂n(δ)
}

≤
n
∑

k=0

P{νn = k}P
{

∀j, 1 ≤ j ≤ N : νn,j ≤ k + δn

∣

∣

∣

∣

νn = k

}

=

n
∑

k=0

P{νn = k}
N
∏

j=1

P{νn,j ≤ k + δn} =

n
∑

k=0

P{νn = k}PN{νn ≤ k + δn} ≤

P{νn > k̄} + P
N{νn ≤ k̄ + δn},

where 0 ≤ k̄ ≤ n. Let k̄ = n
2 + nδ. By Bernstein’s inequality,

P{νn > k̄} ≤ exp
{

−nδ
2

4

}

= (logN)−2−6
.

On the other hand, by the normal approximation of binomial distribution (Φ being the

standard normal distribution function)

P{νn ≤ k̄ + δn} ≤ Φ(4δ
√
n) + n−1/2 = Φ(

√

logN) + n−1/2.

Under the condition N0 ≤ N ≤ √
n this yields, for a large enough N0,

P{F(0) ⊂ F̂n(δ)} ≤ ε,

and the result follows.

5 Examples of Excess Risk Bounds in Prediction Problems

Let (X,Y ) be a random couple in S × T, T ⊂ R with distribution P. The distribution

of X will be denoted by Π. Assume that the random variable X is “observable” and Y

is to be predicted based on an observation of X. Let ℓ : T × R 7→ R be a loss function.

Given a function g : S 7→ R, the quantity (ℓ • g)(x, y) := ℓ(y, g(x)) is interpreted as a

loss suffered when g(x) is used to predict y. The problem of optimal prediction can be

viewed as a risk minimization

Eℓ(Y, g(X)) = P (ℓ • g) −→ min, g : S 7→ R.
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Since the distribution P and the risk function g 7→ P (ℓ • g) are unknown, the risk

minimization problem is usually replaced by the empirical risk minimization

Pn(ℓ • g) = n−1
n
∑

j=1

ℓ(Yj, g(Xj)) −→ min, g ∈ G,

where G is a given class of functions g : S 7→ R and (X1, Y1), . . . , (Xn, Yn) is a sample of

i.i.d. copies of (X,Y ) (“training data”). Obviously, this can be viewed as a special case

of abstract empirical risk minimization problems discussed in the previous section. In

this case, the class F is the “loss class” F := {ℓ•g : g ∈ G} and the goal of this section is

to derive excess risk bounds for concrete examples of loss functions and function classes

frequently used in Statistics and Learning Theory.

Let µx denote a version of conditional distribution of Y given X = x. The following

representation of the risk holds under very mild regularity assumptions:

P (ℓ • g) =

∫

S

∫

T
ℓ(y; g(x))µx(dy)Π(dx)

Given a probability measure µ on T, let

uµ ∈ Argminu∈R̄

∫

T
ℓ(y;u)µ(dy).

Define

g∗(x) := uµx = argminu∈R̄

∫

T
ℓ(y;u)µx(dy).

Assume that the function g∗ is well defined and properly measurable. Then, for all g,

P (ℓ • g) ≥ P (ℓ • g∗) so, g∗ is a point of global minimum of P (ℓ • g).
Let

ĝn := argming∈GPn(ℓ • g)

be a solution of the corresponding empirical risk minimization problem (for simplicity,

assume its existence).

The following assumption on the loss function ℓ is often used in the analysis of the

problem: there exists a function D(u, µ) ≥ 0 such that for all measures µ = µx, x ∈ S
∫

T
(ℓ(y, u) − ℓ(y, uµ))

2µ(dy) ≤ D(u, µ)

∫

T
(ℓ(y, u) − ℓ(y, uµ))µ(dy). (5.1)

In the case when the functions in the class G take their values in the interval [−M/2,M/2]

and

D(u, µx), |u| ≤M/2, x ∈ S
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is uniformly bounded by a constant D > 0, it immediately follows from (5.1) (just by

plugging in u = g(x), µ = µx and integrating with respect to Π.) that, for all g ∈ G,

P (ℓ • g − ℓ • g∗)2 ≤ DP (ℓ • g − ℓ • g∗). (5.2)

As a consequence, if g∗ ∈ G, then the L2(P )-diameter of the δ-minimal set of F is

bounded as follows:

D(F ; δ) ≤ 2(Dδ)1/2.

Moreover, even if g∗ 6∈ G, the condition (4.4) still holds for the loss class F with f∗ = ℓ•g∗,
providing a link between the excess risk (approximation error) and the variance of the

“excess loss” and opening a way for Massart’s type penalization methods (see sections

4.1, 6.3). The idea to control variance in terms of expectation has been extensively

used in Massart [73] (and even in a much earlier work of Birgé and Massart) as well as

in the learning theory literature (Mendelson [76], Bartlett, Jordan and McAuliffe [10],

Blanchard, Lugosi and Vayatis [17], Bartlett, Bousquet and Mendelson [7]).

5.1 Regression with Quadratic Loss

We start with regression problems with bounded response and with quadratic loss. To be

specific, assume that Y takes values in T = [0, 1] and ℓ(y, u) := (y − u)2, y ∈ T, u ∈ R.

The minimum of the risk

P (ℓ • g) = E(Y − g(X))2

over the set of all measurable functions g : S 7→ R is attained at the regression function

g∗(x) := η(x) := E(Y |X = x).

If G is a class of measurable functions from S into [0, 1] such that g∗ ∈ G, then it is easy

to check that for all g ∈ G
EP (ℓ • g) = ‖g − g∗‖2

L2(Π).

In general, the excess risk is given by

EP (ℓ • g) = ‖g − g∗‖2
L2(Π) − inf

h∈G
‖h− g∗‖2

L2(Π).

The following lemma provides an easy way to bound the excess risk from below in the

case of a convex class G and ḡ := argming∈G‖g − g∗‖2
L2(Π).
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Lemma 5.1 If G is a convex class of functions, then

2EP (ℓ • g) ≥ ‖g − ḡ‖2
L2(Π).

Proof. Note that the identity

u2 + v2

2
−
(

u+ v

2

)2

=
(u− v)2

4

implies that
(g − g∗)2 + (ḡ − g∗)2

2
=

(

g + ḡ

2
− g∗

)2

+
(g − ḡ)2

4
.

Integrating with respect to Π yields

‖g − g∗‖2
L2(Π) + ‖ḡ − g∗‖2

L2(Π)

2
=

∥

∥

∥

∥

g + ḡ

2
− g∗

∥

∥

∥

∥

2

L2(Π)

+
‖g − ḡ‖2

L2(Π)

4
.

Since G is convex and g, ḡ ∈ G, we have g+ḡ
2 ∈ G and

∥

∥

∥

∥

g + ḡ

2
− g∗

∥

∥

∥

∥

2

L2(Π)

≥ ‖ḡ − g∗‖2
L2(Π).

Therefore,

‖g − g∗‖2
L2(Π) + ‖ḡ − g∗‖2

L2(Π)

2
≥ ‖ḡ − g∗‖2

L2(Π) +
‖g − ḡ‖2

L2(Π)

4
,

implying the result.

As before, we denote F := {ℓ • g : g ∈ G}. It follows from Lemma 5.1 that

F(δ) ⊂ {ℓ • g : ‖g − ḡ‖2
L2(Π) ≤ 2δ}.

Also, for all functions g1, g2 ∈ G and all x ∈ S, y ∈ T,

∣

∣

∣
(ℓ • g1)(x, y) − (ℓ • g2)(x, y)

∣

∣

∣
=
∣

∣

∣
(y − g1(x))

2 − (y − g2(x))
2
∣

∣

∣

= |g1(x) − g2(x)||2y − g1(x) − g2(x)| ≤ 2|g1(x) − g2(x)|,

which implies

P
(

ℓ • g1 − ℓ • g2
)2

≤ 4‖g1 − g2‖2
L2(Π).
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Hence

D(δ) ≤ 2 sup
{

‖g1 − g2‖L2(Π) : ‖g1 − ḡ‖2
L2(Π) ≤ 2δ, ‖g2 − ḡ‖2

L2(Π) ≤ 2δ
}

≤ 4
√

2
√
δ.

In addition, by symmetrization inequality,

φn(δ) = E‖Pn − P‖F ′(δ) ≤ 2E‖Rn‖F ′(δ) ≤

2E sup

{

∣

∣

∣
Rn(ℓ • g1 − ℓ • g2)

∣

∣

∣
: g1, g2 ∈ G, ‖g1 − ḡ‖2

L2(Π) ≤ 2δ, ‖g2 − ḡ‖2
L2(Π) ≤ 2δ

}

≤

4E sup
{∣

∣

∣
Rn(ℓ • g − ℓ • ḡ)

∣

∣

∣
: g ∈ G, ‖g − ḡ‖2

L2(Π) ≤ 2δ
}

,

and since ℓ(y, ·) is Lipschitz with constant 2 on the interval [0, 1] one can use the con-

traction inequality to get

φn(δ) ≤ 16E sup{|Rn(g − ḡ)| : g ∈ G, ‖g − ḡ‖2
L2(Π) ≤ 2δ} =: ψn(δ).

As a result, we get

φ♭n(σ) ≤ ψ♭n(σ)

and
√

(D2)♭(σ) ≤ 4
√

2.

This yields an upper bound on the quantity σtn involved in Theorem 4.3:

σtn ≤ K

(

ψ♯n

(

1

2q

)

+
t

n

)

.

Thus, the following statement is a corollary of Theorem 4.3.

Theorem 5.1 Let G be a convex class of functions from S into [0, 1] and let ĝ denotes

the least square estimator of the regression function

ĝ := argming∈Gn
−1

n
∑

j=1

(Yj − g(Xj))
2.

Then, there exist constants K > 0, C > 0 such that for all t > 0,

P

{

‖ĝ − g∗‖2
L2(Π) ≥ inf

g∈G
‖g − g∗‖2

L2(Π) +K

(

ψ♯n

(

1

2q

)

+
t

n

)}

≤ Ce−t.
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A slightly weaker result holds in the case when the class G is not necessarily convex.

It follows from Lemma 4.1. Note that the condition

4(P (ℓ • g) − P (ℓ • g∗)) = 4‖g − g∗‖2
L2(Π) =: ρ2

P (ℓ • g, ℓ • g∗) ≥ P (ℓ • g − ℓ • g∗)2

is satisfied for all functions g : S 7→ [0, 1]. Also,

ωn(δ) = E sup
4‖g−ḡ‖2

L2(Π)
≤δ

∣

∣

∣
(Pn − P )(ℓ • g − ℓ • ḡ)

∣

∣

∣
≤ 1

2
ψn(δ/8)

(by symmetrization and contraction inequalities, and by notation).

Therefore, the following result holds.

Theorem 5.2 Let G be a class of functions from S into [0, 1] and let ĝ denote the least

square estimator of the regression function. Then, there exist constants K > 0, C > 0

such that for all t > 0,

P

{

‖ĝ − g∗‖2
L2(Π) ≥ (1 + ε) inf

g∈G
‖g − g∗‖2

L2(Π) +
1

4
ψ♯n

(

ε

K

)

+
Kt

nε

}

≤ Ce−t.

Clearly, these results hold (with different constants) if the functions in G take their

values in an arbitrary bounded interval.

Example 1. Finite dimensional classes. Suppose that L ⊂ L2(Π) is a finite di-

mensional linear space with dim(L) = d <∞ and let G ⊂ L be a convex class of functions

taking values in a bounded interval (for simplicity, [0, 1]). It follows from Proposition 3.2

that

ψn(δ) ≤ C

√

dδ

n

with some constant C > 0. Hence,

ψ♯n

(

1

2q

)

≤ K
d

n

and Theorem 5.1 implies that

P

{

‖ĝ − g∗‖2
L2(Π) ≥ inf

g∈G
‖g − g∗‖2

L2(Π) +K

(

d

n
+
t

n

)}

≤ Ce−t

with some constant K > 0.

Example 2. Reproducing kernel Hilbert spaces (RKHS). Suppose G is the

unit ball in RKHS HK :

G := {h : ‖h‖HK
≤ 1}.
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Denote {λk} the eigenvalues of the integral operator from L2(Π) into L2(Π) with kernel

K. Then Proposition 3.3 implies that

ψn(δ) ≤ C

(

n−1
∞
∑

j=1

(λj ∧ δ)
)1/2

.

The function

δ 7→
(

n−1
∞
∑

j=1

(λj ∧ δ)
)1/2

=: γn(δ)

is strictly convex and, as a result,

γ♭n(δ) =
γn(δ)

δ

is strictly decreasing. By a simple computation, Theorem 5.1 yields

P

{

‖ĝ − g∗‖2
L2(Π) ≥ inf

g∈G
‖g − g∗‖2

L2(Π) +K

(

γ♯n(1) +
t

n

)}

≤ Ce−t

with some constant K > 0.

Example 3. VC-subgraph classes. Suppose that G is a VC-subgraph class of

functions g : S 7→ [0, 1] of VC-dimension V. Then the function ψn(δ) can be upper

bounded using (3.13):

ψn(δ) ≤ C

[

√

V δ

n
log

1

δ

∨ V

n
log

1

δ

]

.

Therefore

ψ♯n(ε) ≤
CV

nε2
log

nε2

V
.

Theorem 5.2 implies

P

{

‖ĝ − g∗‖2
L2(Π) ≥ (1 + ε) inf

g∈G
‖g − g∗‖2

L2(Π) +K

(

V

nε2
log

nε2

V
+

t

nε

)}

≤ Ce−t.

Example 4. Entropy conditions. In the case when the entropy of the class

G (random, uniform, bracketing, etc.) is bounded by O(ε−2ρ) for some ρ ∈ (0, 1), we

typically have

ψ♯n(ε) = O
(

n−1/(1+ρ)
)

.

For instance, if (3.14) holds, then it follows from (3.15) (with F ≡ U = 1 for simplicity)

that

ψn(δ) ≤ K

(

Aρ√
n
δ(1−ρ)/2

∨ A2ρ/(ρ+1)

n1/(1+ρ)

)

.
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Therefore,

ψ♯n(ε) ≤
CA2ρ/(1+ρ)

(nε2)1/(1+ρ)
.

In this case Theorem 5.2 gives the bound

P

{

‖ĝ − g∗‖2
L2(Π) ≥ (1 + ε) inf

g∈G
‖g − g∗‖2

L2(Π) +K

(

A2ρ/(1+ρ)

(nε2)1/(1+ρ)
+

t

nε

)}

≤ Ce−t.

Example 5. Convex hulls. If

G := conv(H) :=

{

∑

j

λjhj :
∑

j

|λj | ≤ 1, hj ∈ H
}

is the symmetric convex hull of a given VC-type class H of measurable functions from

S into [0, 1], then the condition of the previous example is satisfied with ρ := V
V+2 . This

yields

ψ♯n(ε) ≤
(

K(V )

nε2

)
1
2

2+V
1+V

and Theorem 5.1 yields

P

{

‖ĝ − g∗‖2
L2(Π) ≥ inf

g∈G
‖g − g∗‖2

L2(Π) +K

((

1

n

)
1
2

2+V
1+V

+
t

n

)}

≤ Ce−t

with some constant K > 0 depending on V.

5.2 Empirical Risk Minimization with Convex Loss

A standard assumption on the loss function ℓ that makes the empirical risk minimization

problem computationally tractable is that ℓ(y, ·) is a convex function for all y ∈ T.

Assuming, in addition, that G is a convex class of functions, the convexity of the loss

implies that the empirical risk G ∋ g 7→ Pn(ℓ•g) is a convex functional and the empirical

risk minimization is a convex minimization problem. We will call the problems of this

type convex risk minimization. The least squares and the L1-regression as well as some

of the methods of large margin classification (such as boosting) are examples of convex

risk minimization.

The convexity assumption also simplifies the analysis of empirical risk minimization

problems. In particular, it makes easier proving the existence of the minimal point g∗,

checking condition (5.1), etc.. In this section, we extend the results for L2-regression to

this more general framework.

76



Assume the functions in G take their values in [−M/2,M/2]. We will need the

following assumptions on the loss function ℓ : ℓ satisfies the Lipschitz condition with

some L > 0

∀y ∈ T ∀u, v ∈ [−M/2,M/2] |ℓ(y, u) − ℓ(y, v)| ≤ L|u− v| (5.3)

and also the following assumption on convexity modulus of ℓ holds with some Λ > 0 :

∀y ∈ T ∀u, v ∈ [−M/2,M/2]
ℓ(y, u) + ℓ(y, v)

2
− ℓ

(

y;
u+ v

2

)

≥ Λ|u− v|2. (5.4)

Note that, if g∗ is bounded by M/2, conditions (5.3) and (5.4) imply (5.1) with

D(u, µ) ≤ L2

2Λ . To see this, it is enough to use (5.4) with v = uµ, µ = µx and to integrate

it with respect to µ to get, for the function L(u) :=
∫

T ℓ(y, u)µ(dy), (note that the

minimum of L is attained at uµ)

L(u) − L(uµ)

2
=
L(u) + L(uµ)

2
− L(uµ) ≥

L(u) + L(uµ)

2
− L

(

u+ uµ
2

)

≥ Λ|u− uµ|2

and then to use the Lipschitz condition to get

∫

T
|ℓ(y, u) − ℓ(y, uµ)|2µ(dy) ≤ L2|u− uµ|2.

This nice and simple trick, based on strict convexity, has been used repeatedly in the

theory (see, for instance, Bartlett, Jordan and McAuliffe [10]). We will use it in the proof

of Theorem 5.3.

Theorem 5.3 Suppose that G is a convex class of functions taking values in [−M/2,M/2].

Assume that the minimum of P (ℓ • g) over G is attained at ḡ ∈ G and

ωn(δ) := E sup
g∈G,‖g−ḡ‖2

L2(Π)
≤δ

|Rn(g − ḡ)|.

Denote

ĝ := argming∈GPn(ℓ • g).

Then there exist constants K > 0, C > 0, c > 0 such that

P

{

P (ℓ • ĝ) ≥ inf
g∈G

P (ℓ • g) +K

(

Λω♯n

(

cΛ

L

)

+
L2

Λ

t

n

)}

≤ Ce−t, t > 0.
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Proof. Note that by Lipschitz condition (5.3), for all g1, g2 ∈ G,

P |ℓ • g1 − ℓ • g2|2 ≤ L2‖g1 − g2‖2
L2(Π).

On the other hand, by (5.4), for all g ∈ G, x ∈ S, y ∈ T,

ℓ(y, g(x)) + ℓ(y, ḡ(x))

2
≥ ℓ

(

y;
g(x) + ḡ(x)

2

)

+ Λ|g(x) − ḡ(x)|2.

Integrating this inequality and observing that g+ḡ
2 ∈ G and hence

P

(

ℓ •
(

g + ḡ

2

))

≥ P (ℓ • ḡ),

yields
P (ℓ • g) + P (ℓ • ḡ)

2
≥ P (ℓ • ḡ) + ΛΠ|g − ḡ|2,

or

P (ℓ • g) − P (ℓ • ḡ) ≥ 2ΛΠ|g − ḡ|2.

For the loss class F = {ℓ•g : g ∈ G}, this gives the following upper bound on the L2(P )-

diameter of the δ-minimal set F(δ) : D2(δ) ≤ 2δ
Λ . By symmetrization and contraction

inequalities, it is easy to bound

φn(δ) = E‖Pn − P‖F ′(δ)

in terms of ωn(δ) :

φn(δ) ≤ CLωn

(

δ

2Λ

)

.

By a simple computation, the quantity σtn used in Theorem 4.3 is bounded as follows:

σtn ≤ K

(

Λω♯n

(

cΛ

L

)

+
L2

Λ

t

n

)

.

Under the additional assumption that ℓ is uniformly bounded by 1 in T × [−M/2,M/2],

Theorem 4.3 implies the result. To get rid of the extra assumption, suppose that ℓ is

uniformly bounded by D on T× [−M/2,M/2]. Then the result holds for the loss function

ℓ/D. For this loss function, L and Λ are replaced by L/D and Λ/D, and the expression

Λω♯n

(

cΛ

L

)

+
L2

Λ

t

n

becomes

Λ/Dω♯n

(

cΛ/D

L/D

)

+
L2/D2

Λ/D

t

n
=

1

D

(

Λω♯n

(

cΛ

L

)

+
L2

Λ

t

n

)

,
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so the result follows by rescaling.

As an example, consider the case when G := Mconv(H), where H is a base class of

functions from S into [−1/2, 1/2]. There are many powerful functional gradient descent

type algorithms (such as boosting) that provide an implementation of convex empirical

risk minimization over a convex hull or a linear span of a given base class. Assume that

condition (3.12) holds for the class H with some V > 0, i.e., H is a VC-type class. Define

πn(M,L,Λ; t) := K

[

ΛMV/(V +1)
(L

Λ

∨

1
)(V+2)/(V +1)

n−
1
2
V+2
V+1 +

L2

Λ

t

n

]

with a numerical constant K. The next result is a slightly generalized version of a theorem

due to Bartlett, Jordan and McAuliffe [10].

Theorem 5.4 Under the conditions (5.3) and (5.4),

P

{

P (ℓ • ĝn) ≥ min
g∈G

P (ℓ • g) + πn(M,L,Λ; t)

}

≤ Ce−t.

Proof. To apply Theorem 5.3, it is enough to bound the function ωn. Since G :=

Mconv(H), where H is a VC-type class of functions from S into [−1/2, 1/2], condition

(3.12) holds for H with envelope F ≡ 1 (see Theorem 3.12). Together with (3.15), this

gives

ωn(δ) ≤ C

[

Mρ

√
n
δ(1−ρ)/2

∨M2ρ/(ρ+1)

n1/(1+ρ)

]

with ρ := V
V+2 . Hence,

ω♯n(ε) ≤ C
M2ρ/(1+ρ)

n1/(1+ρ)
ε−2/(1+ρ)

for ε ≤ 1. If ℓ(y, ·) is bounded by 1 in T × [−M/2,M/2], then Theorem 5.3 yields

P

{

P (ℓ • ĝ) ≥ min
g∈G

P (ℓ • g) + πn(M,L,Λ; t)

}

≤ Ce−t.

To remove the assumption that ℓ is bounded by 1, one should use the same rescaling

argument as in the proof of Theorem 5.3.
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5.3 Binary Classification Problems

Binary classification is a prediction problem with T = {−1, 1} and ℓ(y, u) := I(y 6=
u), y, u ∈ {−1, 1} (binary loss). It is a simple example of risk minimization with a

nonconvex loss function.

Measurable functions g : S 7→ {−1, 1} are called classifiers. The risk of a classifier g

with respect to the binary loss

L(g) := P (ℓ • g) = EI(Y 6= g(X)) = P{Y 6= g(X)}

is called the generalization error. It is well known that the minimum of the generalization

error over the set of all classifiers is attained at the classifier

g∗(x) = sign(η(x)),

where η(x) = E(Y |X = x) is the regression function. The function g∗ is called the Bayes

classifier. It is also well known that for all classifiers g

L(g) − L(g∗) =

∫

{x:g(x)6=g∗(x)}
|η(x)|Π(dx) (5.5)

(see, e.g., [33]).

Suppose there exists h ∈ (0, 1] such that for all x ∈ S

|η(x)| ≥ h. (5.6)

The parameter h characterizes the level of noise in classification problems: for small

values of h, η(x) can get close to 0 and, in such cases, correct classification is harder to

achieve. The following condition provides a more flexible way to describe the level of the

noise:

Π{x : |η(x)| ≤ t} ≤ Ctα (5.7)

for some α > 0. It is often referred to as ”Tsybakov’s low noise assumption” or ”Tsy-

bakov’s margin assumption”. Classification problems under condition (5.7) have been

intensively studied by Mammen and Tsybakov [72] and, especially, by Tsybakov [91].

Condition (5.6) was later suggested by Massart and used in a number of papers (see,

e.g., [71]).

Lemma 5.2 Under condition (5.6),

L(g) − L(g∗) ≥ hΠ({x : g(x) 6= g∗(x)}).
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Under condition (5.7),

L(g) − L(g∗) ≥ cΠκ({x : g(x) 6= g∗(x)}),

where κ = 1+α
α and c > 0 is a constant.

Proof. The first bound follows immediately from formula (5.5). To prove the second

bound, use the same formula to get

L(g) − L(g∗) ≥ tΠ
{

x : g(x) 6= g∗(x), |η(x)| > t
}

≥

tΠ
{

x : g(x) 6= g∗(x)
}

− tΠ{x : |η(x)| ≤ t} ≥ tΠ
{

x : g(x) 6= g∗(x)
}

− Ct1+α.

It remains to choose in the last bound t that solves the equation

Π
{

x : g(x) 6= g∗(x)
}

= 2Ctα

to get the result.

Let G be a class of binary classifiers. Denote

ĝ := argming∈Gn
−1

n
∑

j=1

I(Yj 6= g(Xj))

a classifier in G that minimizes the empirical risk with respect to the binary loss (the

training error).

First we obtain upper bounds on the excess risk L(ĝ)−L(g∗) of ĝ in terms of random

shattering numbers

∆G(X1, . . . ,Xn) := card

{

(g(X1), . . . , g(Xn)) : g ∈ G
}

and parameter h involved in condition (5.6).

Theorem 5.5 Suppose condition (5.6) holds with some h ∈ (0, 1]. If g∗ ∈ G, then

P

{

L(ĝ) − L(g∗) ≥ K

(

E log ∆G(X1, . . . ,Xn)

nh
+

t

nh

)}

≤ Ce−t

with some constants K,C > 0. In the general case, when g∗ does not necessarily belong

to G, the following bound holds for all ε ∈ (0, 1) :

P

{

L(ĝ)−L(g∗) ≥ (1+ε)
(

inf
g∈G

L(g)−L(g∗)
)

+K

(

E log ∆G(X1, . . . ,Xn)

nhε2
+

t

nhε

)}

≤ Ce−t
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Proof. Note that

|(ℓ • g)(x, y) − (ℓ • g∗)(x, y)| = I(g(x) 6= g∗(x)),

which implies

∥

∥

∥
ℓ • g − ℓ • g∗

∥

∥

∥

2

L2(P )
= P |(ℓ • g) − (ℓ • g∗)|2 = Π{x : g(x) 6= g∗(x)}.

As always, denote F := {ℓ•g : g ∈ G}. Under the assumption g∗ ∈ G, the first inequality

of Lemma 5.2 implies that

F(δ) =

{

ℓ • g : E(ℓ • g) = L(g) − L(g∗) ≤ δ

}

⊂
{

ℓ • g :
∥

∥

∥
ℓ • g − ℓ • g∗

∥

∥

∥

L2(P )
≤
√

δ

h

}

,

so the L2(P )-diameter D(δ) of the class F(δ) satisfies D(δ) ≤ 2
√

δ
h . Next we have

φn(δ) = E‖Pn − P‖F ′(δ) ≤ 2E sup
g∈G,Π({g 6=g∗})≤δ/h

|(Pn − P )(ℓ • g − ℓ • g∗)|.

Denote

D :=

{

{(x, y) : y 6= g(x)} : g ∈ G
}

and D∗ := {(x, y) : y 6= g∗(x)}.

It is easy to check that for

D1 := {(x, y) : y 6= g1(x)}, D2 := {(x, y) : y 6= g2(x)},

we have

Π({g1 6= g2}) = P (D1△D2).

From the last bound on φn(δ), one can obtain that

φn(δ) ≤ 2E sup
D∈D,P (D△D∗)≤δ/h

|(Pn−P )(D\D∗)|+2E sup
D∈D,P (D△D∗)≤δ/h

|(Pn−P )(D∗\D)|.

Theorem 3.8 yields

φn(δ) ≤ K

[

√

δ

h

√

E log ∆D((X1, Y1), . . . , (Xn, Yn))

n

∨ E log ∆D((X1, Y1), . . . , (Xn, Yn))

n

]

with some constant K > 0. Also, it is easy to observe that

∆D((X1, Y1), . . . , (Xn, Yn)) = ∆G(X1, . . . ,Xn)
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which gives the bound

φn(δ) ≤ K

[

√

δ

h

√

E log ∆G(X1, . . . ,Xn)

n

∨ E log ∆G(X1, . . . ,Xn)

n

]

.

The bounds on φn(δ) and D(δ) provide a way to control the quantity σtn involved in

Theorem 4.3:

σtn ≤ K

[

E log ∆G(X1, . . . ,Xn)

nh
+

t

nh

]

with some constant K > 0, which implies the first bound of the theorem.

The proof of the second bound follows the same lines and it is based on Lemma 4.1.

The next theorem provides bounds on excess risk in terms of shattering numbers

under Tsybakov’s condition (5.7). We skip the proof which is similar.

Theorem 5.6 Suppose condition (5.7) holds with some α > 0. Let κ := 1+α
α . If g∗ ∈ G,

then

P

{

L(ĝ) − L(g∗) ≥ K

((

E log ∆G(X1, . . . ,Xn)

n

)κ/(2κ−1)

+

(

t

n

)κ/(2κ−1))}

≤ Ce−t

with some constants K,C > 0.

We will also mention the following result in spirit of Tsybakov [91].

Theorem 5.7 Suppose, for some A > 0, ρ ∈ (0, 1)

logN(G;L2(Pn); ε) ≤
(

A

ε

)2ρ

(5.8)

and condition (5.7) holds with some α > 0. Let κ := 1+α
α . If g∗ ∈ G, then

P

{

L(ĝ) − L(g∗) ≥ K

((

1

n

)κ/(2κ+ρ−1)

+

(

t

n

)κ/(2κ−1))}

≤ Ce−t

with some constant K,C > 0 depending on A.

The proof is very similar to the proofs of the previous results except that now (3.15)

is used to bound the empirical process. One can also use other notions of entropy such

as entropy with bracketing and obtain very similar results.
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We conclude this section with a theorem by Giné and Koltchinskii [50] that refines

an earlier result by Massart and Nedelec [71]. To formulate it, let

C :=
{

{g = 1} : g ∈ G
}

, C∗ := {g∗ = 1},

and define the following local version of Alexander’s capacity function of the class C (see

[2]):

τ(δ) :=

Π

(

⋃

C∈C,Π(C△C∗)≤δ(C△C∗)

)

δ
.

Theorem 5.8 Suppose condition (5.6) holds with some h ∈ (0, 1]. Suppose also that C
is a VC-class of VC-dimension V. If g∗ ∈ G, then

P

{

L(ĝ) − L(g∗) ≥ K

(

V

nh
log τ

(

V

nh2

)

+
t

nh

)}

≤ Ce−t

with some constants K,C > 0. In the general case, when g∗ does not necessarily belong

to G, the following bound holds for all ε ∈ (0, 1) :

P

{

L(ĝ)−L(g∗) ≥ (1+ε)
(

inf
g∈G

L(g)−L(g∗)
)

+K

(

V

nhε2
log τ

(

V

nh2ε2

)

+
t

nhε

)}

≤ Ce−t.

Proof (sketch). The proof relies on bound (3.13). For instance, to prove the second

inequality this bound is used to control

ωn(δ) = E sup
g∈G,‖ℓ•g−ℓ•ḡ‖2

L2(P )
≤δ

|(Pn − P )(ℓ • g − ℓ • ḡ)|,

where ḡ is a minimal point of P (ℓ • g) on G. To use (3.13) one has to find the envelope

Fδ(x, y) := sup
g∈G,‖ℓ•g−ℓ•ḡ‖2

L2(P )
≤δ

|ℓ • g(x, y) − ℓ • ḡ(x, y)|.

Easy computations show that

‖Fδ‖L2(Π) = 2
√

δτ(δ)

and an application of (3.13) yields

ωn(δ) ≤ K

[

√

V δ

n
log τ(δ)

∨ V

n
log τ(δ)

]
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with some constant K. This implies that, for all ε ∈ (0, 1),

ω♯n(ε) ≤ K
V

nε2
log τ

(

V

nε2

)

with some constant K > 0. Now we can use Lemma 4.1 to complete the proof of the

second bound of the theorem (condition (4.4) of this lemma holds with D = 1
h).

A straightforward upper bound on the capacity function τ(δ) ≤ 1
δ leads to the result

of Massart and Nedelec [71] in which the main part of the error term is V
nh log

(

nh2

V

)

.

However, it is easy to find examples in which the capacity τ(δ) is uniformly bounded.

For instance, suppose that S = [0, 1]d, Π is the Lebesgue measure on S, C is a VC-class

of convex sets, C∗ ∈ C and Π(C∗) > 0. Suppose also that with some constant L > 0

L−1h(C,C∗) ≤ Π(C△C∗) ≤ Lh(C,C∗), C ∈ C,

where h is Hausdorff distance. Then the boundedness of τ easily follows. In such cases,

the main part of the error is of the order V
nh (without a logarithmic factor).

6 Penalized Empirical Risk Minimization and Model Se-

lection Problems

Let F be a class of measurable functions on (S,A) and let {Fk : k ≥ 1} be a family of

its subclasses Fk ⊂ F , k ≥ 1. The subclasses Fk will be used to approximate a solution

of the problem of risk minimization (1.1) over a large class F by a family of solutions of

”smaller” empirical risk minimization problems

f̂k := f̂n,k := argminf∈FkPnf.

For simplicity, we assume that the solutions {f̂n,k} exist.

In what follows, we call EP (F ; f) = Pf − inff∈F Pf the global excess risk of f ∈ F .
Given k ≥ 1, we call EP (F ; f) = Pf − inff∈F Pf the local excess risk of f ∈ Fk.

Usually, the classes Fk, k ≥ 1 represent losses associated with different statistical

models and the problem is to use the estimators {f̂n,k} to construct a function f̂ ∈ F
(for instance, to choose one of the estimators f̂n,k) with a small value of the global

excess risk EP (F ; f̂ ). To be more precise, suppose that there exists an index k(P ) such

that infFk(P )
Pf = infF Pf. In other words, the risk minimizer over the whole class F
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belongs to a subclass Fk(P ). A statistician does not know the distribution P and, hence,

the index k(P ) of the correct model. Let δ̃n(k) be an upper bound on the local excess

risk EP (Fk; f̂n,k) of f̂n,k that provides an “optimal“, or just a ”desirable“ accuracy of

solution of empirical risk minimization problem on the class Fk. If there were an oracle

who could tell the statistician that k(P ) = 100 is the correct index of the model, then the

risk minimization problem could be solved with an accuracy at least δ̃n(100). The model

selection problem deals with constructing a data dependent index k̂ = k̂(X1, . . . ,Xn)

of the model such that the excess risk of f̂ := f̂n,k̂ is within a constant from δ̃n(k(P ))

with a high probability. More generally, in the case when the global minimum of the risk

Pf, f ∈ F is not attained in any of the classes Fk, one can still try to show that with a

high probability

EP (F ; f̂) ≤ C inf
k

[

inf
Fk
Pf − Pf∗ + π̃n(k)

]

,

where

f∗ := argminf∈FPf.

For simplicity, assume the existence of a function f∗ ∈ F at which the global minimum

of the risk Pf, f ∈ F is attained. The quantities π̃n(k) involved in the above bound are

”ideal“ distribution dependent complexity penalties associated with risk minimization

over Fk and C is a constant (preferably, C = 1 or at least close to 1). The inequalities

that express such a property are often called oracle inequalities.

Among the most popular approaches to model selection are penalization methods,

in which k̂ is defined as a solution of the following minimization problem

k̂ := argmink≥1

{

Pnf̂k + π̂n(k)
}

(6.1)

where π̂n(k) is a complexity penalty (generally, data dependent) associated with the class

(the model) Fk. In other words, instead of minimizing the empirical risk on the whole

class F we now minimize a penalized empirical risk.

We discuss below penalization strategies with the penalties based on data dependent

bounds on excess risk developed in the previous sections. Penalization methods have

been widely used in a variety of statistical problems, in particular, in nonparametric

regression. At the same time, there are difficulties in extending penalization method of

model selection to some other problems, such as nonparametric classification.

To provide some motivation for the approach discussed below, note that ideally one

would want to find k̂ by minimizing the global excess risk EP (F ; f̂n,k) of the solutions

of ERM problems with respect to k. This is impossible without the help of the oracle.
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Instead, data dependent upper confidence bounds on the excess risk have to be developed.

The following trivial representation (that plays the role of ”bias-variance decomposition“)

EP (F ; f̂n,k) = inf
Fk
Pf − Pf∗ + EP (Fk; f̂n,k)

shows that a part of the problem is to come up with data dependent upper bounds

on the local excess risk EP (Fk; f̂n,k). This was precisely the question studied in the

previous sections. Another part of the problem is to bound infFk Pf − Pf∗ in terms of

infFk Pnf −Pnf∗, which is what will be done in Lemma 6.3 below. Combining these two

bounds provides an upper bound on the global excess risk that can be now minimized

with respect to k (the term Pnf∗ can be dropped since it does not depend on k).

Suppose that for each class Fk, the function Un(·) = Un,k(·) is given (it was defined

in Section 4.1 in terms of sequences {δj} {tj} that, in this case, might also depend on

k). In what follows, we will assume that, for each k ≥ 1, (δ̄n(k), δ̂n(k), δ̃n(k)) is a triple

bound on the excess risk for the class Fk of confidence level 1 − pk (see Definition 4.1).

Suppose p :=
∑∞

k=1 pk < 1. Then, there exists an event E of probability at least 1 − p

such that on this event the following properties hold for all k ≥ 1 :

(i) U ♯n,k

(

1
2

)

≤ δ̄n(k) ≤ δ̂n(k) ≤ δ̃n(k);

(ii) E(Fk, f̂n,k) ≤ δ̄n(k);

(iii) for all f ∈ Fk,

EP (Fk, f) ≤ 2EPn(Fk; f) ∨ δ̄n(k)

and

EPn(Fk; f) ≤ 3

2

(

EP (Fk; f) ∨ δ̄n(k)
)

;

(iv) for all δ ≥ δ̄n(k),

‖Pn − P‖F ′

k(δ)
≤ Un,k(δ).

In the next sections, we study several special cases of general penalized empirical

risk minimization problem in which it will be possible to prove oracle inequalities.

6.1 Penalization in Monotone Families Fk

In this section, we make a simplifying assumption that {Fk} is a monotone family, i.e.,

Fk ⊂ Fk+1, k ≥ 1. Let

F :=
⋃

j≥1

Fj .
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Define

k̂ := argmink≥1

[

inf
f∈Fk

Pnf + 4δ̂n(k)
]

and f̂ := f̂k̂.

The next statement is akin to the result of Bartlett [6].

Theorem 6.1 The following oracle inequality holds with probability at least 1 − p :

EP (F ; f̂) ≤ inf
j≥1

[

inf
Fj
Pf − inf

F
Pf + 9δ̃n(j)

]

.

Proof. We will consider the event E of probability at least 1−p on which properties

(i)–(iv) hold. Then, for all j ≥ k̂,

EP (Fj ; f̂) ≤ 2EPn(Fj ; f̂) ∨ δ̄n(j) ≤ 2
[

inf
f∈F

k̂

Pnf − inf
f∈Fj

Pnf
]

+ δ̄n(j) ≤

2
[

inf
f∈F

k̂

Pnf + 4δ̂n(k̂) − inf
f∈Fj

Pnf − 4δ̂n(j)
]

+ 9δ̂n(j),

which is bounded by 9δ̃n(j) since, by the definition of k̂, the term in the bracket is

nonpositive and δ̂n(j) ≤ δ̃n(j). This implies

P f̂ ≤ inf
f∈Fj

Pf + 9δ̃n(j).

The next case is when j < k̂ and δ̂n(j) ≥ δ̂n(k̂)/9. Then EP (Fk̂; f̂k̂) ≤ δ̄n(k̂), and, as a

consequence,

P f̂ ≤ inf
f∈F

k̂

Pf + δ̂n(k̂) ≤ inf
f∈Fj

Pf + 9δ̃n(j).

The last case to consider is when j < k̂ and δ̂n(j) < δ̂n(k̂)/9. In this case, the definition

of k̂ implies that

inf
f∈Fj

EPn(Fk̂; f) = inf
f∈Fj

Pnf − inf
f∈F

k̂

Pnf ≥ 4(δ̂n(k̂) − δ̂n(j)) ≥ 3δ̂n(k̂).

Hence,
3

2

(

inf
f∈Fj

EP (Fk̂; f) ∨ δ̄n(k̂)
)

≥ inf
f∈Fj

EPn(Fk̂; f) ≥ 3δ̂n(k̂),

which yields

3 inf
f∈Fj

EP (Fk̂; f) + 3δ̄n(k̂) ≥ 6δ̂n(k̂).

Therefore

inf
f∈Fj

EP (Fk̂; f) ≥ δ̂n(k̂) ≥ EP (Fk̂; f̂).
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As a consequence,

P f̂ ≤ inf
f∈Fj

Pf ≤ inf
f∈Fj

Pf + 9δ̃n(j).

This completes the proof.

Example. Consider a regression problem with quadratic loss and with a bounded

response variable Y ∈ [0, 1] (see Section 5.1). Let Gk, k ≥ 1 be convex classes of functions

g taking values in [0, 1] such that Gk ⊂ Gk+1, k ≥ 1. Moreover, suppose that for all k ≥ 1

Gk ⊂ Lk, where Lk is a finite dimensional space of dimension dk. Let

ĝn,k := argming∈Gkn
−1

n
∑

j=1

(Yj − g(Xj))
2.

Take a nondecreasing sequence {tk} of positive numbers such that

∑

k≥1

e−tk = p ∈ (0, 1).

Define

δ̄n(k) = δ̂n(k) = δ̃n(k) = K

(

dk
n

+
tk
n

)

, k ≥ 1.

It is straightforward to see that, for a large enough constant K, (δ̄n(k), δ̂n(k), δ̃n(k)) is a

triple bound of level 1 − e−tk (see Example 1, Section 5.1). Hence, if we define

k̂ := argmink≥1

[

inf
g∈Gk

n−1
n
∑

j=1

(Yj − g(Xj))
2 + 4K

(

dk
n

+
tk
n

)]

with a sufficiently large constant K and set ĝ := ĝn,k̂, then it follows from Theorem 6.1

that with probability at least 1 − p

‖ĝ − g∗‖2
L2(Π) ≤ inf

k≥1

[

inf
g∈Gk

‖g − g∗‖2
L2(Π) + 9K

(

dk
n

+
tk
n

)]

.

Clearly, one can also construct triple bounds and implement this penalization method

in more complicated situations (see examples 2-5 in Section 5.1) and for other loss func-

tions (for instance, for convex losses discussed in Section 5.2). Moreover, one can use a

general construction of triple bounds in Theorem 4.8 that provides a universal approach

to complexity penalization (which, however, is more of theoretical interest).

Despite the fact that it is possible to prove nice and simple oracle inequalities under

the monotonicity assumption, this assumption might be restrictive and, in what follows,

we explore what can be done without it.
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6.2 Penalization by Empirical Risk Minima

In this section, we study a simple penalization technique in spirit of the work of Lugosi

and Wegkamp [70] in which the infimum of empirical risk infFk Pnf is explicitly involved

in the penalty. It will be possible to prove rather natural oracle inequalities for this

penalization method. However, the drawback of this approach is that, in most of the

cases, it yields only suboptimal convergence rates.

Given triple bounds (δ̄n(k), δ̂n(k), δ̃n(k)) of level 1 − pk for classes Fk, define the

following penalties:

π̂(k) := π̂n(k) := K̂

[

δ̂n(k) +

√

tk
n

inf
Fk
Pnf +

tk
n

]

and

π̃(k) := π̃n(k) := K̃

[

δ̃n(k) +

√

tk
n

inf
Fk
Pf +

tk
n

]

,

where K̂, K̃ are sufficiently large numerical constants. Here π̃(k) represents a ”desirable

accuracy“ of risk minimization on the class Fk.
The index estimate k̂ is defined by minimizing the penalized empirical risk

k̂ := argmink≥1

{

Pnf̂k + π̂(k)
}

and, as always, f̂ := f̂k̂.

The next theorem provides an upper confidence bound on the risk of f̂ and an oracle

inequality for the global excess risk EP (F ; f̂).

Theorem 6.2 There exists a choice of K̂, K̃ such that for any sequence {tk} of positive

numbers, the following bounds hold:

P

{

P f̂ ≥ inf
k≥1

{

Pnf̂n,k + π̂(k)
}

}

≤
∞
∑

k=1

(

pk + e−tk
)

and

P

{

EP (F ; f̂) ≥ inf
k≥1

{

inf
f∈Fk

Pf − inf
f∈F

Pf + π̃(k)
}

}

≤
∞
∑

k=1

(

pk + e−tk
)

.

Unless infFk Pf = 0, π̃(k) = π̃n(k) can not be smaller than const n−1/2. In many

cases (see Section 5), the excess risk bound δ̃n(k) is smaller than this, and the penalization

method of this section is suboptimal.

The following lemma is the main tool used in the proof.
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Lemma 6.1 Let F be a class measurable functions from S into [0, 1]. If δ̄n is an ad-

missible distribution dependent bound of confidence level 1− p, p ∈ (0, 1) (see Definition

4.1), then the following inequality holds for all t > 0 :

P

{

∣

∣

∣
inf
F
Pnf − inf

F
Pf
∣

∣

∣
≥ 2δ̄n +

√

2t

n
inf
F
Pf +

t

n

}

≤ p+ e−t.

If (δ̄n, δ̂n, δ̃n) is a triple bound of confidence level 1 − p, then

P

{

∣

∣

∣
inf
F
Pnf − inf

F
Pf
∣

∣

∣
≥ 4δ̂n + 2

√

2t

n
inf
F
Pnf +

8t

n

}

≤ p+ e−t.

Proof. Let E be the event where conditions (i)-(iv) of Definition 4.1 hold. Then

P(E) ≥ 1 − p. On the event E, E(f̂n) ≤ δ̄n and, for all ε < δ̄n and g ∈ F(ε)

∣

∣

∣
inf
F
Pnf − inf

F
Pf
∣

∣

∣
=
∣

∣

∣
Pnf̂n − inf

F
Pf
∣

∣

∣
≤

P f̂n − inf
F
Pf + |(Pn − P )(f̂n − g)| + |(Pn − P )(g)| ≤

≤ δ̄n + ‖Pn − P‖F ′(δ̄n) + |(Pn − P )(g)|. (6.2)

Also, on the same event E,

‖Pn − P‖F ′(δ̄n) ≤ Un(δ̄n(t)) ≤ V̄n(δ̄n)δ̄n ≤ δ̄n. (6.3)

By Bernstein’s inequality, with probability at least 1 − e−t

|(Pn − P )(g)| ≤
√

2
t

n
VarP g +

2t

3n
≤
√

2
t

n

(

inf
F
Pf + ε

)

+
2t

3n
, (6.4)

since g takes values in [0, 1], g ∈ F(ε), and VarP g ≤ Pg2 ≤ Pg ≤ infF Pf + ε. It follows

from (6.2), (6.3) and (6.4) that, on the event

E(ε) := E
⋂

{

|(Pn − P )(g)| ≤
√

2
t

n

(

inf
F
Pf + ε

)

+
2t

3n

}

, (6.5)

the following inequality holds:

∣

∣

∣
inf
F
Pnf − inf

F
Pf
∣

∣

∣
≤ 2δ̄n +

√

2
t

n

(

inf
F
Pf + ε

)

+
t

n
. (6.6)

Since the events E(ε) are monotone in ε, let ε→ 0 to get

P(E(0)) ≥ 1 − p− e−t.
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This yields the first bound of the lemma.

For the proof of the second bound, note that on the event E(0),

∣

∣

∣
inf
F
Pnf − inf

F
Pf
∣

∣

∣
≤
√

2
t

n
| inf

F
Pnf − inf

F
Pf | + 2δ̄n +

√

2
t

n
inf
F
Pnf +

t

n
. (6.7)

Thus, either

| inf
F
Pnf − inf

F
Pf | ≤ 8t

n
, or

2t

n
≤ | infF Pnf − infF Pf |

4
.

In the last case (6.7) implies that

∣

∣

∣
inf
F
Pnf − inf

F
Pf
∣

∣

∣
≤ 4δ̄n + 2

√

2
t

n
inf
F
Pnf +

2t

n
.

The condition of the lemma allows us to replace (on the event E) δ̄n by δ̂n and to get

the following bound that holds with probability at least 1 − p− e−t :

∣

∣

∣
inf
F
Pnf − inf

F
Pf
∣

∣

∣
≤ 4δ̂n + 2

√

2
t

n
inf
F
Pnf +

8t

n
.

Proof of Theorem 6.2. For each class Fk and t = tk define the event Ek(0), (with

ε = 0) as in (6.5). Clearly,

P(Ek(0)) ≥ 1 − pk − e−tk .

Let

F :=
⋂

k≥1

Ek(0).

Then

P(F c) ≤
∞
∑

k=1

(

pk + e−tk
)

.

We use the following consequence of Lemma 6.1 and the definition of the triple bounds:

on the event F for all k ≥ 1,

P f̂k − inf
f∈Fk

Pf ≤ δ̄n(k) ≤ δ̂n(k) ≤ δ̃n(k)

and
∣

∣

∣
inf
Fk
Pnf − inf

Fk
Pf
∣

∣

∣
≤ 2δ̄n(k) +

√

2tk
n

inf
Fk
Pf +

tk
n
,
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∣

∣

∣
inf
Fk
Pnf − inf

Fk
Pf
∣

∣

∣
≤ 4δ̂n(k) + 2

√

2tk
n

inf
Fk
Pnf +

8tk
n
.

Therefore,

P f̂ = P f̂k̂ ≤ inf
F
k̂

Pf + δ̄n(k̂) ≤ inf
F
k̂

Pnf + 5δ̂n(k̂) + 2

√

2tk̂
n

inf
F
k̂

Pnf +
8tk̂
n

≤

≤ inf
F
k̂

Pnf + π̂(k̂) = inf
k

[

inf
Fk
Pnf + π̂(k)

]

,

provided that the constant K̂ in the definition of π̂ was chosen properly. The first bound

of the theorem has been proved.

To prove the second bound, note that

√

tk
n

inf
Fk
Pnf ≤

√

tk
n

inf
Fk
Pf +

√

tk
n
| inf
Fk
Pnf − inf

Fk
Pf | ≤

√

tk
n

inf
Fk
Pf +

tk
2n

+
1

2
| inf
Fk
Pnf − inf

Fk
Pf |.

Therefore, on the event F for all k

π̂(k) = K̂

[

δ̂n(k) +

√

tk
n

inf
Fk
Pnf +

tk
n

]

≤ K̃

2

[

δ̃n(k) +

√

tk
n

inf
Fk
Pf +

tk
n

]

= π̃(k)/2

and

∣

∣

∣
inf
Fk
Pnf−inf

Fk
Pf
∣

∣

∣
≤ 2δ̄n(k)+

√

2tk
n

inf
Fk
Pf+

tk
n

≤ K̃

2

[

δ̃n(k)+

√

tk
n

inf
Fk
Pf+

tk
n

]

= π̃(k)/2,

provided that the constant K̃ in the definition of π̃(k) is large enough. As a result, on

the event F,

P f̂ ≤ inf
k

[

inf
Fk
Pnf + π̂(k)

]

≤ inf
k

[

inf
Fk
Pf + π̃(k)

]

,

proving the second bound.

Example. As an example, we derive some of the results of Lugosi and Wegkamp

[70] (in a slightly modified form). Suppose that F is a class of measurable functions

on S taking values in {0, 1} (binary functions). As before, let ∆F (X1, . . . ,Xn) be the

shattering number of the class F on the sample (X1, . . . ,Xn) :

∆F (X1, . . . ,Xn) := card

({

(f(X1), . . . , f(Xn)) : f ∈ F
})

.
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Given a sequence {Fk}, Fk ⊂ F of classes of binary functions, define the following

complexity penalties

π̂(k) := K̂

[

√

inf
f∈Fk

Pnf
log ∆Fk(X1, . . . ,Xn) + tk

n
+

log ∆Fk(X1, . . . ,Xn) + tk
n

]

and

π̃(k) := K̃

[

√

inf
f∈Fk

Pf
E log ∆Fk(X1, . . . ,Xn) + tk

n
+

E log ∆Fk(X1, . . . ,Xn) + tk
n

]

,

and let k̂ be a solution of the following penalized empirical risk minimization problem

k̂ := argmink≥1

[

min
Fk

Pnf + π̂(k)

]

.

Denote f̂ := f̂n,k̂.

Theorem 6.3 There exists a choice of K̂, K̃ such that for all tk > 0,

P

{

EP (F ; f̂ ) ≥ inf
k≥1

{

inf
f∈Fk

Pf − inf
f∈F

Pf + π̃(k)
}

}

≤
∞
∑

k=1

e−tk .

Note that penalization based on random shattering numbers is natural in classifica-

tion problems and the result of Theorem 6.3 can be easily stated in classification setting.

The result follows from Theorem 6.2 and the next lemma that provides a version of triple

bound on excess risk for classes of binary functions.

Lemma 6.2 Given a class of binary functions F and t > 0, define

δ̄n := K̄

[

√

inf
f∈F

Pf
E log ∆F (X1, . . . ,Xn) + t

n
+

E log ∆F (X1, . . . ,Xn) + t

n

]

,

δ̂n := K̂

[

√

inf
f∈F

Pnf
log ∆F (X1, . . . ,Xn) + t

n
+

log ∆F (X1, . . . ,Xn) + t

n

]

and

δ̃n := K̃

[

√

inf
f∈F

Pf
E log ∆F (X1, . . . ,Xn) + t

n
+

E log ∆F (X1, . . . ,Xn) + t

n

]

.

There exists a choice of constants K̄, K̂, K̃ such that (δ̄n, δ̂n, δ̃n) is a triple bound of level

1 − e−t for the class F .
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Proof. The following upper bounds on the L2(P )-diameter of the δ-minimal set

F(δ) and on the function φn(δ) hold:

D2(F ; δ) = sup
f,g∈F(δ)

P (f − g)2 ≤ sup
f,g∈F(δ)

(Pf + Pg) ≤ 2( inf
f∈F

Pf + δ).

By Theorem 3.8,

φn(δ) ≤ K

[

√

2

(

inf
f∈F

Pf + δ

)

E log ∆F (X1, . . . ,Xn)

n
+

E log ∆F (X1, . . . ,Xn)

n

]

.

A straightforward computation implies the next bound on the quantity σtn from Theorem

4.3:

σtn ≤ δ̄n = K̄

[

√

inf
f∈F

Pf
E log ∆F (X1, . . . ,Xn) + t

n
+

E log ∆F (X1, . . . ,Xn) + t

n

]

,

provided that the constant K̄ is large enough. Moreover, with a proper choice of this

constant, δ̄n is an admissible bound of level 1 − e−t.

The following deviation inequality for shattering numbers is due to Boucheron,

Lugosi and Massart [20]: with probability at least 1 − e−t

log ∆F (X1, . . . ,Xn) ≤ 2E log ∆F (X1, . . . ,Xn) + 2t

and

E log ∆F (X1, . . . ,Xn) ≤ 2 log ∆F (X1, . . . ,Xn) + 2t.

Together with the first bound of Lemma 6.1, this easily implies that with probability at

least 1 − 8e−t, δ̄n ≤ δ̂n ≤ δ̃n. First we prove that δ̄n ≤ δ̂n. To this end, we use the first

bound of Lemma 6.1 and the inequality 2ab ≤ a2 + b2 to show that with probability at

least 1 − 2e−t

inf
F
Pf ≤ inf

F
Pnf + 2δ̄n + 2

√

t

2n
inf
F
Pf +

t

3n
≤ inf

F
Pnf + 2δ̄n +

infF Pf
2

+
2t

n
.

Therefore,

inf
F
Pf ≤ 2 inf

F
Pnf + 4δ̄n +

4t

n
.

We substitute this inequality into the definition of δ̄n and replace E log ∆F (X1, . . . ,Xn)

by the upper bound 2 log ∆F (X1, . . . ,Xn)+2t that holds with probability at least 1−e−t.
It follows that, with some constant K,

δ̄n ≤ K

[

√

inf
f∈F

Pnf
log ∆F (X1, . . . ,Xn) + t

n
+

log ∆F (X1, . . . ,Xn) + t

n

]

+

95



+2

√

δ̄n
2

K2 log ∆F (X1, . . . ,Xn) + t

2n
,

Again, using the inequality 2ab ≤ a2 + b2, we get the following bound that holds with

some constant K̂ and with probability at least 1 − 4e−t :

δ̄n ≤ K̂

[

√

inf
f∈F

Pnf
log ∆F (X1, . . . ,Xn) + t

n
+

log ∆F (X1, . . . ,Xn) + t

n

]

=: δ̂n.

The proof of the second inequality δ̂n ≤ δ̃n is similar. By increasing the values of the

constants K̄, K̂, K̃, it is easy to eliminate the factor 8 and to obtain a triple bound of

level 1 − e−t, as it was claimed.

6.3 Linking Excess Risk and Variance in Penalization

In a variety of regression and classification problems the following assumption plays the

crucial role: for all f ∈ F ,

Pf − Pf∗ ≥ ϕ

(

√

VarP (f − f∗)

)

, (6.8)

where ϕ is a convex nondecreasing function on [0,+∞) with ϕ(0) = 0. In section 5, we

have already dealt with several examples of this condition. For instance, in the case of

regression with quadratic loss ℓ(y, u) = (y − u)2 and with bounded response Y ∈ [0, 1],

condition (6.8) is satisfied for the loss class F = {ℓ • g : g ∈ G}, where G is a class of

functions from S into [0, 1]. In this case, one can take ϕ(u) = u2/2, so the function ϕ

does not depend on the unknown distribution P (except that the assumption Y ∈ [0, 1] is

already a restriction on the class of distributions P ). On the other hand, in classification

problems, ϕ is related to the parameters of the noise such as parameter α in Tsybakov’s

low noise assumption (5.7) or parameter h in Massart’s low noise assumption (5.6). So,

in this case, ϕ does depend on P. The function ϕ describes the relationship between the

excess risk Pf − P∗ and the variance VarP (f − f∗) of the “excess loss” f − f∗. In what

follows, we will call ϕ the link function. It happens that the link function is involved in

a rather natural way in the construction of complexity penalties that provide optimal

convergence rates in many problems. Since the link function is generally distribution

dependent, the development of adaptive penalization methods of model selection is a

challenge, for instance, in classification setting.
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We will assume that with some γ > 0

ϕ(uv) ≤ γϕ(u)ϕ(v), u, v ≥ 0. (6.9)

Denote

ϕ∗(v) := sup
u≥0

[uv − ϕ(u)]

the conjugate of ϕ. Then

uv ≤ ϕ(u) + ϕ∗(v), u, v ≥ 0.

Let (δ̄n(k), δ̂n(k), δ̃n(k)) be a triple bound of level 1 − pk for the class Fk, k ≥ 1.

For a fixed ε > 0, define the penalties as follows:

π̂(k) := A(ε)δ̂n(k) + ϕ∗
(

√

2tk
εn

)

+
tk
n

and

π̃(k) :=
A(ε)

1 + γϕ(
√
ε)
δ̃n(k) +

2

1 + γϕ(
√
ε)
ϕ∗
(

√

2tk
εn

)

+
2

1 + γϕ(
√
ε)

tk
n
,

where

A(ε) :=
5

2
− γϕ(

√
ε).

As before, k̂ is defined by

k̂ := argmink≥1

{

Pnf̂k + π̂(k)
}

and f̂ := f̂n,k̂.

Theorem 6.4 For any sequence {tk} of positive numbers,

P

{

EP (F ; f̂ ) ≥ C(ε) inf
k≥1

{

inf
f∈Fk

Pf − inf
f∈F

Pf + π̃(k)
}

}

≤
∞
∑

k=1

(

pk + e−tk
)

,

where

C(ε) :=
1 + γϕ(

√
ε)

1 − γϕ(
√
ε)
.

The following lemma is needed in the proof.
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Lemma 6.3 Let G ⊂ F and let (δ̄n, δ̂n, δ̃n) be a triple bound of level 1 − p for the class

G. For all t > 0, there exists an event E with probability at least 1 − p − e−t such that

on this event

inf
G
Pnf − Pnf∗ ≤ (1 + γϕ(

√
ε))(inf

G
Pf − Pf∗) + ϕ∗

(

√

2t

εn

)

+
t

n
(6.10)

and

inf
G
Pf − Pf∗ ≤ (1 − γϕ(

√
ε))−1

[

inf
G
Pnf − Pnf∗ +

3

2
δ̄n + ϕ∗

(

√

2t

εn

)

+
t

n

]

. (6.11)

In addition, if there exists δ̄εn such that

δ̄n ≤ ε(inf
G
Pf − Pf∗) + δ̄εn,

then

inf
G
Pf − Pf∗ ≤

(

1 − ϕ(
√
ε)− 3

2
ε

)−1[

inf
G
Pnf − Pnf∗ +

3

2
δ̄εn + ϕ∗

(

√

2t

εn

)

+
t

n

]

. (6.12)

Proof. We assume, for simplicity, that Pf attains its minimum over G at some

f̄ ∈ G (the proof can be easily modified if the minimum is not attained). Let E′ be the

event from the Definition 4.1 of the triple bound and let

E :=

{

|(Pn − P )(f̄ − f∗)| ≤
√

2t

n
VarP (f̄ − f∗) +

t

n

}

⋂

E′.

It follows from Bernstein inequality and the definition of the triple bound that

P(E) ≥ 1 − p− e−t.

On the event E,

|(Pn − P )(f̄ − f∗)| ≤
√

2t

n
VarP (f̄ − f∗) +

t

n

and

∀f ∈ G Ên(G; f) ≤ 3

2

(

EP (G; f) ∨ δ̄n
)

.

Also,

Var
1/2
P (f̄ − f∗) ≤ ϕ−1(P f̄ − Pf∗)

and hence, on the event E,

|(P − Pn)(f̄ − f∗)| ≤ ϕ(
√
εϕ−1(P f̄ − Pf∗)) + ϕ∗

(

√

2t

εn

)

+
t

n
≤
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≤ γϕ(
√
ε)(P f̄ − Pf∗) + ϕ∗

(

√

2t

εn

)

+
t

n
,

implying

Pn(f̄ − f∗) ≤ (1 + γϕ(
√
ε))P (f̄ − f∗) + ϕ∗

(

√

2t

εn

)

+
t

n
(6.13)

and

P (f̄ − f∗) ≤ (1 − γϕ(
√
ε))−1

[

Pn(f̄ − f∗) + ϕ∗
(

√

2t

εn

)

+
t

n

]

(6.14)

(6.13) immediately yields the first bound of the lemma.

Since, in addition, on the event E

Pn(f̄ − f∗) = Pnf̄ − inf
G
Pnf + inf

G
Pnf − Pnf∗ = Ên(G; f̄ ) + inf

G
Pnf − Pnf∗ ≤

≤ inf
G
Pnf − Pnf∗ +

3

2

(

EP (G; f̄ ) ∨ δ̄n
)

,

and since EP (G; f̄ ) = 0, we get

Pn(f̄ − f∗) ≤ inf
G
Pnf − Pnf∗ +

3

2
δ̄n.

Along with (6.14), this implies

inf
G
Pf − Pf∗ = P (f̄ − f∗) ≤ (1 − γϕ(

√
ε))−1

[

inf
G
Pnf − Pnf∗ +

3

2
δ̄n + ϕ∗

(

√

2t

εn

)

+
t

n

]

,

which is the second bound of the lemma.

Finally, to prove the third bound it is enough to substitute the bound on δ̄n into

(6.11) and to solve the resulting inequality with respect to infG Pf − Pf∗.

Proof of Theorem 6.4. Let Ek be the event defined in Lemma 6.3 for G = Fk
and t = tk, so that

P(Ek) ≥ 1 − pk − e−tk .

Let

E :=
⋂

k≥1

Ek.

Then

P(E) ≥ 1 −
∑

k≥1

(

pk + e−tk
)

.

On the event E, for all k ≥ 1

EP (Fk; f̂k) = P f̂k − inf
Fk
Pf ≤ δ̄n(k)
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and

δ̄n(k) ≤ δ̂n(k) ≤ δ̃n(k).

On the event E, using first bound (6.11) and then bound (6.10) of Lemma 6.3, we get

EP (F ; f̂) = P f̂ − inf
F
Pf = P f̂k̂ − Pf∗ = P f̂k̂ − inf

F
k̂

Pf + inf
F
k̂

Pf − Pf∗ ≤

≤ δ̄n(k̂) + inf
F
k̂

Pf − Pf∗ ≤

≤ (1 − γϕ(
√
ε))−1

[

(1 − γϕ(
√
ε))δ̄n(k̂) + inf

F
k̂

Pnf − Pnf∗ +
3

2
δ̄n(k̂) + ϕ∗

(

√

2tk̂
εn

)

+
tk̂
n

]

≤

≤ (1 − γϕ(
√
ε))−1

{

inf
k

[

inf
Fk
Pnf + (5/2 − γϕ(

√
ε))δ̂n(k) + ϕ∗

(

√

2tk
εn

)

+
tk
n

]

− Pnf∗
}

=

= (1 − γϕ(
√
ε))−1

{

inf
k

[

inf
Fk
Pnf + π̂(k)

]

− Pnf∗
}

≤

≤ 1 + γϕ(
√
ε)

1 − γϕ(
√
ε)

inf
k

[

inf
Fk
Pf − inf

F
Pf +

5/2 − γϕ(
√
ε)

1 + γϕ(
√
ε)

δ̃n(k)+

+
2

1 + γϕ(
√
ε)
ϕ∗
(

√

2tk
εn

)

+
2

(1 + γϕ(
√
ε))

tk
n

]

=

inf
k

1 + γϕ(
√
ε)

1 − γϕ(
√
ε)

[

inf
Fk
Pf − inf

F
Pf + π̃(k)

]

,

and the result follows.

Remark. Suppose that, for each k, δ̄n(k) is an admissible excess risk bound for the

class Fk on an event Ek with P(Ek) ≥ 1 − pk (see Definition 4.1). It is easily seen from

the proof of Theorem 6.4 that the same oracle inequality holds for arbitrary penalties

π̂(k) and π̃(k) such that on the event Ek

π̂(k) ≥ A(ε)δ̄n(k) + ϕ∗
(

√

2tk
εn

)

+
tk
n

and

π̃(k) ≥ π̂(k)

1 + γϕ(
√
ε)

+
ϕ∗
(
√

2tk
εn

)

1 + γϕ(
√
ε)

+
tk

(1 + γϕ(
√
ε))n

.

As it has been already mentioned, the dependence of the penalty on the link function

ϕ is the most troubling aspect of this approach since in such problems as classification

this function depends on the unknown parameters of distribution P (such as “low noise”
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constants α in (5.7) and h in (5.6), see Section 5.3). Because of this, it is of importance

to know that using Remark 1, it is easy to construct a version of the penalties that do

not depend on ϕ directly. Suppose that the number of classes Fk is finite, say, N. Take

tk := t+ logN, k = 1, . . . ,N.

Define

k̂ := argmin1≤k≤N

[

min
f∈Fk

Pnf +
5

2
δ̂n(k)

]

and f̂ := f̂k̂. Note that we also have

k̂ := argmin1≤k≤N

[

min
f∈Fk

Pnf + π̂(k)

]

,

where

π̂(k) :=
5

2
δ̂n(k) + ϕ∗

(

√

2tk
εn

)

+
tk
n

=
5

2
δ̂n(k) + ϕ∗

(

√

2(t+ logN)

εn

)

+
t+ logN

n
,

since tk in the additional two terms of the definition of π̂(k) does not depend on k.

Denote

π̃(k) :=
5

2
δ̃n(k) + 2ϕ∗

(

√

2(t+ logN)

εn

)

+ 2
t+ logN

n
.

Then it follows from Theorem 6.4 and from the Remark that

P

{

EP (F ; f̂ ) ≥ C(ε) inf
1≤k≤N

{

inf
f∈Fk

Pf − inf
f∈F

Pf + π̃(k)
}

}

≤ e−t +
N
∑

k=1

pk. (6.15)

Example. Consider, for instance, model selection in binary classification problems

(see Section 5.3). Suppose that condition (5.6) holds with some h > 0 and, as a result,

condition (6.8) holds with ϕ(u) = hu2 for any f = ℓ • g and f∗ = ℓ • g∗, where g is a

binary classifier, g∗ is the Bayes classifier and ℓ(y, u) = I(y 6= u) is the binary loss.

Let {Gk} be a family of classes of functions from S into {−1, 1} (binary classifiers).

For any k, define

ĝn,k := argming∈GkLn(g) = argming∈Gkn
−1

n
∑

j=1

I(Yj 6= g(Xj)).

Let Fk := {ℓ • g : g ∈ Gk}. Denote (δ̄n(k), δ̂n(k), δ̃n(k)) the standard triple bound of

Theorem 4.8 for the class Fk of level 1 − pk. Suppose that
∑N

k=1 pk = p ∈ (0, 1). Define

k̂ := argmin1≤k≤N
[

inf
g∈Gk

Ln(g) +
5

2
δ̂n(k)

]
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and ĝ := ĝn,k̂. Then it easily follows from bound (6.15) that with probability at least

1 − p− e−t

L(ĝ) − L(g∗) ≤ C inf
1≤k≤N

[

inf
g∈Gk

L(g) − L(g∗) + δ̃n(k) +
t+ logN

nh

]

(we have fixed ε > 0 and the constant C may depend on ε). It is also easy to deduce

from the proof of Theorem 5.5 that for the standard choice of δ̄n(k)

δ̄n(k) ≤ C

[

inf
g∈Gk

L(g) − L(g∗) +
E log ∆Gk(X1, . . . ,Xn)

nh
+
tk
nh

]

,

which (after some tuning of the constants) leads to the following oracle inequality that

holds with probability at least 1 − p− e−t :

L(ĝ) − L(g∗) ≤ C inf
1≤k≤N

[

inf
g∈Gk

L(g) − L(g∗) +
E log ∆Gk(X1, . . . ,Xn)

nh

]

+ C
t+ logN

nh
.

Thus, this penalization method is adaptive to unknown noise parameter h.

We conclude this section with stating a result of Massart [73, 74] that can be derived

based on the approach of Theorem 6.4. Suppose that {Fk} is a sequence of function

classes such that condition (4.4) holds for each class Fk with some constant Dk ≥ 1, i.e.,

Dk(Pf − Pf∗) ≥ ρ2
P (f, f∗) ≥ VarP (f − f∗).

We will assume that the sequence {Dk} is nondecreasing. Denote

δ̄εn(k) := D−1
k ω♯n

(

ε

KDk

)

+
KDktk
nε

.

If K is large enough, then Lemma 4.1 implies that the following bound holds:

δ̄n(k) := σtkn (Fk;P ) ≤ ε(inf
Fk
Pf − Pf∗) + δ̄εn(k).

Also, it follows from the proof of Theorem 4.3 that δ̄n(k) is an admissible excess risk

bound of level 1 −Cqe
−tk .

Suppose that for each k there exist a data dependent bound δ̂εn(k) and a distribution

dependent bound δ̃εn(k) such that

P

{

δ̄εn(k) ≤ δ̂εn(k) ≤ δ̃εn(k)

}

≥ 1 − pk, k ≥ 1.

Define the following penalties:

π̂εn(k) := 3δ̂εn(k) +
K̂Dktk
εn

and π̃εn(k) := 3δ̃εn(k) +
K̃Dktk
εn
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with some numerical constants K̂, K̃. Let

k̂ := argmink≥1

[

min
f∈Fk

Pnf + π̂εn(k)

]

and f̂ := f̂k̂.

Theorem 6.5 There exist numerical constants K̂, K̃, C such that for any sequence {tk}
of positive numbers,

P

{

P f̂ − Pf∗ ≥
1 + ε

1 − ε
inf
k≥1

{

inf
f∈Fk

Pf − Pf∗ + π̃εn(k)
}

}

≤
∞
∑

k=1

(

pk + (C + 1)e−tk
)

.

To prove this result one has to extend theorem 6.4 to the case when condition (6.8)

holds for each function class Fk with a different link function ϕk and to use this extension

for ϕk(u) = u2/Dk and ϕ∗
k(v) = Dkv

2/4.

7 Linear Programming in Sparse Recovery

7.1 Sparse Recovery and Neighborliness of Convex Polytopes

Let H := {h1, . . . , hN} be a given finite set of measurable functions from S into R.

In what follows, it will be called a dictionary. Given J ⊂ {1, . . . ,N}, we will write

d(J) := card(J). For λ = (λ1, . . . , λN ) ∈ R
N , denote

fλ =
N
∑

j=1

λjhj , Jλ = supp(λ) :=

{

j : λj 6= 0

}

and d(λ) := d(Jλ).

Suppose that a function

f∗ ∈ l.s.(H) =
{

fλ : λ ∈ R
N
}

from the linear span of the dictionary is observed (measured) at points X1, . . . ,Xn ∈ S.

For simplicity, we first assume that there is no noise in the observations:

Yj = f∗(Xj), j = 1, . . . , n.

The goal is to recover a representation of f∗ in the dictionary. We are mostly interested

in the case when N > n (in fact, N can be much larger than n). Define

L :=
{

λ ∈ R
N : fλ(Xj) = Yj, j = 1, . . . , n

}

.
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Then, L is an affine subspace of dimension at least N − n, so, the representation of f∗
in the dictionary is not unique. In such cases, it is often of interest to find the sparsest

representation, which means solving the problem

‖λ‖ℓ0 =

N
∑

j=1

I(λj 6= 0) −→ min, λ ∈ L. (7.1)

If we introduce the following n×N matrix

A :=
(

hj(Xi) : 1 ≤ i ≤ n, 1 ≤ j ≤ N
)

and denote ~Y the vector with components Y1, . . . , Yn, then problem (7.1) can be also

rewritten as

‖λ‖ℓ0 =

N
∑

j=1

I(λj 6= 0) −→ min, Aλ = ~Y . (7.2)

When N is large, such problems are computationally intractable since the function to

be minimized is non-smooth and non-convex. Essentially, solving (7.2) would require

searching through all 2N coordinate subspaces of R
N . Because of this, the following

convex relaxation of the problem is frequently used:

‖λ‖ℓ1 =

N
∑

j=1

|λj | −→ min, λ ∈ L, (7.3)

or, equivalently,

‖λ‖ℓ1 =

N
∑

j=1

|λj | −→ min, Aλ = ~Y . (7.4)

The last minimization problem is convex and, moreover, it is a linear programming

problem. However, the question is whether solving (7.3) has anything to do with solving

(7.1). Next result (due to Donoho [37]) gives an answer to this question by reducing it to

some interesting problems in the geometry of convex polytopes. To formulate the result,

define

P := AUℓ1 = conv
({

a1,−a1, . . . , aN ,−aN
})

,

where

Uℓ1 := {λ ∈ R
N : ‖λ‖ℓ1 ≤ 1}

is the unit ball in ℓ1 and a1, . . . , aN ∈ R
n are columns of matrix A. (In what follows, UB

denotes the closed unit ball centered at 0 of a Banach space B).
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Clearly, P is a centrally symmetric convex polytope in R
n with at most 2N vertices.

Such a centrally symmetric polytope is called d-neighborly if any set of d + 1 vertices

that does not contain antipodal vertices (such as ak and −ak) spans a face of P.

Theorem 7.1 Suppose that N > n. The following two statements are equivalent:

(i) The polytope P has 2N -vertices and is d-neighborly;

(ii) Any solution λ of the system of linear equations Aλ = ~Y such that d(λ) ≤ d is the

unique solution of problem (7.4).

The unit ball Uℓ1 of ℓ1 is a trivial example of an N -neighborly centrally symmetric

polytope. However, it is hard to find nontrivial constructive examples of such polytopes

with a ”high neighborliness”. Their existence is usually proved by a probabilistic method,

for instance, by choosing the design matrix A at random and showing that the resulting

random polytope P is d-neighborly for sufficiently large d with a high probability. The

problem has been studied for several classes of random matrices (projections on an n-

dimensional subspace picked at random from the Grassmannian of all n-dimensional

subspaces; random matrices with i.i.d. Gaussian or Bernoulli entries, etc) both in the

case of centrally symmetric polytopes and without the restriction of central symmetry,

see Vershik and Sporyshev [96], Affentranger and Schneider [1] and, in connection with

sparse recovery, Donoho [37], Donoho and Tanner [38]. The approach taken in these

papers is based on rather subtle geometric analysis of the properties of high-dimensional

convex polytopes, in particular, on computation of their internal and external angles.

This leads to rather sharp estimates of the largest d for which the neighborliness still

holds (in other words, for which the phase transition occurs and the polytope starts losing

faces). Here we follow another approach that is close to Rudelson and Vershynin [82] and

Mendelson, Pajor and Tomczak-Jaegermann [78]. This approach is more probabilistic,

it is much simpler and it addresses the sparse recovery problem more directly. On the

other hand, it does not give precise bounds on the maximal d for which sparse recovery

is possible (although it still provides correct answers up to constants).

7.2 Geometric Properties of the Dictionary

For J ⊂ {1, . . . , N} and b ∈ [0,+∞], define the following cone consisting of vectors whose

“dominant coordinates” are in J :

Cb,J :=

{

u ∈ R
N :
∑

j 6∈J
|uj| ≤ b

∑

j∈J
|uj|
}

.
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Clearly, for b = +∞, Cb,J = R
N . For b = 0, Cb,J is the linear subspace R

J of vectors

u ∈ R
N with supp(u) ⊂ J. For b = 1, we will write CJ := C1,J . Such cones will be called

cones of dominant coordinates and some norms in R
N will be compared on these

cones.

Some useful geometric properties of the cones of dominant coordinates will be sum-

marized in the following lemma. It includes several well known facts (see Candes and

Tao [29], proof of Theorem 1; Ledoux and Talagrand [68], p. 421; Mendelson, Pajor and

Tomczak-Jaegermann [78], Lemma 3.3).

With a minor abuse of notations, we will identify in what follows vectors u ∈ R
N

with suppu ⊂ J, where J ⊂ {1, . . . ,N}, with vectors u = (uj : j ∈ J) ∈ R
J .

Lemma 7.1 Let J ⊂ {1, . . . , N} and let d := card(J).

(i) Take u ∈ Cb,J and denote J0 := J. For s ≥ 1, J1 will denote the set of s coordinates

in {1, . . . , N} \ J0 for which |uj|′s are the largest, J2 will be the set of s coordinates in

{1, . . . , N} \ (J0 ∪ J1) for which |uj |′s are the largest, etc. (at the end, there might be

fewer than s coordinates left). Denote u(k) := (uj : j ∈ Jk). Then u =
∑

k≥0 u
(k) and

∑

k≥2

‖u(k)‖ℓ2 ≤ b√
s

∑

j∈J
|uj | ≤ b

√

d

s

(

∑

j∈J
|uj |2

)1/2

.

In addition,

‖u‖ℓ2 ≤
(

b

√

d

s
+ 1

)(

∑

j∈J0∪J1

|uj |2
)1/2

.

(ii) Denote

KJ := Cb,J ∩ UBℓ2 .

There exists a set Md ⊂ Uℓ2 such that d(u) ≤ d, u ∈ Md,

card(Md) ≤ 5d
(

N

≤ d

)

and

KJ ⊂ 2(2 + b)conv(Md).

Proof. To prove (i), note that, for all j ∈ Jk+1,

|uj | ≤
1

s

∑

i∈Jk
|ui|,
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implying that

(
∑

j∈Jk+1

|uj |2)1/2 ≤ 1√
s

∑

j∈Jk
|uj|.

Add these inequalities for k = 1, 2, . . . to get

∑

k≥2

‖u(k)‖ℓ2 ≤ 1√
s

∑

j 6∈J
|uj| ≤

b√
s

∑

j∈J
|uj | ≤ b

√

d

s

(

∑

j∈J
|uj|2

)1/2

≤ b

√

d

s

(

∑

j∈J∪J1

|uj |2
)1/2

.

Therefore, for u ∈ CJ ,

‖u‖ℓ2 ≤
(

b

√

d

s
+ 1

)(

∑

j∈J0∪J1

|uj |2
)1/2

.

To prove (ii) note that

KJ ⊂ (2 + b) conv

(

⋃

BI : I ⊂ {1, . . . ,N}, d(I) ≤ d

)

,

where

BI :=

{

(ui : i ∈ I) :
∑

i∈I
|ui|2 ≤ 1

}

.

Indeed, it is enough to consider u ∈ KJ and to use statement (i) with s = d. Then, we

have u(0) ∈ BJ0, u
(1) ∈ BJ1 and

∑

k≥2

u(k) ∈ b conv

(

⋃

BI : I ⊂ {1, . . . ,N}, d(I) ≤ d

)

.

It is easy to see that if B is the unit Euclidean ball in R
d and M is a 1/2-net of this ball,

then

B ⊂ 2 conv(M).

Here is a sketch of the proof of the last claim. For convex sets C1, C2 ⊂ R
N , denote by

C1 + C2 their Minkowski sum

C1 + C2 = {x1 + x2 : x1 ∈ C1, x2 ∈ C2}.

It follows that

B ⊂M +
1

2
B ⊂ conv(M) +

1

2
B ⊂ conv(M) +

1

2
conv(M) +

1

4
B ⊂ . . .

conv(M) +
1

2
conv(M) +

1

4
conv(M) + · · · ⊂ 2conv(M).
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For each I with d(I) = d, denote MI a minimal 1/2-net of BI . Then,

KJ ⊂ 2(2 + b) conv

(

⋃

MI : I ⊂ {1, . . . ,N}, d(I) ≤ d

)

=: 2(2 + b) conv(Md).

By an easy combinatorial argument,

card(Md) ≤ 5d
(

N

≤ d

)

,

so, the proof is complete.

In what follows, we will need several geometric characteristics of the dictionary H.
Given a probability measure Π on S, denote

β(b)(J ; Π) := inf

{

β > 0 :
∑

j∈J
|λj | ≤ β

∥

∥

∥

∥

N
∑

j=1

λjhj

∥

∥

∥

∥

L1(Π)

, λ ∈ Cb,J

}

and

β
(b)
2 (J ; Π) := inf

{

β > 0 :
∑

j∈J
|λj |2 ≤ β2

∥

∥

∥

∥

N
∑

j=1

λjhj

∥

∥

∥

∥

2

L2(Π)

, λ ∈ Cb,J

}

.

We will denote

β(J,Π) := β(1)(J,Π), β2(J,Π) := β
(1)
2 (J,Π).

As soon as the distribution Π is fixed, we will often suppress Π in our notations and

write β(J), β2(J), etc. In the case when J = ∅, we set β(b)(J) = β
(b)
2 (J) = 0. Note that

if J 6= ∅ and h1, . . . , hN are linearly independent in L1(Π) or in L2(Π), then, for all

b ∈ (0,+∞), β(b)(J) < +∞ or, respectively, β
(b)
2 (J) < +∞. In the case of orthonormal

dictionary, β
(b)
2 (J) = 1.

We will use several properties of β(b)(J) and β
(b)
2 (J) and their relationships with

other common characteristics of the dictionary.

Let κ(J) denote the minimal eigenvalue of the Gram matrix
(

〈hi, hj〉L2(Π)

)

i,j∈J
.

Also denote LJ the linear span of {hj : j ∈ J} and let

ρ(J) := sup
f∈LJ ,g∈LJc ,f,g 6=0

∣

∣

∣

∣

〈f, g〉L2(Π)

‖f‖L2(Π)‖g‖L2(Π)

∣

∣

∣

∣

.

Thus, ρ(J) is the largest ”correlation coefficient” (or the largest cosine of the angle)

between functions in the linear span of a subset {hj : j ∈ J} of the dictionary and the

linear span of its complement (compare ρ(J) with the notion of canonical correlation

108



in multivariate statistical analysis). In fact, we will rather need a somewhat different

quantity defined in terms of the cone Cb,J :

ρ(b)(J) := sup
λ∈Cb,J

∣

∣

∣

∣

〈

∑

j∈J λjhj ,
∑

j 6∈J λjhj

〉

L2(Π)

∣

∣

∣

∣

∥

∥

∥

∥

∑

j∈J λjhj

∥

∥

∥

∥

L2(Π)

∥

∥

∥

∥

∑

j 6∈J λjhj

∥

∥

∥

∥

L2(Π)

.

Clearly, ρ(b)(J) ≤ ρ(J).

Proposition 7.1 The following bound holds:

β2(J) ≤ 1
√

κ(J)(1 − (ρ(b)(J))2)
. (7.5)

Proof. Indeed, the next inequality is obvious

‖
∑

j∈J
λjhj‖L2(Π) ≤ (1 − (ρ(b)(J))2)−1/2‖

N
∑

j=1

λjhj‖L2(Π),

since for f =
∑

j∈J λjhj and g =
∑

j 6∈J λjhj , we have

‖f+g‖2
L2(Π) = (1−cos2(α))‖f‖2

L2(Π)+
(

‖f‖L2(Π) cos(α)+‖g‖L2(Π)

)2
≥ (1−(ρ(b)(J))2)‖f‖2

L2(Π),

where α is the angle between f and g. This yields

(

∑

j∈J
|λj |2

)1/2

≤ 1
√

κ(J)

∥

∥

∥

∑

j∈J
λjhj

∥

∥

∥

L2(Π)
≤ 1
√

κ(J)(1 − (ρ(b)(J))2)

∥

∥

∥

N
∑

j=1

λjhj

∥

∥

∥

L2(Π)
,

which implies (7.5).

Lemma 7.1 can be used to provide upper bounds on β
(b)
2 (J). To formulate such

bounds, we first introduce so called restricted isometry constants.

For d = 1, . . . , N, let δd(Π) be the smallest δ > 0 such that, for all λ ∈ R
N with

d(λ) ≤ d,

(1 − δ)‖λ‖ℓ2 ≤
∥

∥

∥

∥

N
∑

j=1

λjhj

∥

∥

∥

∥

L2(Π)

≤ (1 + δ)‖λ‖ℓ2 .

If δd(Π) < 1, then d-dimensional subspaces spanned on subsets of the dictionary and

equipped with (a) the L2(Π)-norm and (b) the ℓ2-norm on vectors of coefficients are ”al-

most” isometric. For a given dictionary {h1, . . . , hN}, the quantity δd(Π) will be called
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the restricted isometry constant of dimension d with respect to measure Π. The dictio-

nary satisfies a restricted isometry condition in L2(Π) if δd(Π) is sufficiently small for a

sufficiently large value of d (that, in sparse recovery, is usually related to the underlying

“sparsity” of the problem).

For I, J ⊂ {1, . . . , N}, I ∩ J = ∅, denote

r(I;J) := sup
f∈LI ,g∈LJ ,f,g 6=0

∣

∣

∣

∣

〈f, g〉L2(Π)

‖f‖L2(Π)‖g‖L2(Π)

∣

∣

∣

∣

.

Note that ρ(J) = r(J, Jc). Let

ρd := max
{

r(I, J) : I, J ⊂ {1, . . . ,N}, I ∩ J = ∅, card(I) = 2d, card(J) = d
}

.

This quantity measures the correlation between linear spans of disjoint parts of the

dictionary of fixed “small cardinalities”, in this case, d and 2d.

Define

md := inf{‖fu‖L2(Π) : u ∈ R
N , ‖u‖ℓ2 = 1, d(u) ≤ d}

and

Md := sup{‖fu‖L2(Π) : u ∈ R
N , ‖u‖ℓ2 = 1, d(u) ≤ d}.

If md ≤ 1 ≤Md ≤ 2, the restricted isometry constant can be written as

δd = (Md − 1) ∨ (1 −md).

Lemma 7.2 Suppose J ⊂ {1, . . . ,N}, d(J) = d and ρd <
m2d
bM2d

. Then

β
(b)
2 (J) ≤ 1

m2d − bρdM2d
.

Proof. Denote PI the orthogonal projection on LI ⊂ L2(Π). Under the notations

of Lemma 7.1, for all u ∈ CJ ,

∥

∥

∥

∥

N
∑

j=1

ujhj

∥

∥

∥

∥

L2(Π)

≥
∥

∥

∥

∥

PJ0∪J1

N
∑

j=1

ujhj

∥

∥

∥

∥

L2(Π)

≥
∥

∥

∥

∥

∑

j∈J0∪J1

ujhj

∥

∥

∥

∥

L2(Π)

−
∥

∥

∥

∥

PJ0∪J1

∑

j 6∈J0∪J1

ujhj

∥

∥

∥

∥

L2(Π)

≥

∥

∥

∥

∥

∑

j∈J0∪J1

ujhj

∥

∥

∥

∥

L2(Π)

−
∑

k≥2

∥

∥

∥

∥

PJ0∪J1

∑

j∈Jk
ujhj

∥

∥

∥

∥

L2(Π)

≥

∥

∥

∥

∥

∑

j∈J0∪J1

ujhj

∥

∥

∥

∥

L2(Π)

− ρd
∑

k≥2

∥

∥

∥

∥

∑

j∈Jk
ujhj

∥

∥

∥

∥

L2(Π)

≥
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∥

∥

∥

∥

∑

j∈J0∪J1

ujhj

∥

∥

∥

∥

L2(Π)

− ρdM2d

∑

k≥2

‖u(k)‖ℓ2 ≥

∥

∥

∥

∥

∑

j∈J0∪J1

ujhj

∥

∥

∥

∥

L2(Π)

− bρdM2d

(

∑

j∈J∪J1

|uj |2
)

≥

∥

∥

∥

∥

∑

j∈J0∪J1

ujhj

∥

∥

∥

∥

L2(Π)

− bρd
M2d

m2d

∥

∥

∥

∥

∑

j∈J0∪J1

ujhj

∥

∥

∥

∥

L2(Π)

=

(

1 − bρd
M2d

m2d

)
∥

∥

∥

∥

∑

j∈J0∪J1

ujhj

∥

∥

∥

∥

L2(Π)

.

On the other hand,

(

∑

j∈J
|uj|2

)1/2

≤
(

∑

j∈J0∪J1

|uj |2
)1/2

≤ m−1
2d

∥

∥

∥

∥

∑

j∈J0∪J1

ujhj

∥

∥

∥

∥

L2(Π)

,

implying that

(

∑

j∈J
|uj |2

)1/2

≤ m−1
2d

(

1 − bρd
M2d

m2d

)−1∥
∥

∥

∥

N
∑

j=1

ujhj

∥

∥

∥

∥

L2(Π)

.

Therefore,

β2(J) ≤ 1

m2d − bρdM2d
.

It is easy to check that

ρd ≤
1

2

[(

1 + δ3d
1 − δ2d

)2

+

(

1 + δ3d
1 − δd

)2

− 2

]

∨ 1

2

[

2 −
(

1 − δ3d
1 + δ2d

)2

−
(

1 − δ3d
1 + δd

)2]

.

Together with Lemma 7.2 this implies that β2(J) < +∞ for any set J such that card(J) ≤
d provided that δ3d ≤ 1

8 (a sharper condition is also possible).

We will give a simple modification of Lemma 7.2 in spirit of [14].

Lemma 7.3 Suppose J ⊂ {1, . . . ,N}, d(J) = d and, for some s ≥ 1,

Ms

md+s
<

1

b

√

s

d
.

Then

β
(b)
2 (J) ≤

√
s

√
smd+s − b

√
dMs

.
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Proof. For all u ∈ Cb,J ,

(

∑

j∈J
|uj |2

)1/2

≤ 1

md+s

∥

∥

∥

∥

∑

j∈J∪J1

ujhj

∥

∥

∥

∥

L2(Π)

≤ 1

md+s

∥

∥

∥

∥

N
∑

j=1

ujhj

∥

∥

∥

∥

L2(Π)

+
1

md+s

∥

∥

∥

∥

∑

j 6∈J∪J1

ujhj

∥

∥

∥

∥

L2(Π)

.

To bound the last norm in the right hand side, note that

∥

∥

∥

∥

∑

j 6∈J∪J1

ujhj

∥

∥

∥

∥

L2(Π)

≤
∑

k≥2

∥

∥

∥

∥

∑

j∈Jk
ujhj

∥

∥

∥

∥

L2(Π)

≤Ms

∑

k≥2

‖u(k)‖ℓ2 ≤Ms

√

d

s

(

∑

j∈J
|uj |2

)1/2

.

This yields the bound

(

∑

j∈J
|uj |2

)1/2

≤ 1

md+s

∥

∥

∥

∥

N
∑

j=1

ujhj

∥

∥

∥

∥

L2(Π)

+
Ms

md+s

√

d

s

(

∑

j∈J
|uj |2

)1/2

,

which implies the result.

In what follows, we will use several quantities that describe a way in which vectors

in R
N , especially, sparse vectors, are “aligned” with the dictionary. We will use the

following definitions.

Let D ⊂ R
N be a convex set. For λ ∈ D, denote

TD(λ) := {v ∈ R
N : ∃t > 0 λ+ vt ∈ D}.

The set TD(λ) will be called the tangent cone of convex set D at point λ (note that in

the literature on convex analysis it is more common to refer to the closure of the set

TD(λ) as “tangent cone”). Recall that

H :=

(

〈hi, hj〉L2(Π)

)

i,j=1,...,N

denotes the Gram matrix of the dictionary in the space L2(Π). Whenever it is convenient,

H will be viewed as a linear transformation of R
N . For a vector w ∈ R

N and b > 0, we

will denote Cb,w := Cb,supp(w), which is a cone of vectors whose “dominant” coordinates

are in supp(w).

Now define

a
(b)
H (D,λ,w) := sup

{

〈w, u〉ℓ2 : u ∈ −TD(λ) ∩Cb,w, ‖fu‖L2(Π) = 1
}

, b ∈ [0,+∞].

We will call these quantities the alignment coefficients of vector w, matrix H and convex

set D at point λ ∈ D. In applications that follow, we want the alignment coefficient to

be either negative, or, if positive, then small enough.
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The geometry of the set D could have an impact on the alignment coefficients for

some vectors w that are of interest in sparse recovery problems. For instance, if L is a

convex function on D and λ ∈ D is its minimal point, then there exists a subgradient

w ∈ ∂L(λ) of L at point λ such that, for all u ∈ TD(λ), 〈w, u〉ℓ2 ≥ 0. This implies that

a
(b)
H (D,λ,w) ≤ 0. If D = R

N , then TD(λ) = R
N , λ ∈ R

N . In this case, we will write

a
(b)
H (w) := a

(b)
H (RN , λ, w) = sup

{

〈w, u〉ℓ2 : u ∈ Cb,w, ‖fu‖L2(Π) = 1
}

.

Despite the fact that the geometry of set D might be important, often, we are not taking

it into account and replace a
(b)
H (D,λ,w) by its upper bound a

(b)
H (w).

Note that

‖fu‖2
L2(Π) = 〈Hu, u〉ℓ2 = 〈H1/2u,H1/2u〉ℓ2 .

We will frequently use the following form of alignment coefficient

a
(∞)
H (D,λ,w) := sup

{

〈w, u〉ℓ2 : u ∈ −TD(λ), ‖fu‖L2(Π) = 1
}

,

or rather a simpler upper bound

a
(∞)
H (w) = a

(∞)
H (RN , λ, w) = sup

{

〈w, u〉ℓ2 : ‖fu‖L2(Π) = 1
}

.

The last quantity is a seminorm in R
N and, for all b, we have

a
(b)
H (w) ≤ a

(∞)
H (w) = sup

‖H1/2u‖ℓ2=1

〈w, u〉ℓ2 =: ‖w‖H .

If H is nonsingular, we can further write

‖w‖H = sup
‖H1/2u‖ℓ2=1

〈H−1/2w,H1/2u〉ℓ2 = ‖H−1/2w‖ℓ2 .

Even when H is singular, we still have ‖w‖H ≤ ‖H−1/2w‖ℓ2 , where, for w ∈ Im(H1/2) =

H1/2
R
N , one defines

‖H−1/2w‖ℓ2 := inf{‖v‖ℓ2 : H1/2v = w}

(which means factorization of the space with respect to Ker(H1/2)) and for w 6∈ Im(H1/2)

the norm ‖H−1/2w‖ℓ2 becomes infinite.

Note also that, for b = 0,

a
(0)
H (w) = a

(0)
H (RN , λ, w) = sup

{

〈w, u〉ℓ2 : ‖fu‖L2(Π) = 1, supp(u) = supp(w)
}

.
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This also defines seminorms on subspaces of vectors w with a fixed support, say, supp(w) =

J. If HJ :=

(

〈hi, hj〉L2(Π)

)

i,j∈J
is the corresponding submatrix of the Gram matrix H

and HJ is nonsingular, then

a
(0)
H (w) = ‖H−1/2

J w‖ℓ2 ,

so, in this case, the alignment coefficient depends only on “small” submatrices of the

Gram matrix corresponding to the support of w (which is, usually, sparse).

When 0 < b < +∞, the definition of alignment coefficients involves cones of dom-

inant coordinates and their values are between the values in the two extreme cases of

b = 0 and b = ∞.

It is easy to bound the alignment coefficient in terms of geometric characteristics of

the dictionary introduced earlier in this section. For instance, if J = supp(w), then

‖w‖H ≤ ‖w‖ℓ2
√

κ(J)(1 − ρ2(J))
≤ ‖w‖ℓ∞

√

d(J)
√

κ(J)(1 − ρ2(J))
,

where κ(J) is the minimal eigenvalue of the matrix HJ =
(

〈hi, hj〉L2(Π)

)

i,j∈J
and ρ(J)

is the “canonical correlation” defined above.

One can also upper bound the alignment coefficient in terms of the quantity

β2,b(w; Π) := β
(b)
2 (supp(w);Π).

Namely, the following bound is straightforward:

a
(b)
H (w) ≤ ‖w‖ℓ2β2,b(w; Π).

These upper bounds show that the size of the alignment coefficient is controlled by

the ”sparsity” of the vector w as well as by some characteristics of the dictionary (or its

Gram matrix H). For orthonormal dictionaries and for dictionaries that are close enough

to being orthonormal (so that, for instance, κ(J) is bounded away from 0 and ρ2(J) is

bounded away from 1), the alignment coefficient is bounded from above by a quantity of

the order ‖w‖ℓ∞
√

d(J). However, this is only an upper bound and the alignment coeffi-

cient itself is a more flexible characteristic of rather complicated geometric relationships

between the vector w and the dictionary. Even the quantity ‖H−1/2w‖ℓ2 (a rough upper

bound on the alignment coefficient not taking into account the geometry of the cone of

dominant coordinates), depends not only on the sparsity of w, but also on the way in
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which this vector is aligned with the eigenspaces of H. If w belongs to the linear span

of eigenspaces that correspond to large eigenvalues of H, then ‖H−1/2w‖ℓ2 can be of the

order ‖w‖ℓ2 .
Note that the geometry of the problem is the geometry of the Hilbert space L2(Π),

so it strongly depends on the unknown distribution Π of the design variable.

7.3 Sparse Recovery in Noiseless Problems

Let Πn denote the empirical measure based on the points X1, . . . ,Xn (at the moment,

not necessarily random).

Proposition 7.2 Let λ̂ be a solution of (7.3). If λ∗ ∈ L and β2(Jλ∗ ; Πn) < +∞, then

λ̂ = λ∗.

Proof. Since λ̂ ∈ L and λ∗ ∈ L, we have

fλ̂(Xj) = fλ∗(Xj), j = 1, . . . , n

implying that ‖fλ̂− fλ∗‖L2(Πn) = 0. On the other hand, since λ̂ is a solution of (7.3), we

have ‖λ̂‖ℓ1 ≤ ‖λ∗‖ℓ1 implying that

∑

j 6∈Jλ∗
|λ̂j| ≤

∑

j∈Jλ∗
(|λ̂j | − |λ∗j |) ≤

∑

j∈Jλ∗
|λ̂j − λ∗j |.

Therefore, λ̂− λ∗ ∈ CJλ∗ and

‖λ̂− λ∗‖ℓ1 ≤ 2
∑

j∈Jλ∗
|λ̂j − λ∗j | ≤ 2

√

d(λ∗)

(

∑

j∈Jλ∗
|λ̂j − λ∗j |2

)1/2

≤

2β2(Jλ∗ ; Πn)
√

d(λ∗)‖fλ̂ − fλ∗‖L2(Πn) = 0,

implying the result.

In particular, it means that as soon as the restricted isometry condition holds for

the empirical distribution Πn for a sufficiently large d with a sufficiently small δd (to be

more precise, as soon as δ3d(Πn) ≤ 1/8), (7.3) provides a solution of the sparse recovery

problem for any target vector λ∗ such that f∗ = fλ∗ and d(λ∗) ≤ d. The restricted

isometry condition for Πn (which can be also viewed as a condition on the design matrix

A) has been also referred to as the uniform uncertainty principle (UUP) (see, e.g., Candes

and Tao [29]). It is computationally hard to check UUP for a given large design matrix
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A. Moreover, it is hard to construct n × N -matrices for which UUP holds. The main

approach is based on using random matrices of special type and proving that for such

matrices UUP holds for a sufficiently large d with a high probability. We will discuss below

a slightly different approach in which it is assumed that the design points X1, . . . ,Xn

are i.i.d. with common distribution Π. It will be proved directly (without checking UUP

for the random matrix A) that under certain conditions (7.3) does provide a solution of

sparse recovery problem with a high probability.

In what follows, we frequently use Orlicz norms ‖ · ‖ψ for random variables, most

often, with ψ = ψ1, ψ1(x) := e|x| − 1 or ψ = ψ2, ψ2(x) := ex
2 − 1. For any convex

nondecreasing function ψ : R+ 7→ R+ with ψ(0) = 0, it is defined as

‖η‖ψ := inf

{

C > 0 : Eψ

( |η|
C

)

≤ 1

}

(see Ledoux and Talagrand [68], van der Vaart and Wellner [95], de la Pena and Giné

[32]). If we want to emphasize the dependence of the Orlicz norms on the probability

measure, we will write ‖ · ‖Lψ(P) (similarly, ‖ · ‖Lψ(P ), ‖ · ‖Lψ(Π), etc.)

Define

ΛS :=

{

λ ∈ R
N : Cβ(Jλ; Π) max

1≤k≤N
‖hk(X)‖ψ1

√

A logN

n
≤ 1/4

}

.

We will interpret ΛS as a set of ”sparse” vectors. Note that in the case when the dictionary

is L2(Π)-orthonormal,

β(J ; Π) ≤
√

card(J),

so, indeed, ΛS consists of vectors with a sufficiently small d(λ) (or, sparse).

Theorem 7.2 There exists a constant C in the definition of the set ΛS such that for all

A ≥ 1 with probability at least 1 −N−A L ∩ ΛS = {λ̂}.

The following lemma is used in the proof.

Lemma 7.4 There exists a constant C > 0 such that for all A ≥ 1 with probability at

least 1 −N−A

sup
‖u‖ℓ1≤1

∣

∣

∣
(Πn − Π)(|fu|)

∣

∣

∣
≤ C max

1≤k≤N
‖hk(X)‖ψ1

(

√

A logN

n

∨ A logN

n

)

.
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Proof. Let Rn(f) be the Rademacher process. We will use symmetrization inequal-

ity and then contraction inequality for exponential moments (see sections 2.1, 2.2). For

t > 0, we get

E exp

{

t sup
‖u‖ℓ1≤1

∣

∣

∣
(Πn − Π)(|fu|)

∣

∣

∣

}

≤ E exp

{

2t sup
‖u‖ℓ1≤1

∣

∣

∣
Rn(|fu|)

∣

∣

∣

}

≤

E exp

{

4t sup
‖u‖ℓ1≤1

∣

∣

∣
Rn(fu)

∣

∣

∣

}

.

Since the mapping u 7→ Rn(fu) is linear, the supremum ofRn(fu) over the set {‖u‖ℓ1 ≤ 1}
is attained at one of its vertices, and we get

E exp

{

t sup
‖u‖ℓ1≤1

∣

∣

∣
(Πn − Π)(|fu|)

∣

∣

∣

}

≤ E exp

{

4t max
1≤k≤N

∣

∣

∣
Rn(hk)

∣

∣

∣

}

=

N max
1≤k≤N

E

[

exp

{

4tRn(hk)

}

∨

exp

{

−4tRn(hk)

}]

≤

2N max
1≤k≤N

E exp

{

4tRn(hk)

}

≤ 2N max
1≤k≤N

(

E exp

{

4
t

n
εhk(X)

})n

.

To bound the last expectation and to complete the proof, follow the standard proof of

Bernstein’s inequality.

Proof of Theorem 7.2. Arguing as in the proof of Proposition 7.2, we get that,

for all λ ∈ L, λ̂− λ ∈ CJλ and ‖fλ̂ − fλ‖L2(Πn) = 0. Therefore,

‖λ̂− λ‖ℓ1 ≤
∑

j 6∈Jλ
|λ̂j | +

∑

j∈Jλ
|λj − λ̂j | ≤ 2

∑

j∈Jλ
|λj − λ̂j| ≤ 2β(Jλ)‖fλ̂ − fλ‖L1(Π). (7.6)

We will now upper bound ‖fλ̂ − fλ‖L1(Π) in terms of ‖λ̂ − λ‖ℓ1 , which will imply the

result. First, note that

‖fλ̂ − fλ‖L1(Π) = ‖fλ̂ − fλ‖L1(Πn) + (Π − Πn)(|fλ̂ − fλ|) ≤
sup

‖u‖ℓ1≤1

∣

∣

∣
(Πn − Π)(|fu|)

∣

∣

∣
‖λ̂− λ‖ℓ1 . (7.7)

By Lemma 7.4, with probability at least 1 −N−A (under the assumption A logN ≤ n)

sup
‖u‖ℓ1≤1

∣

∣

∣
(Πn − Π)(|fu|)

∣

∣

∣
≤ C max

1≤k≤N
‖hk‖ψ1

√

A logN

n
.
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This yields the following bound that holds with probability at least 1 −N−A:

‖fλ̂ − fλ‖L1(Π) ≤ C max
1≤k≤N

‖hk‖ψ1

√

A logN

n
‖λ̂− λ‖ℓ1 . (7.8)

Together with (7.6), this implies

‖λ̂− λ‖ℓ1 ≤ 2C max
1≤k≤N

‖hk‖ψ1

√

A logN

n
β(Jλ)‖λ̂− λ‖ℓ1 .

It follows that, for λ ∈ L ∩ ΛS , with probability at least 1 −N−A,

‖λ̂− λ‖ℓ1 ≤ 1

2
‖λ̂− λ‖ℓ1 ,

and, hence, λ̂ = λ.

It is of interest to study the problem under the following condition on the dictionary

and on the distribution Π : for all λ ∈ CJ

‖
N
∑

j=1

λjhj‖L1(Π) ≤ ‖
N
∑

j=1

λjhj‖L2(Π) ≤ B(J)‖
N
∑

j=1

λjhj‖L1(Π) (7.9)

with some constant B(J) > 0. This inequality always holds with some B(J) > 0 since

any two norms on a finite dimensional space are equivalent. In fact, the first bound is

just Cauchy-Schwarz inequality. However, in general, the constant B(J) does depend

on J and we are interested in the situation when there is no such dependence (or, at

least, B(J) does not grow too fast as card(J) → ∞). A canonical example in which (7.9)

holds, for all λ ∈ R
N with B(J) = B that does not depend on the dimension J, is when

(h1(X), . . . , hN (X)) has a normal distribution in R
N , for instance, if h1(X), . . . , hN (X)

are i.i.d. standard normal, which is the case of Gaussian dictionary. Another example is

when h1(X), . . . , hN (X) are i.i.d. Rademacher random variables, i.e., hj(X) is +1 or −1

with probability 1/2 each. Such a dictionary is called Bernoulli or Rademacher and, in

this case, (7.9) follows from Khinchin inequality. For Gaussian and Bernoulli dictionaries,

all Lp norms, p ≥ 1, and even ψ1- and ψ2-norms of
∑N

j=1 λjhj are equivalent up to

numerical constants (see Bobkov and Houdre (1997) for a discussion of Khinchin type

inequalities and their connections with isoperimetric constants).

Under the condition (7.9),

β(J) ≤ B(J)β2(J)
√

d(J). (7.10)
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If β2(J) is bounded (as in the case of orthonormal dictionaries), then β(J) is ”small” for

sets J of small cardinality d(J). In this case, the definition of the set of ”sparse vectors”

ΛS can be rewritten in terms of β2.

However, we will give below another version of this result slightly improving the

logarithmic factor in the definition of the set of sparse vectors ΛS and providing bounds

on the norms ‖ · ‖L2(Π) and ‖ · ‖ℓ2 .
Denote

β2(d) := β2(d; Π) := max
{

β2(J) : J ⊂ {1, . . . ,N}, d(J) ≤ 2d
}

.

Let

B(d) := max

{

B(J) : J ⊂ {1, . . . ,N}, d(J) ≤ d

}

.

Finally, denote d̄ the largest d satisfying the conditions d ≤ N
e − 1, Ad log(N/d)

n ≤ 1, and

CB(d)β2(d) sup
‖u‖ℓ2≤1,d(u)≤d

‖fu‖ψ1

√

Ad log(N/d)

n
≤ 1/4.

We will now use the following definition of the set of ”sparse” vectors:

ΛS,2 := {λ ∈ R
N : d(λ) ≤ d̄}.

Recall the notation
(

n

≤ k

)

:=

k
∑

j=0

(

n

j

)

.

Theorem 7.3 Suppose condition (7.9) holds. There exists a constant C in the definition

of ΛS,2 such that for all A ≥ 1 with probability at least

1 − 5−d̄A
(

N

≤ d̄

)−A

the following equality holds: L ∩ ΛS,2 = {λ̂}.

We will use the following lemma.

Lemma 7.5 For J ⊂ {1, . . . , N} with d(J) = d, recall the following notation of Lemma

7.1 (with b = 1):

KJ := CJ ∩
{

u ∈ R
N : ‖u‖ℓ2 ≤ 1

}

.
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There exists a constant C > 0 such that for all A ≥ 1 with probability at least

1 − 5−dA
(

N

≤ d

)−A

the following bound holds:

sup
u∈KJ

∣

∣

∣

∣

(Πn − Π)(|fu|)
∣

∣

∣

∣

≤ C sup
‖u‖ℓ2≤1,d(u)≤d

‖fu‖ψ1

(

√

Ad log(N/d)

n

∨ Ad log(N/d)

n

)

.

Proof. It follows from statement (ii) of Lemma 7.1 with b = 1 that

KJ ⊂ 6 conv(Md)

where Md is a set of vectors u from the unit ball {u ∈ R
N : ‖u‖ℓ2 ≤ 1} such that

d(u) ≤ d and

card(Md) ≤ 5d
(

N

≤ d

)

.

Now, it is enough to repeat the proof of Lemma 7.4. Bounding of

sup
u∈KJ

∣

∣

∣

∣

(Πn − Π)(|fu|)
∣

∣

∣

∣

is reduced to bounding of

sup
u∈Md

|Rn(fu)|,

card(Md) playing now the role of N. The bound on card(Md) implies that with some

c > 0

log(card(Md)) ≤ cd log
N

d
.

The proof is now complete.

Proof of Theorem 7.3 is a straightforward modification of the proof of Theorem

7.2. Let λ ∈ L ∩ ΛS,2. Instead of (7.7), we use

‖fλ̂ − fλ‖L1(Π) = ‖fλ̂ − fλ‖L1(Πn) + (Π − Πn)(|fλ̂ − fλ|) ≤
sup

‖u‖ℓ2≤1,u∈CJλ

∣

∣

∣
(Πn − Π)(|fu|)

∣

∣

∣
‖λ̂− λ‖ℓ2 . (7.11)

To bound ‖λ̂ − λ‖ℓ2 note that, as in the proof of Theorem 7.2, λ̂ − λ ∈ CJλ and apply

Lemma 7.1 to u = λ̂− λ, J = Jλ:

‖λ̂− λ‖ℓ2 ≤ 2

(

∑

j∈J0∪J1

|λ̂j − λj |2
)1/2

≤ 2β2(d(λ))‖fλ̂ − fλ‖L2(Π). (7.12)
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Use Lemma 7.5 to bound

sup
‖u‖ℓ2≤1,u∈CJλ

∣

∣

∣
(Πn − Π)(|fu|)

∣

∣

∣
≤ C sup

‖u‖ℓ2≤1,d(u)≤d(λ)
‖fu‖ψ1

√

Ad(λ) log(N/d(λ))

n
, (7.13)

which holds with probability at least 1 − 5−d(λ)A
( N
≤d(λ)

)−A
. Then we use

‖λ̂− λ‖ℓ1 ≤ 2
∑

j∈J
|λ̂j − λj| ≤ 2

√

d(λ)

(

∑

j∈J∪J1

|λ̂j − λj|2
)1/2

≤

2β2(d(λ))
√

d(λ)‖fλ̂ − fλ‖L2(Π). (7.14)

It remains to substitute bounds (7.12), (7.13) and (7.14) in (7.11), to use (7.9) and to

solve the resulting inequality with respect to ‖fλ̂−fλ‖L2(Π). It follows that the last norm

is equal to 0. In view of (7.14), this implies that λ̂ = λ.

7.4 The Dantzig Selector

We now turn to the case when the target function f∗ is observed in an additive noise.

Moreover, it will not be assumed that f∗ belongs to the linear span of the dictionary,

this function will be rather approximated in the linear span.

Consider the following regression model with random design

Yj = f∗(Xj) + ξj, j = 1, . . . , n,

where X,X1, . . . ,Xn are i.i.d. random variables in a measurable space (S,A) with dis-

tribution Π and ξ, ξ1, . . . , ξn are i.i.d. random variables with Eξ = 0 independent of

(X1, . . . ,Xn). Candes and Tao [29] developed a method of sparse recovery based on lin-

ear programming suitable in this more general framework. They called it the Dantzig

Selector.

Given ε > 0, let

Λ̂ε :=

{

λ ∈ R
N : max

1≤k≤N

∣

∣

∣

∣

n−1
n
∑

j=1

(fλ(Xj) − Yj)hk(Xj)

∣

∣

∣

∣

≤ ε

}

and define the Dantzig Selector as

λ̂ := λ̂ε ∈ Argminλ∈Λ̂ε
‖λ‖ℓ1 .
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It is easy to reduce the computation of λ̂ε to linear programming. The Dantzig Selector

is closely related to the ℓ1-penalization method (called ”LASSO” in statistical literature,

see Tibshirani [89]) and defined as a solution of the following penalized empirical risk

minimization problem:

n−1
n
∑

j=1

(fλ(Xj) − Yj)
2 + 2ε‖λ‖ℓ1 =: Ln(λ) + 2ε‖λ‖ℓ1 −→ min . (7.15)

The set of constraints of the Dantzig Selector can be written as

Λ̂ε =
{

λ :
∥

∥

∥
∇Ln(λ)

∥

∥

∥

ℓ∞
≤ ε
}

and the condition λ ∈ Λ̂ε is necessary for λ to be a solution of (7.15).

Candes and Tao studied in [29] the performance of the Dantzig Selector in the case

of fixed design regression (nonrandom points X1, . . . ,Xn) under the assumption that

the design matrix A =
(

hj(Xi)
)

i=1,n;j=1,N
satisfies the uniform uncertainty principle

(UUP). They stated that UUP holds with a high probability for some random design

matrices such as ”Gaussian ensemble” (the matrix with i.i.d. standard normal entries)

and ”Bernoulli or Rademacher ensemble” (the matrix with i.i.d. entries taking values

+1 and −1 with probability 1/2), so, their results imply oracle inequalities for special

L2(Π)-orthonormal dictionaries.

We will prove several ”sparsity oracle inequalities” for the Dantzig selector in spirit

of recent results of Bunea, Tsybakov and Wegkamp [25], van de Geer [46], Koltchinskii

[65] in the case of ℓ1- or ℓp-penalized empirical risk minimization. We follow the paper

of Koltchinskii [66] that relies only on elementary empirical and Rademacher processes

methods (symmetrization and contraction inequalities for Rademacher processes and

Bernstein type exponential bounds), but does not use more advanced techniques, such

as concentration of measure and generic chaining. It is also close to the approach of

Section 7.3 and to recent papers by Rudelson and Vershynin [82] and Mendelson, Pajor

and Tomczak-Jaegermann [78]. As in Section 7.3, the proofs of oracle inequalities in

the random design case given are more direct, they are not based on a reduction to

the fixed design case and checking UUP for random matrices. The results also cover

broader families of design distributions. In particular, the assumption that the dictionary

is L2(Π)-orthonormal is replaced by the assumption that the dictionary satisfies the

restricted isometry condition with respect to Π. In what follows, the values of ε > 0,

A > 0 and C > 0 will be fixed and it will be assumed that A logN
n ≤ 1. We will need the
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following set

Λ := Λε(A) :=

{

λ ∈ R
N :
∣

∣

∣
〈fλ − f∗, hk〉L2(Π)

∣

∣

∣
+

C
(

‖(fλ − f∗)(X)hk(X)‖ψ1 + ‖ξhk(X)‖ψ1

)

√

A logN

n
≤ ε, k = 1, . . . ,N

}

,

consisting of vectors λ (”oracles”) such that fλ provides a good approximation of f∗. In

fact, λ ∈ Λε(A) implies that

max
1≤k≤N

∣

∣

∣
〈fλ − f∗, hk〉L2(Π)

∣

∣

∣
≤ ε. (7.16)

This means that fλ−f∗ is “almost orthogonal” to the linear span of the dictionary. Thus,

fλ is close to the projection of f∗ on the linear span. Condition (7.16) is necessary for λ

to be a minimal point of

λ 7→ ‖fλ − f∗‖2
L2(Π) + 2ε‖λ‖ℓ1 ,

and minimizing the last function is a ”population version” of LASSO problem (7.15)

(λ ∈ Λ̂ε is a necessary condition for (7.15)). Of course, the condition

ε ≥ max
1≤k≤N

‖ξhk(X)‖ψ1

√

A logN

n

is necessary for Λε(A) 6= ∅. It will be contained in the proof of Theorem 7.4 below that

λ ∈ Λε(A) implies λ ∈ Λ̂ε with a high probability.

The next theorems 7.4 and 7.5 show that if there exists a sufficiently sparse vector

λ in the set Λ̂ε of constraints of the Dantzig selector, then, with a high probability, the

Dantzig selector belongs to a small ball around λ in such norms as ‖ · ‖ℓ1 , ‖ · ‖ℓ2 . At the

same time, the function fλ̂ belongs to a small ball around fλ with respect to such norms

as ‖ · ‖L1(Π) or ‖ · ‖L2(Π). The radius of this ball is determined by the degree of sparsity

of λ and by the properties of the dictionary characterized by such quantities as β or β2

(see Section 7.2 for the definitions of these quantities and their connection to restricted

isometry condition). Essentially, the results show that the Dantzig selector is adaptive

to unknown degree of sparsity of the problem, provided that the dictionary is not too

far from being orthonormal in L2(Π).

Recall the definition of the set of ”sparse” vectors ΛS in the previous section. Let

Λ̃ = Λ̃ε(A) := Λε(A) ∩ ΛS .
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Theorem 7.4 There exists a constant C in the definitions of Λε(A),ΛS such that for

all A ≥ 1 with probability at least 1−N−A the following bounds hold for all λ ∈ Λ̂ε ∩ΛS

‖fλ̂ − fλ‖L1(Π) ≤ 16β(Jλ)ε

and

‖λ̂− λ‖ℓ1 ≤ 32β2(Jλ)ε.

This implies that

‖fλ̂ − f∗‖L1(Π) ≤ inf
λ∈Λ̃ε(A)

[

‖fλ − f∗‖L1(Π) + 16β(Jλ)ε

]

and, if in addition f∗ = fλ∗ , λ
∗ ∈ R

N , then also

‖λ̂− λ∗‖ℓ1 ≤ inf
λ∈Λ̃ε(A)

[

‖λ− λ∗‖ℓ1 + 32β2(Jλ)ε

]

.

We use the following lemma based on Bernstein’s inequality (see, e.g., Lemma 2.2.11

in van der Vaart and Wellner [95]).

Lemma 7.6 Let η(k), η
(k)
1 , . . . , η

(k)
n be i.i.d. random variables with Eη(k) = 0 and ‖η(k)‖ψ1 <

+∞, k = 1, . . . , N. There exists a numerical constant C > 0 such that for all A ≥ 1 with

probability at least 1 −N−A for all k = 1, . . . ,N

∣

∣

∣

∣

n−1
n
∑

j=1

η
(k)
j

∣

∣

∣

∣

≤ C‖η(k)‖ψ1

(

√

A logN

n

∨ A logN

n

)

.

Proof of Theorem 7.4. For λ ∈ Λ̂ε∩ΛS, we will upper bound the norms ‖λ̂−λ‖ℓ1 ,
‖fλ̂−fλ‖L1(Π) in terms of each other and solve the resulting inequalities, which will yield

the first two bounds of the theorem. As in the proof of Proposition 7.2 and theorems

7.2, 7.3, λ ∈ Λ̂ε and the definition of λ̂ imply that λ̂− λ ∈ CJλ and

‖λ̂− λ‖ℓ1 ≤ 2β(Jλ)‖fλ̂ − fλ‖L1(Π). (7.17)

It remains to upper bound ‖fλ̂ − fλ‖L1(Π) in terms of ‖λ̂− λ‖ℓ1 . To this end, note that

‖fλ̂ − fλ‖L1(Π) = ‖fλ̂ − fλ‖L1(Πn) + (Π − Πn)(|fλ̂ − fλ|) ≤
‖fλ̂ − fλ‖L1(Πn) + sup

‖u‖ℓ1≤1

∣

∣

∣
(Πn − Π)(|fu|)

∣

∣

∣
‖λ̂− λ‖ℓ1 . (7.18)
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The first term in the right hand side can be bounded as follows

‖fλ̂ − fλ‖2
L1(Πn) ≤ ‖fλ̂ − fλ‖2

L2(Πn) = 〈fλ̂ − fλ, fλ̂ − fλ〉L2(Πn) =

N
∑

k=1

(λ̂k − λk)〈fλ̂ − fλ, hk〉L2(Πn) ≤ ‖λ̂− λ‖ℓ1 max
1≤k≤N

∣

∣

∣
〈fλ̂ − fλ, hk〉L2(Πn)

∣

∣

∣
.

Both λ̂ ∈ Λ̂ and λ ∈ Λ̂, implying that

max
1≤k≤N

∣

∣

∣
〈fλ̂ − fλ, hk〉L2(Πn)

∣

∣

∣
≤

max
1≤k≤N

∣

∣

∣

∣

n−1
n
∑

j=1

(fλ(Xj) − Yj)hk(Xj)

∣

∣

∣

∣

+ max
1≤k≤N

∣

∣

∣

∣

n−1
n
∑

j=1

(fλ̂(Xj) − Yj)hk(Xj)

∣

∣

∣

∣

≤ 2ε.

Therefore,

‖fλ̂ − fλ‖L1(Πn) ≤
√

2ε‖λ̂ − λ‖ℓ1 .

Now we bound the second term in the right hand side of (7.18). Under the assumption

A logN ≤ n, Lemma 7.4 implies that with probability at least 1 −N−A

sup
‖u‖ℓ1≤1

∣

∣

∣
(Πn − Π)(|fu|)

∣

∣

∣
≤ C max

1≤k≤N
‖hk‖ψ1

√

A logN

n
.

Hence, we conclude from (7.18) that

‖fλ̂ − fλ‖L1(Π) ≤
√

2ε‖λ̂− λ‖ℓ1 + C max
1≤k≤N

‖hk‖ψ1

√

A logN

n
‖λ̂− λ‖ℓ1 . (7.19)

Combining this with (7.17) yields

‖fλ̂−fλ‖L1(Π) ≤
√

4εβ(Jλ)‖fλ̂ − fλ‖L1(Π)+2C max
1≤k≤N

‖hk‖ψ1

√

A logN

n
β(Jλ)‖fλ̂−fλ‖L1(Π).

By the definition of ΛS ,

2C max
1≤k≤N

‖hk‖ψ1

√

A logN

n
β(Jλ) ≤ 1/2,

so, we end up with

‖fλ̂ − fλ‖L1(Π) ≤ 2
√

4εβ(Jλ)‖fλ̂ − fλ‖L1(Π),

which implies the first bound of the theorem. The second bound holds because of (7.17).

125



Observe that for all λ ∈ Λ,

∣

∣

∣

∣

n−1
n
∑

j=1

(fλ(Xj) − Yj)hk(Xj)

∣

∣

∣

∣

≤
∣

∣

∣
〈fλ − f∗, hk〉L2(Π)

∣

∣

∣
+

∣

∣

∣

∣

n−1
n
∑

j=1

[

(fλ(Xj) − f∗(Xj))hk(Xj) − E(fλ(X) − f∗(X))hk(X)
]

∣

∣

∣

∣

+

∣

∣

∣

∣

n−1
n
∑

j=1

ξjhk(Xj)

∣

∣

∣

∣

.

Lemma 7.6 can be used to bound the second and the third terms: with probability at

least 1 − 2N−A

max
1≤k≤N

∣

∣

∣

∣

n−1
n
∑

j=1

(fλ(Xj) − Yj)hk(Xj)

∣

∣

∣

∣

≤ max
1≤k≤N

[

∣

∣

∣
〈fλ − f∗, hk〉L2(Π)

∣

∣

∣
+

C
(

‖(fλ − f∗)(X)hk(X)‖ψ1 + ‖ξhk(X)‖ψ1

)

√

A logN

n

]

≤ ε.

This proves that for all λ ∈ Λ, with probability at least 1 − 2N−A, we also have λ ∈ Λ̂.

For each of the remaining bounds, let λ̄ be the vector for which the infimum in the

right hand side of the bound is attained. With probability at least 1−2N−A, λ̄ ∈ Λ̂ε∩ΛS .

Hence, it is enough to use the first two bounds of the theorem and the triangle inequality

to finish the proof.

We will give another result about the Dantzig selector in which the properties of

the dictionary are characterized by the quantity β2 instead of β. Recall the definition of

the set of ”sparse” vectors ΛS,2 from the previous section and define

Λ̃2 = Λ̃2
ε(A) := Λε(A) ∩ ΛS,2.

Theorem 7.5 Suppose condition (7.9) holds. There exists a constant C in the defini-

tions of Λε(A),ΛS,2 such that for all A ≥ 1 with probability at least

1 − 5−d̄A
(

N

≤ d̄

)−A

the following bounds hold for all λ ∈ Λ̂ε ∩ ΛS,2

‖fλ̂ − fλ‖L2(Π) ≤ 16B2β2(d(λ))
√

d(λ)ε

and

‖λ̂− λ‖ℓ2 ≤ 32B2β2
2(d(λ))

√

d(λ)ε.
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Also, with probability at least 1 −N−A,

‖fλ̂ − f∗‖L2(Π) ≤ inf
λ∈Λ̃2

ε(A)

[

‖fλ − f∗‖L2(Π) + 16B2β2(d(λ))
√

d(λ)ε

]

and, if f∗ = fλ∗ , λ
∗ ∈ R

N , then

‖λ̂− λ∗‖ℓ2 ≤ inf
λ∈Λ̃2

ε(A)

[

‖λ− λ∗‖ℓ2 + 32B2β2
2(d(λ))

√

d(λ)ε

]

.

Proof. We follow the proof of Theorem 7.4. For λ ∈ Λ̂ε ∩ΛS,2, we use the following

bound instead of (7.18):

‖fλ̂ − fλ‖L1(Π) = ‖fλ̂ − fλ‖L1(Πn) + (Π − Πn)(|fλ̂ − fλ|) ≤
‖fλ̂ − fλ‖L1(Πn) + sup

‖u‖ℓ2≤1,u∈CJλ

∣

∣

∣
(Πn − Π)(|fu|)

∣

∣

∣
‖λ̂− λ‖ℓ2 . (7.20)

Again, we have λ̂− λ ∈ CJλ , and, using Lemma 7.1, we get for u = λ̂− λ and J = Jλ:

‖λ̂− λ‖ℓ2 ≤ 2

(

∑

j∈J0∪J1

|λ̂j − λj |2
)1/2

≤ 2β2(d(λ))‖fλ̂ − fλ‖L2(Π). (7.21)

Lemma 7.5 now yields

sup
‖u‖ℓ2≤1,u∈CJλ

∣

∣

∣
(Πn − Π)(|fu|)

∣

∣

∣
≤ C sup

‖u‖ℓ2≤1,d(u)≤d(λ)
‖fu‖ψ1

√

Ad(λ) log(N/d(λ))

n
, (7.22)

which holds with probability at least

1 − 5−d(λ)A

(

N

≤ d(λ)

)−A
.

As in the proof of Theorem 7.4, we bound the first term in the right hand side of

(7.20):

‖fλ̂ − fλ‖L1(Πn) ≤
√

2ε‖λ̂ − λ‖ℓ1 . (7.23)

In addition,

‖λ̂− λ‖ℓ1 ≤ 2
∑

j∈J
|λ̂j − λj| ≤ 2

√

d(λ)

(

∑

j∈J∪J1

|λ̂j − λj|2
)1/2

≤

2β2(d(λ))
√

d(λ)‖fλ̂ − fλ‖L2(Π). (7.24)
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Substitute bounds (7.21), (7.22), (7.23) and (7.24) into (7.20), use (7.9) and solve the

resulting inequality with respect to ‖fλ̂ − fλ‖L2(Π). This gives the first bound of the

theorem.

The second bound follows from (7.21) and the remaining two bounds are proved

exactly as in Theorem 7.4.

In the fixed design case, the following result holds. Its proof is a simplified version

of the proofs of theorems 7.4, 7.5.

Theorem 7.6 Suppose X1, . . . ,Xn are nonrandom design points in S and let Πn be the

empirical measure based on X1, . . . ,Xn. Suppose also f∗ = fλ∗ , λ
∗ ∈ R

N . There exists a

constant C > 0 such that for all A ≥ 1 and for all

ε ≥ C‖ξ‖ψ2 max
1≤k≤N

‖hk‖L2(Πn)

√

A logN

n
,

with probability at least 1 −N−A the following bounds hold:

‖fλ̂ − fλ∗‖L2(Πn) ≤ 4β2(Jλ∗ ,Πn)
√

d(λ∗)ε,

‖λ̂− λ∗‖ℓ1 ≤ 8β2
2(Jλ∗ ,Πn)d(λ

∗)ε

and

‖λ̂− λ∗‖ℓ2 ≤ 8β2
2(d(λ∗),Πn)

√

d(λ∗)ε.

Proof As in the proof of Theorem 7.4,

‖fλ̂ − fλ∗‖L2(Πn) ≤
√

2ε‖λ̂− λ∗‖ℓ1 (7.25)

and

‖λ̂− λ∗‖ℓ1 ≤ 2β2(Jλ∗ ,Πn)
√

d(λ∗)‖fλ̂ − fλ∗‖L2(Πn). (7.26)

These bounds hold provided that λ∗ ∈ Λ̂ε, or

max
1≤k≤N

∣

∣

∣

∣

n−1
n
∑

j=1

ξjhk(Xj)

∣

∣

∣

∣

≤ ε.

If ‖ξ‖ψ2 < +∞ and

ε ≥ C‖ξ‖ψ2 max
1≤k≤N

‖hk‖L2(Πn)

√

A logN

n
,
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then usual bounds for random variables in Orlicz spaces imply that λ∗ ∈ Λ̂ε with prob-

ability at least 1 −N−A.

Combining (7.25) and (7.26) shows that with probability at least 1 −N−A

‖fλ̂ − fλ∗‖L2(Πn) ≤ 4β2(Jλ∗ ,Πn)
√

d(λ∗)ε

and

‖λ̂− λ∗‖ℓ1 ≤ 8β2
2(Jλ∗ ,Πn)d(λ

∗)ε.

Using Lemma 7.1 and arguing as in the proof of Theorem 7.5, we also get

‖λ̂− λ∗‖ℓ2 ≤ 8β2
2(d(λ∗),Πn)

√

d(λ∗)ε.

Bounding β2(J,Πn) in terms of restricted isometry constants (see Lemma 7.2), es-

sentially, allows one to recover Theorem 1 of Candes and Tao [29] that was the first result

about the Dantzig selector in the fixed design case. Instead of doing this, we turn again

to the case of random design regression and conclude this section with the derivation of

the results of Candes and Tao [29] in the random design case.

To simplify the matter, we assume that the dictionary is orthonormal and that the

following conditions hold with a numerical constant B > 0 :

1

B
‖λ‖ℓ2 ≤

∥

∥

∥

N
∑

j=1

λjhj

∥

∥

∥

L1(Π)
≤ B‖λ‖ℓ2

and

1

B
‖λ‖ℓ2 ≤

∥

∥

∥

N
∑

j=1

λjhj

∥

∥

∥

Lψ2
(Π)

≤ B‖λ‖ℓ2 , λ ∈ R
N .

This is the case, for instance, for Gaussian and Rademacher dictionaries. We also assume

that the noise {ξj} is a sequence of i.i.d. normal random variables with mean 0 and

variance σ2. Finally, assume that f∗ = fλ∗ , λ
∗ ∈ R

N .

Under the last assumption, λ∗ ∈ Λε(A) provided that

ε ≥ C max
1≤k≤N

‖ξhk(X)‖ψ1

√

A logN

n
. (7.27)

Moreover, for a normal random variable ξ with mean 0 and variance σ2, ‖ξ‖ψ2 = c1σ

for a numerical constant c1 > 0. In addition, by the assumptions on the dictionary, the

129



norms ‖hk‖ψ2 , k = 1, . . . , N are uniformly bounded by a numerical constant. Therefore,

for a numerical constant c2 > 0,

‖ξhk(X)‖ψ1 ≤ ‖ξ‖ψ2‖hk(X)‖ψ2 ≤ c2σ, k = 1, . . . ,N,

and the condition on ε (7.27) reduces to the following:

ε ≥ Cσ

√

A logN

n
(7.28)

with a proper numerical constant C > 0.

The conditions on the dictionary also imply that β2(d) = 1 for all d and that the set

ΛS,2 includes all the vectors λ ∈ R
N such that, for a proper choice of numerical constant

C > 0, C

√

Ad(λ) logN
n ≤ 1/4. Hence, if λ∗ satisfies the condition

C

√

Ad(λ∗) logN

n
≤ 1/4, (7.29)

then λ∗ ∈ Λ̃ε(A).

We now can derive the following corollary from the last bound of Theorem 7.5 (using

λ∗ as an oracle).

Corollary 7.1 Under the above assumptions on the dictionary and on the noise and

also the assumptions (7.28) and (7.29), the following bound holds with probability at

least 1 −N−A :

‖λ̂− λ∗‖ℓ2 ≤ D
√

d(λ∗)ε,

where D > 0 is a numerical constant.

A version of another oracle inequality of Candes and Tao [29] also easily follows

from Theorem 7.5.

Corollary 7.2 Under the assumptions of Corollary 7.1, the following bound holds with

probability at least 1 −N−A and with some numerical constant D > 0 :

‖λ̂− λ∗‖2
ℓ2 ≤ D

N
∑

j=1

(|λ∗j |2 ∧ ε2) = D inf
J⊂{1,...,N}

[

∑

j 6∈J
|λ∗j |2 + d(J)ε2

]

.
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Proof. It is enough to choose λ̄∗ as follows:

λ̄∗j = λ∗jI(|λ∗j | ≥ ε/3), j = 1, . . . ,N.

Then
∣

∣

∣
〈fλ̄∗ − fλ∗, hk〉L2(Π)

∣

∣

∣
= |λ∗k| ≤ ε/3

for all k ∈ Jλ∗ such that |λ∗k| ≤ ε/3. Otherwise,

∣

∣

∣
〈fλ̄∗ − fλ∗ , hk〉L2(Π)

∣

∣

∣
= |λ∗k| = 0.

In addition, the assumption (7.28) on ε implies that, for some numerical constant C ′,

C ′‖ξhk(X)‖ψ1

√

A logN

n
≤ ε/3, k = 1, . . . ,N.

We also have that with some numerical constant c > 0

‖(fλ̄∗ − fλ∗)(X)hk(X)‖ψ1 ≤ ‖(fλ̄∗ − fλ∗)(X)‖ψ2‖hk(X)‖ψ2

≤ c

(

∑

j:|λ∗j |<ε/3
|λ∗j |2

)1/2

≤ c(ε/3)
√

d(λ∗).

Therefore,

C ′‖(fλ̄∗ − fλ∗)(X)hk(X)‖ψ1

√

A logN

n
≤ ε/3

as soon as cC ′
√

Ad(λ∗) logN
n ≤ 1. The last condition follows from (7.29) with a properly

chosen constant. Thus, λ̄∗ ∈ Λ̄ε(A) (again, with a proper choice of constants in the

definition of this set). By Theorem 7.5, with probability at least 1 −N−A

‖λ̂− λ∗‖ℓ2 ≤
(

∑

j:|λ∗j |<ε/3
|λ∗j |2

)1/2

+D
√

card(j : |λ∗j | ≥ ε/3)ε,

which yields that, for some constant D,

‖λ̂− λ∗‖2
ℓ2 ≤ D

N
∑

j=1

(|λ∗j |2 ∧ ε2).
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8 Convex Penalization in Sparse Recovery: ℓ1-Penalization

8.1 General Aspects of Convex Penalization

In this and in the next section we study an approach to sparse recovery based on penalized

empirical risk minimization of the following form

λ̂ε := argminλ∈D

[

Pn(ℓ • fλ) + ε

N
∑

j=1

ψ(λj)

]

. (8.1)

We use the notations of Section 1.6. As before, it is assumed that

fλ :=

N
∑

j=1

λjhj , λ ∈ R
N ,

where

H := {h1, . . . , hN}

is a given finite dictionary of measurable functions from S into [−1, 1]. The cardinality

of the dictionary is usually very large (often, larger than the sample size n). We will

assume in what follows that N ≥ (log n)γ for some γ > 0 (this is needed only to avoid

additional terms of the order log logn
n in several inequalities).

We will also assume that ψ is a convex even function and ε ≥ 0 is a regularization

parameter, and that D ⊂ R
N is a convex set.

The excess risk of f is defined as

E(f) := P (ℓ • f) − inf
g:S 7→R

P (ℓ • g) = P (ℓ • f) − P (ℓ • f∗),

where the infimum is taken over all measurable functions and it is assumed, for simplicity,

that it is attained at f∗ ∈ L2(Π) (moreover, it will be assumed in what follows that f∗
is uniformly bounded by a constant M).

Definition 8.1 It will be said that ℓ : T × R 7→ R+ is a loss function of quadratic

type iff the following assumptions are satisfied:

(i) for all y ∈ T, ℓ(y, ·) is convex;

(ii) for all y ∈ T, ℓ(y, ·) is twice differentiable, ℓ′′u is a uniformly bounded function in

T × R and

sup
y∈T

ℓ(y; 0) < +∞, sup
y∈T

|ℓ′u(y; 0)| < +∞.
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Moreover, denote

τ(R) :=
1

2
inf
y∈T

inf
|u|≤R

ℓ′′u(y, u). (8.2)

Then

(iii) τ(M ∨ 1) > 0.

Recall that M is a constant such that ‖f∗‖∞ ≤M). Without loss of generality, it will be

also assumed that τ(R) ≤ 1, R > 0 (otherwise, it can be replaced by a lower bound).

For losses of quadratic type, the following property is obvious:

τ(‖f‖∞ ∨M)‖f − f∗‖2
L2(Π) ≤ E(f) ≤ C‖f − f∗‖2

L2(Π),

where C is a constant depending only on ℓ.

There are many important examples of loss functions of quadratic type, most no-

tably, the quadratic loss ℓ(y, u) := (y − u)2 in the case when T ⊂ R is a bounded set.

In this case, τ = 1. In regression problems with a bounded response variable, one can

also consider more general loss functions of the form ℓ(y, u) := φ(y − u), where φ is an

even nonnegative convex twice continuously differentiable function with φ′′ uniformly

bounded in R, φ(0) = 0 and φ′′(u) > 0, u ∈ R. In binary classification setting (i.e.,

when T = {−1, 1}), one can choose the loss ℓ(y, u) = φ(yu) with φ being a nonnegative

decreasing convex twice continuously differentiable function such that φ′′ is uniformly

bounded in R and φ′′(u) > 0, u ∈ R. The loss function φ(u) = log2(1+e−u) (often called

the logit loss) is a typical example.

Note that the condition that the second derivative ℓ′′u is uniformly bounded in T ×R

can be replaced by its uniform boundedness in T × [−M ∨ 1,M ∨ 1]. The constants in

the theorems below will then depend on the sup-norm of the second derivative (and, as

a consequence, on M); otherwise, the results will be the same. This allows one to cover

several other choices of the loss function, such as the exponential loss ℓ(y, u) := e−yu in

binary classification.

Clearly, the conditions that the loss ℓ, the penalty function ψ and the domain D

are convex make the optimization problem (8.1) convex and, hence, computationally

tractable (at least, in principle).

In the recent literature, there has been considerable attention to the problem of

sparse recovery using LASSO type penalties, which is a special case of problem (8.1). In

this case, D = R
N , so this is a problem of sparse recovery in the linear span l.s.(H) of

the dictionary, and ψ(u) = u, which means penalization with ℓ1-norm. It is also usually
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assumed that ℓ(y, u) = (y − u)2 (the case of regression with quadratic loss). In this

setting, it has been shown that sparse recovery is possible not always, but only under

some geometric assumptions on the dictionary. They are often expressed in terms of the

Gram matrix of the dictionary, which in the case of random design models is the matrix

H :=

(

〈hi, hj〉L2(Π)

)

i,j=1,N

,

and they take form of various conditions on the entries of this matrix (”coherence coeffi-

cients”), or on its submatrices (in spirit of ”uniform uncertainty principle” or ”restricted

isometry” conditions, see Section 7.2). The essence of these assumptions is to try to keep

the dictionary not too far from being orthonormal in L2(Π) which, in some sense, is an

ideal case for sparse recovery (see, e.g., Donoho [35, 36, 37, 39], Candes and Tao [29],

Rudelson and Vershynin [82], Mendelson, Pajor and Tomczak-Jaegermann [78], Bunea,

Tsybakov and Wegkamp [25], van de Geer [46], Koltchinskii [64, 65, 66], Bickel, Ritov

and Tsybakov [14] among many other papers that study both the random design and

the fixed design problems).

We will study several special cases of problem (8.1). In the case D = R
N , the most

common choice of ψ is ψ(u) = |u| which leads to ℓ1- or LASSO-penalty. The same penalty

can be used in some other cases, for instance, when D = Uℓ1 (the unit ball of ℓ1). This

leads to a problem of sparse recovery in the symmetric convex hull

convs(H) :=

{

fλ : λ ∈ Uℓ1

}

,

which can be viewed as a version of convex aggregation problem. More generally, one can

consider the case of D = Uℓp (the unit ball in ℓp) with p ≥ 1 and with ψ(u) = |u|p (i.e.,

the penalty becomes ‖λ‖pℓp). It was shown in Koltchinskii [65] that sparse recovery is

still possible if p is close enough to 1 (say, of the order 1+1/ logN). Another interesting

example is

D = Λ :=

{

λ ∈ R
N : λj ≥ 0,

N
∑

j=1

λj = 1

}

,

so, D is the simplex of all probability distributions on {1, . . . ,N}. This corresponds to

the sparse recovery problem in the convex hull of the dictionary

conv(H) :=

{

fλ : λ ∈ Λ

}

.
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In this case, it is natural to study the penalty

−H(λ) =

N
∑

j=1

λj log λj.

H(λ) is the entropy of probability distribution λ; this corresponds to the choice ψ(u) =

u log u. Such a problem was studied in Koltchinskii [67].

We will follow the approach of [65, 67]. This approach is based on the analysis of

necessary conditions of extremum in problem (8.1). For simplicity, consider the case of

D = R
N . In this case, for λ̂ε to be a solution of (8.1), it is necessary that 0 ∈ ∂Ln,ε(λ̂

ε),

where

Ln,ε(λ) := Pn(ℓ • fλ) + ε
N
∑

j=1

ψ(λj)

and ∂ denotes the subdifferential of convex functions. If ψ is smooth, this leads to the

equations

Pn(ℓ
′ • fλ̂ε)hj + εψ′(λ̂εj) = 0, j = 1, . . . ,N. (8.3)

Define

Lε(λ) := P (ℓ • fλ) + ε

N
∑

j=1

ψ(λj)

and

∇Lε(λ) :=

(

P (ℓ′ • fλ)hj + εψ′(λj)

)

j=1,...,N

.

The vector ∇Lε(λ) is the gradient and the subgradient of the convex function Lε(λ) at

point λ. It follows from (8.3) that

Pn(ℓ
′ • fλ̂ε)(fλ̂ε − fλ) + ε

N
∑

j=1

ψ′(λ̂εj)(λ̂
ε
j − λj) = 0

and we also have

P (ℓ′ • fλ)(fλ̂ε − fλ) + ε
N
∑

j=1

ψ′(λj)(λ̂
ε
j − λj) =

〈

∇Lε(λ), λ̂ε − λ
〉

ℓ2
.

Subtracting the second equation from the first yields the relationship

P (ℓ′ • fλ̂ε − ℓ′ • fλ)(fλ̂ε − fλ) + ε

N
∑

j=1

(ψ′(λ̂εj) − ψ′(λj))(λ̂
ε
j − λj) =
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〈

∇Lε(λ), λ − λ̂ε
〉

ℓ2
+ (P − Pn)(ℓ

′ • fλ̂ε)(fλ̂ε − fλ).

If ℓ is a loss of quadratic type, then

P (ℓ′ • fλ̂ε − ℓ′ • fλ)(fλ̂ε − fλ) ≥ c‖fλ̂ε − fλ‖2
L2(Π)

with some constant c > 0 depending only on ℓ and the following inequality holds

c‖fλ̂ε − fλ‖2
L2(Π) + ε

N
∑

j=1

(ψ′(λ̂εj) − ψ′(λj))(λ̂
ε
j − λj) ≤

〈

∇Lε(λ), λ − λ̂ε
〉

ℓ2
+ (P − Pn)(ℓ

′ • fλ̂ε)(fλ̂ε − fλ). (8.4)

Inequality (8.4) provides some information about “sparsity” of λ̂ε in terms of “sparsity”

of the oracle λ and it also provides tight bounds on ‖fλ̂ε − fλ‖L2(Π). Indeed, if J = Jλ =

supp(λ) and ψ′(0) = 0 (which is the case, for instance, when ψ(u) = up for some p > 1),

then
N
∑

j=1

(ψ′(λ̂εj) − ψ′(λj))(λ̂
ε
j − λj) ≥

∑

j 6∈J
ψ′(λ̂εj)λ̂

ε
j =

∑

j 6∈J
|ψ′(λ̂εj)||λ̂εj |

(note that all the terms in the sum in the left hand side are nonnegative since ψ is convex

and ψ′ is nondecreasing). Thus, the following bound holds

c‖fλ̂ε − fλ‖2
L2(Π) + ε

∑

j 6∈J
|ψ′(λ̂εj)||λ̂εj | ≤

〈

∇Lε(λ), λ − λ̂ε
〉

ℓ2
+ (P − Pn)(ℓ

′ • fλ̂ε)(fλ̂ε − fλ), (8.5)

in which the left hand side measures the L2-distance of fλ̂ε from the oracle fλ as well

as the degree of sparsity of the empirical solution λ̂ε. This inequality will be applied to

sparse vectors λ (“oracles”) such that the term
〈

∇Lε(λ), λ− λ̂ε
〉

ℓ2
is either negative, or

positive, but small enough. This is the case, for instance, when the subgradient ∇Lε(λ)

is small in certain sense. In such cases, the left hand side is controlled by the empirical

process

(P − Pn)(ℓ
′ • fλ̂ε)(fλ̂ε − fλ).

It happens that its size in turn depends on the L2-distance ‖fλ̂ε − fλ‖L2(Π) and the

measure of “sparsity”
∑

j 6∈J |ψ′(λ̂εj)||λ̂εj |, the quantities involved in the left hand side.

Writing these bounds precisely yields an inequality on these two quantities which can

be solved to derive the explicit bounds. In the case of strictly convex smooth penalty

function ψ (such as ψ(u) = up, p > 1 or ψ(u) = u log u), the same approach can be

136



used also in the case of “approximately sparse” oracles λ (since the function ψ′ is strictly

increasing and smooth). A natural choice of oracle is

λε := argminλ∈D

[

P (ℓ • fλ) + ε

N
∑

j=1

ψ(λj)

]

, (8.6)

for which in the smooth case

〈

∇Lε(λε), λε − λ̂ε
〉

ℓ2
≤ 0

(if D = R
N , we even have ∇Lε(λε) = 0). For this oracle, the bounds on ‖fλ̂ε − fλε‖L2(Π)

and on the degree of sparsity of λ̂ε do not depend on the properties of the dictionary, but

only on ”approximate sparsity” of λε. As a consequence, it is also possible to bound the

”random error” |E(fλ̂ε) − E(fλε)| in terms of ”approximate sparsity” of λε. It happens

that bounding the ”approximation error” E(fλε) is a different problem with not entirely

the same geometric parameters responsible for the size of the error. The approximation

error is much more sensitive to the properties of the dictionary, in particular, its Gram

matrix H which depends on unknown design distribution Π.

The case of ℓ1-penalty is more complicated since the penalty is neither strictly

convex, nor smooth. In this case there is no special advantage in using λε as an oracle

since this vector is not necessarily sparse. It is rather approximately sparse, but bound

(8.4) does not provide a way to control the random L2-error ‖fλ̂ε − fλε‖L2(Π) in terms

of approximate sparsity of the oracle (note that in this case ψ′(λ) = sign(λ)). A possible

way to tackle the problem is to study a set of oracles λ for which

〈

∇Lε(λ), λ − λ̂ε
〉

ℓ2

is negative, or, if positive, then small enough. This can be expressed in terms of cer-

tain quantities that describe a way in which the subgradient ∇Lε(λ) is aligned with

the dictionary. Such quantities also emerge rather naturally in attempts to control the

approximation error E(fλε) in the case of smooth strictly convex penalties.

8.2 ℓ1-Penalization: Bounding the ℓ1-Norm of a Solution

In the case when the set D is not bounded, there are some additional technical difficulties

involved in the analysis of the problem related to the need to provide bounds on proper

norms of the empirical solution λ̂ε. The bounds of this type have been developed, for
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instance, in [65], Theorem 1. Here is a version of this result in the case of ℓ1-penalization

(LASSO) over the whole space R
N .

Denote

λ̂ε := argminλ∈RN

[

Pn(ℓ • fλ) + ε‖λ‖ℓ1
]

(8.7)

and

λε := argminλ∈RN

[

P (ℓ • fλ) + ε‖λ‖ℓ1
]

. (8.8)

Theorem 8.1 There exists a constant D > 0 depending only on ℓ such that for all A ≥ 1

and for all ε and λ ∈ R
N satisfying the assumption

ε ≥ D

(

‖ℓ′ • fλ‖L2(P )

√

A logN

n

∨

‖ℓ′ • fλ‖∞
A logN

n

)

∨

4 max
1≤k≤N

|P (ℓ′ • fλ)hk|, (8.9)

the following inequality holds:

P

{

‖λ̂ε‖ℓ1 ≥ 3‖λ‖ℓ1
}

≤ N−A.

In particular, if

ε ≥ D

(

‖ℓ′ • fλε/4‖L2(P )

√

A logN

n

∨

‖ℓ′ • fλε/4‖∞
A logN

n

)

,

then

P

{

‖λ̂ε‖ℓ1 ≥ 3‖λε/4‖ℓ1
}

≤ N−A.

Proof. The definition of λ̂ε implies that

Pn(ℓ • fλ̂ε) + ε‖λ̂ε‖ℓ1 ≤ Pn(ℓ • fλ) + ε‖λ‖ℓ1 , λ ∈ R
N .

By convexity of the function λ 7→ Pn(ℓ • fλ),

Pn(ℓ • fλ̂ε) − Pn(ℓ • fλ) ≥ Pn(ℓ
′ • fλ)(fλ̂ε − fλ).

As a result,

ε‖λ̂ε‖ℓ1 ≤ ε‖λ‖ℓ1 + Pn(ℓ
′ • fλ)(fλ − fλ̂ε) ≤

ε‖λ‖ℓ1 + max
1≤k≤N

|Pn(ℓ′ • fλ)hk| ‖λ̂ε − λ‖ℓ1 .

This yields the bound
(

ε− max
1≤k≤N

|Pn(ℓ′ • fλ)hk|
)

‖λ̂ε‖ℓ1 ≤
(

ε+ max
1≤k≤N

|Pn(ℓ′ • fλ)hk|
)

‖λ‖ℓ1 .
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If

ε > max
1≤k≤N

|Pn(ℓ′ • fλ)hk|,

then

‖λ̂ε‖ℓ1 ≤ ε+ max1≤k≤N |Pn(ℓ′ • fλ)hk|
ε− max1≤k≤N |Pn(ℓ′ • fλ)hk|

‖λ‖ℓ1 . (8.10)

Note that, under the assumption (8.9),

max
1≤k≤N

|Pn(ℓ′ • fλ)hk| ≤ max
1≤k≤N

|P (ℓ′ • fλ)hk|+

max
1≤k≤N

|(Pn − P )(ℓ′ • fλ)hk| ≤ ε/4 + max
1≤k≤N

|(Pn − P )(ℓ′ • fλ)hk|.

The second term is bounded using Bernstein’s inequality which yields that with proba-

bility at least 1 −N−A and with some choice of constant C

max
1≤k≤N

|(Pn − P )(ℓ′ • fλ)hk| ≤ C‖ℓ′ • fλ‖L2(P )

√

A logN

n

∨

‖ℓ′ • fλ‖∞
A logN

n
.

If the assumption (8.9) on λ is satisfied with D = 4C, then with probability at least

1 −N−A

max
1≤k≤N

|(Pn − P )(ℓ′ • fλ)hk| ≤ ε/4

and it follows that with the same probability

‖λ̂ε‖ℓ1 ≤ ε+ ε/2

ε− ε/2
‖λ‖ℓ1 = 3‖λ‖ℓ1 .

If we use in (8.10) λ := λε/4, then, by the necessary conditions of extremum in the

definition of λε/4,

|P (ℓ′ • fλε/4)hk| ≤
ε

4
, k = 1, . . . ,N,

which implies the second statement.

It is also possible to show that ‖λcε‖ℓ1 with a large enough constant c provides a

lower bound on ‖λ̂ε‖ℓ1 (with a high probability). Namely, the following result holds.

Theorem 8.2 There exist constants D > 0, c > 0 depending only on ℓ such that, for all

A ≥ 1 and for all ε satisfying the assumption

ε ≥ D(‖λε/4‖ℓ1 + 1)

√

A logN

n
, (8.11)

the following inequality holds:

P

{

‖λ̂ε‖ℓ1 ≤ 1

3
‖λcε‖ℓ1

}

≤ N−A.
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Proof. By the definition of λcε,

P (ℓ • fλcε) + cε‖λcε‖ℓ1 ≤ P (ℓ • fλ̂ε) + cε‖λ̂ε‖ℓ1 .

Arguing exactly as at the beginning of the proof of Theorem 8.1, one can show that

‖λcε‖ℓ1 ≤ cε+ max1≤k≤N |P (ℓ′ • fλ̂ε)hk|
cε− max1≤k≤N |P (ℓ′ • fλ̂ε)hk|

‖λ̂ε‖ℓ1 (8.12)

as soon as

cε > max
1≤k≤N

|P (ℓ′ • fλ̂ε)hk|.

We have

max
1≤k≤N

|P (ℓ′ • fλ̂ε)hk| ≤ max
1≤k≤N

|Pn(ℓ′ • fλ̂ε)hk| + max
1≤k≤N

|(Pn − P )(ℓ′ • fλ̂ε)hk|

and, using necessary conditions of extremum in problem (8.7), the first term can be

bounded as follows:

max
1≤k≤N

|Pn(ℓ′ • fλ̂ε)hk| ≤ ε.

To bound the second term, we use the following lemma.

Lemma 8.1 There exist constants C,L depending only on ℓ such that for all A ≥ 1 and

for all R > 0 with probability at least 1 −N−A

max
1≤k≤N

sup
‖λ‖ℓ1≤R

|(Pn − P )(ℓ′ • fλ)hk| ≤ C(1 + LR)

√

A logN

n
.

We use it for R = ‖λε/4‖ℓ1 and combine it with the second bound of Theorem 8.1.

This bound can be used since under the assumptions on the loss function ℓ

‖ℓ′ • fλ‖L2(P ) ≤ ‖ℓ′ • fλ‖∞ ≤ C1(1 + ‖λ‖ℓ1)

with some constant C1, which allows one to write down the condition on ε as (8.11).

With an adjustment of the constants, it follows that with probability at least 1 −N−A

max
1≤k≤N

|(Pn − P )(ℓ′ • fλ̂ε)hk| ≤ C(1 + L‖λε/4‖ℓ1)
√

A logN

n
.

One can choose the value of c in such a way that the condition

cε ≥ 2C(1 + L‖λε/4‖ℓ1)
√

A logN

n
+ 2ε
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would follow from the assumption on ε (8.11). With such a choice of c, we have that

with probability at least 1 −N−A

cε > 2 max
1≤k≤N

|P (ℓ′ • fλ̂ε)hk|.

It is enough to recall (8.12) to get that with probability at least 1 −N−A

‖λcε‖ℓ1 ≤ 3‖λ̂ε‖ℓ1 .

Proof of Lemma 8.1. Note that, under the assumptions on ℓ, we have, for all

k = 1, . . . , N and all λ satisfying ‖λ‖ℓ1 ≤ R,

‖(ℓ′ • fλ)hk‖∞ ≤ C(1 + LR)

with constants C,L > 0 depending only on ℓ. We apply the bounded difference inequality

to the supremum of the empirical process indexed by the class

G :=
{ (ℓ′ • fλ)hk
C(1 + LR)

: ‖λ‖ℓ1 ≤ R
}

.

This yields the following bound that holds with probability at least 1 − e−t :

sup
‖λ‖ℓ1≤R

|(Pn − P )(ℓ′ • fλ)hk| ≤ E sup
‖λ‖ℓ1≤R

|(Pn − P )(ℓ′ • fλ)hk| +
C(1 + LR)

√
t√

n
.

To bound the expectation

E sup
‖λ‖ℓ1≤R

|(Pn − P )(ℓ′ • fλ)hk|,

we use the symmetrization inequality followed by the contraction inequality:

E sup
‖λ‖ℓ1≤R

|(Pn − P )(ℓ′ • fλ)hk| ≤ 2E sup
‖λ‖ℓ1≤R

|Rn((ℓ′ • fλ)hk)| ≤ CE sup
‖λ‖ℓ1≤R

|Rn(fλ)|.

Using Theorem 3.4, we get

E sup
‖λ‖ℓ1≤R

|Rn(fλ)| ≤ RE max
1≤i≤N

|Rn(hi)| ≤ CR

√

logN

n
.

It follows from all of the above bounds that with probability at least 1 − e−t and with

some constants C,L depending only on ℓ,

sup
‖λ‖ℓ1≤R

|(Pn − P )(ℓ • fλ)hk| ≤ C(1 + LR)

√

logN + t

n
.
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We use this bound for all k = 1, . . . ,N with t = A logN + logN and then apply the

union bound. With a proper adjustment of the constants, this completes the proof.

The next result provides a simple upper bound on the excess risk of the empirical

solution fλ̂ε .

Theorem 8.3 There exist constants C,D > 0 depending only on ℓ such that for all

A ≥ 1 and for all ε and λ ∈ R
N satisfying the assumption

ε ≥ D(‖λ‖ℓ1 + 1)

√

A logN

n

∨

4 max
1≤k≤N

|P (ℓ′ • fλ)hk|, (8.13)

the following bound holds with probability at least 1 −N−A :

E(fλ̂ε) ≤ E(fλ) + C‖λ‖ℓ1ε.

Proof. We will use the following lemma that can be proved quite similarly to Lemma

8.1.

Lemma 8.2 There exist constants C,L depending only on ℓ such that for all A ≥ 1 and

for all R > 0 with probability at least 1 −N−A

sup
‖λ‖ℓ1≤R

|(Pn − P )(ℓ • fλ − ℓ • f0)| ≤ C(1 + LR)R

√

A logN

n
.

Using the definition of λ̂ε, we get

P (ℓ • fλ̂ε) − P (ℓ • fλ) ≤ Pn(ℓ • fλ̂ε) + ε‖λ̂ε‖ℓ1 − Pn(ℓ • fλ) − ε‖λ‖ℓ1+

+ε‖λ‖ℓ1 + 2 sup
‖u‖ℓ1≤‖λ‖ℓ1∨‖λ̂ε‖ℓ1

|(Pn − P )(ℓ • fu − ℓ • f0)| ≤

ε‖λ‖ℓ1 + 2 sup
‖u‖ℓ1≤‖λ‖ℓ1∨‖λ̂ε‖ℓ1

|(Pn − P )(ℓ • fu − ℓ • f0)|.

Note that, under the assumptions on the loss function ℓ, (8.13) implies (8.9) (with a

proper choice of constants in these assumptions). Then, it follows from Theorem 8.1

that with probability at least 1 −N−A,

‖λ̂ε‖ℓ1 ≤ 3‖λ‖ℓ1 .
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This can be combined with the bound of Lemma 8.2 to get that with a proper choice of

C and with probability at least 1 −N−A

2 sup
‖u‖ℓ1≤‖λ‖ℓ1∨‖λ̂ε‖ℓ1

|(Pn − P )(ℓ • fu − ℓ • f0)| ≤ C(1 + L‖λ‖ℓ1)‖λ‖ℓ1
√

A logN

n
.

As a result, we easily get the bound

P (ℓ • fλ̂ε) − P (ℓ • fλ) ≤ C‖λ‖ℓ1ε

that holds with probability at least 1 − N−A with a proper choice of constant C > 0.

This implies the statement of the theorem.

In the following sections, we concentrate on the case when the set D is bounded.

However, our method of proof combined with such results as Theorem 8.1 can be easily

used to handle the case of unbounded domain (see [65] for some results in this direction).

8.3 ℓ1-Penalization and Oracle Inequalities

The following penalized empirical risk minimization problem will be studied:

λ̂ε := argminλ∈Uℓ1

[

Pn(ℓ • fλ) + ε‖λ‖ℓ1
]

, (8.14)

where ε ≥ 0 is a regularization parameter and

‖λ‖ℓ1 :=

N
∑

j=1

|λj|.

Denote

Lε(λ) := P (ℓ • fλ) + ε‖λ‖ℓ1 .

For λ ∈ R
N , let ∇Lε(λ) ∈ ∂Lε(λ) be the vector with components

P (ℓ′ • fλ)hj + εsj(λ), j = 1, . . . ,N

where sj = sj(λ) = sign(λj) (assume that sign(0) = 0). The vector ∇Lε(λ) is a subgra-

dient of the function Lε at point λ. Note that ∂|u| = +1 for u > 0, ∂|u| = −1 for u, 0

and ∂|u| = [−1, 1] for u = 0.

In the case of ℓ1-penalization, we are going to compare the empirical solution λ̂ε

with an oracle λ ∈ Uℓ1 that will be characterized by its ”sparsity” as well as by a measure

of ”alignment” of the subgradient ∇Lε(λ) ∈ ∂Lε(λ).
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We will use the following versions of alignment for vectors ∇Lε(λ) and s(λ) :

α+(ε, λ) := a
(∞)
H

(

Uℓ1 , λ,∇Lε(λ)
)

∨ 0

and

α(λ) := a
(2)
H

(

Uℓ1 , λ, s(λ)
)

∨ 0, α+(λ) := a
(∞)
H

(

Uℓ1 , λ, s(λ)
)

∨ 0.

Clearly,

α(λ) ≤ α+(λ)

and it is easy to check that

α+(ε, λ) ≤ ‖ℓ′ • fλ‖L2(P ) + εα+(λ).

The last term in the right hand side is the alignment coefficient of vector s(λ) that

depends on the sparsity of λ as well as on geometry of the dictionary.

Theorem 8.4 There exist constants D > 0 and C > 0 depending only on ℓ such that,

for all λ̄ ∈ Uℓ1 , for J = supp(λ̄) and d := d(J) = card(J), for all A ≥ 1 and for all

ε ≥ D

√

d+A logN

n
, (8.15)

the following bound holds with probability at least 1 −N−A :

‖fλ̂ε − fλ̄‖2
L2(Π) + ε

∑

j 6∈J
|λ̂εj | ≤ C

[

d+A logN

n

∨

α2
+(ε, λ̄)

]

.

Moreover, with the same probability

‖fλ̂ε − fλ̄‖2
L2(Π) + ε

∑

j 6∈J
|λ̂εj | ≤ C

[

d+A logN

n

∨

∥

∥

∥
ℓ′ • fλ̄

∥

∥

∥

2

L2(P )

∨

α2(λ̄)ε2
]

.

No condition on the dictionary is needed for the bounds of the theorem to be true

(except uniform boundedness of functions hj). On the other hand, the assumption on ε,

ε ≥ D

√

d+A logN

n
,

essentially, relates the regularization parameter to the unknown sparsity of the problem.

To get around this difficulty, we will prove another version of the theorem in which it is

only assumed that

ε ≥ D

√

A logN

n
,

144



but, on the other hand, there is some dependence on the geometry of the dictionary. At

the same time, the error in this result is controlled not by d = card(J), but rather by the

dimension of a linear space L providing a reasonably good approximation of the functions

{hj : j ∈ J} (such a dimension could be much smaller than card(J)). To formulate this

result, some further notation will be needed.

Given a linear subspace L ⊂ L2(Π), denote

U(L) := sup
f∈L,‖f‖L2(Π)=1

‖f‖∞ + 1.

If IL : (L, ‖ · ‖L2(Π)) 7→ (L, ‖ · ‖∞) is the identity operator, then U(L) − 1 is the norm of

the operator IL. We will use this quantity only for finite dimensional subspaces. In such

case, for any L2(Π)-orthonormal basis φ1, . . . , φd of L,

U(L) ≤ max
1≤j≤d

‖φj‖∞
√
d+ 1,

where d := dim(L). In what follows, let PL be the orthogonal projector onto L and L⊥

be the orthogonal complement of L. We are interested in subspaces L such that

(a) dim(L) and U(L) are not very large;

(b) functions {hj : j ∈ J} in the ”relevant” part of the dictionary can be approxi-

mated well by the functions from L so that the quantity

max
j∈J

‖PL⊥hj‖L2(Π)

is small.

Theorem 8.5 Suppose that

ε ≥ D

√

A logN

n
(8.16)

with a large enough constant D > 0 depending only on ℓ. For all λ̄ ∈ Uℓ1 , for J = supp(λ̄),

for all subspaces L of L2(Π) with d := dim(L) and for all A ≥ 1, the following bound

holds with probability at least 1−N−A and with a constant C > 0 depending only on ℓ :

‖fλ̂ε − fλ̄‖2
L2(Π) + ε

∑

j 6∈J
|λ̂εj | ≤ (8.17)

C

[

d+A logN

n

∨

max
j∈J

‖PL⊥hj‖L2(Π)

√

A logN

n

∨ U(L) logN

n

∨

α2
+(ε; λ̄)

]

.
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Moreover, with the same probability

‖fλ̂ε − fλ̄‖2
L2(Π) + ε

∑

j 6∈J
|λ̂εj | ≤ (8.18)

C

[

d+A logN

n

∨

max
j∈J

‖PL⊥hj‖L2(Π)

√

A logN

n

∨ U(L) logN

n

∨

∥

∥

∥
ℓ′ • fλ̄

∥

∥

∥

2

L2(P )

∨

α2(λ̄)ε2
]

.

The next two corollaries provide bounds on ‖λ̂ε − λ̄‖ℓ1 in terms of the quantity

β2,2(λ̄,Π); they follow in a straightforward way from the proofs of the theorems.

Corollary 8.1 Under the assumptions and notations of Theorem 8.4, the following

bound holds with probability at least 1 −N−A :

‖fλ̂ε − fλ̄‖2
L2(Π) + ε‖λ̂ε − λ̄‖ℓ1 ≤ C

[

d+A logN

n

∨

∥

∥

∥
ℓ′ • fλ̄

∥

∥

∥

2

L2(P )

∨

β2
2,2(λ̄,Π)ε2d

]

.

Corollary 8.2 Under the assumptions and notations of Theorem 8.5, the following

bound holds with probability at least 1 −N−A :

‖fλ̂ε − fλ̄‖2
L2(Π) + ε‖λ̂ε − λ̄‖ℓ1 ≤ (8.19)

C

[

d+A logN

n

∨

max
j∈J

‖PL⊥hj‖L2(Π)

√

A logN

n

∨ U(L) logN

n

∨

∥

∥

∥
ℓ′ • fλ̄

∥

∥

∥

2

L2(P )

∨

β2
2,2(λ̄,Π)ε2d

]

.

Proof of Theorem 8.5. According to the definition of λ̂ε,

λ̂ε ∈ Argmin‖λ‖ℓ1≤1

[

Pn(ℓ • fλ) + ε‖λ‖ℓ1
]

. (8.20)

Subgradients of convex function

λ 7→ Pn(ℓ • fλ) + ε‖λ‖ℓ1

are the vectors in R
N with components

Pn(ℓ
′ • fλ)hj + εσj, j = 1, . . . ,N
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where σj ∈ [−1, 1], σj = sign(λj) if λj 6= 0. It follows from necessary conditions of

extremum in problem (8.20) that there exist numbers ŝj ∈ [−1, 1] such that ŝj = sign(λ̂εj)

when λ̂εj 6= 0 and, for all u ∈ TUℓ1 (λ̂
ε),

N
∑

j=1

(

Pn(ℓ
′ • fλ̂ε)hjuj + εŝjuj

)

≥ 0.

Since λ̄ ∈ Uℓ1, λ̄− λ̂ε ∈ TUℓ1 (λ̂
ε), and the next inequality immediately follows:

Pn(ℓ
′ • fλ̂ε)(fλ̂ε − fλ̄) + ε

N
∑

j=1

ŝj(λ̂j − λ̄j) ≤ 0. (8.21)

Recalling the definition

sj = sj(λ̄) = sign(λ̄j)

and

∇Lε(λ̄) =

(

P (ℓ′ • fλ̄)hj + εsj

)

j=1,...,N

,

we also have

P (ℓ′ • fλ̄)(fλ̂ε − fλ̄) + ε

N
∑

j=1

sj(λ̂j − λ̄j) =
〈

∇Lε(λ̄), λ̂ε − λ̄
〉

ℓ2
. (8.22)

Subtracting (8.22) from (8.21) yields by a simple algebra

Pn(ℓ
′ • fλ̂ε − ℓ′ • fλ̄)(fλ̂ε − fλ̄) + ε

N
∑

j=1

(ŝj − sj)(λ̂j − λ̄j) ≤
〈

∇Lε(λ̄), λ̄− λ̂ε
〉

ℓ2
+ (P − Pn)(ℓ

′ • fλ̄)(fλ̂ε − fλ̄) (8.23)

and

P (ℓ′ • fλ̂ε − ℓ′ • fλ̄)(fλ̂ε − fλ̄) + ε

N
∑

j=1

(ŝj − sj)(λ̂j − λ̄j) ≤
〈

∇Lε(λ̄), λ̄− λ̂ε
〉

ℓ2
+ (P − Pn)(ℓ

′ • fλ̂ε)(fλ̂ε − fλ̄). (8.24)

We use inequalities (8.23) and (8.24) to control the ”approximate sparsity” of em-

pirical solution λ̂ε in terms of ”sparsity” of the ”oracle” λ̄ and to obtain bounds on

‖fλ̂ε − fλ̄‖L2(Π). As always, we use notations J := Jλ̄ := supp(λ̄). By the conditions on

the loss (namely, the boundedness of its second derivative away from 0), we have

P (ℓ′ • fλ̂ε − ℓ′ • fλ̄)(fλ̂ε − fλ̄) ≥ c‖fλ̂ε − fλ‖2
L2(Π),
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where c = τ(1) (note that ‖fλ̄‖∞ ≤ 1 and ‖fλ̂ε‖∞ ≤ 1 ). Observe also that, for all j,

(ŝj − sj)(λ̂j − λ̄j) ≥ 0

(by monotonicity of subdifferential of convex function u 7→ |u|). For j 6∈ J, we have

λ̄j = 0 and sj = 0. Therefore, (8.24) implies that

c‖fλ̂ε − fλ̄‖2
L2(Π) + ε

∑

j 6∈J
|λ̂j | ≤

〈

∇Lε(λ̄), λ̄− λ̂ε
〉

ℓ2
+ (P − Pn)(ℓ

′ • fλ̂ε)(fλ̂ε − fλ̄). (8.25)

Consider first the case when
〈

∇Lε(λ̄), λ̄− λ̂ε
〉

ℓ2
≥ (P − Pn)(ℓ

′ • fλ̂ε)(fλ̂ε − fλ̄). (8.26)

In this case, (8.25) implies that

c‖fλ̂ε − fλ̄‖2
L2(Π) + ε

∑

j 6∈J
|λ̂j | ≤ 2

〈

∇Lε(λ̄), λ̄− λ̂ε
〉

ℓ2
, (8.27)

which, in view of definition of α+(ε, λ̄), yields

c‖fλ̂ε − fλ̄‖2
L2(Π) + ε

∑

j 6∈J
|λ̂j | ≤ 2α+(ε, λ̄)‖fλ̂ε − fλ̄‖L2(Π). (8.28)

Therefore,

‖fλ̂ε − fλ̄‖L2(Π) ≤
2

c
α+(ε, λ̄),

and, as a consequence, with some constant C > 0 depending only on ℓ

‖fλ̂ε − fλ̄‖2
L2(Π) + ε

∑

j 6∈J
|λ̂j | ≤ Cα2

+(ε, λ̄). (8.29)

If
〈

∇Lε(λ̄), λ̄− λ̂ε
〉

ℓ2
< (P − Pn)(ℓ

′ • fλ̂ε)(fλ̂ε − fλ̄), (8.30)

then (8.25) implies that

c‖fλ̂ε − fλ̄‖2
L2(Π) + ε

∑

j 6∈J
|λ̂j | ≤ 2(P − Pn)(ℓ

′ • fλ̂ε)(fλ̂ε − fλ̄). (8.31)

Denote

Λ(δ;∆) :=
{

λ ∈ Uℓ1 : ‖fλ − fλ̄‖L2(Π) ≤ δ,
∑

j 6∈J
|λj | ≤ ∆

}

,

αn(δ;∆) := sup
{

|(Pn − P )((ℓ′ • fλ)(fλ − fλ̄))| : λ ∈ Λ(δ;∆)
}

.

To bound αn(δ,∆), the following lemma will be used.
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Lemma 8.3 Under the assumptions of Theorem 8.5, there exists constant C that de-

pends only on ℓ such that with probability at least 1 −N−A, for all

n−1/2 ≤ δ ≤ 1 and n−1/2 ≤ ∆ ≤ 1 (8.32)

the following bounds hold:

αn(δ;∆) ≤ βn(δ;∆) := C

[

δ

√

d+A logN

n

∨

∆

√

A logN

n

∨

max
j∈J

‖PL⊥hj‖L2(Π)

√

A logN

n

∨ U(L) logN

n

∨ A logN

n

]

. (8.33)

Take

δ = ‖fλ̂ε − fλε‖L2(Π) and ∆ =
∑

j 6∈J
λ̂εj . (8.34)

If δ ≥ n−1/2,∆ ≥ n−1/2, then Lemma 8.3 and (8.31) imply the following bound:

cδ2 + ε∆ ≤ 2βn(δ,∆). (8.35)

If δ < n−1/2 or ∆ < n−1/2, they should be replaced in the expression for βn(δ,∆) by

n−1/2. With this change, bound (8.35) still holds and the proof goes through with some

simplifications. Thus, we will consider only the main case when δ ≥ n−1/2,∆ ≥ n−1/2.

In this case, the inequality (8.35) has to be solved to complete the proof. It follows from

this inequality (with a proper change of constant C) that

ε∆ ≤ C∆

√

A logN

n
+ C

[

δ

√

d+A logN

n

∨

max
j∈J

‖PL⊥hj‖L2(Π)

√

A logN

n

∨ U(L) logN

n

∨ A logN

n

]

.

As soon as D in condition (8.16) is such that D ≥ 2C, we can write

ε∆ ≤ C

[

δ

√

d+A logN

n

∨

max
j∈J

‖PL⊥hj‖L2(Π)

√

A logN

n

∨ U(L) logN

n

∨ A logN

n

]

(again the value of constant C might have changed). We solve the inequality with respect

to ∆ separately for each term in the maximum and take the maximum of the solutions,

which yields the following bound

∆ ≤ C

[

δ

ε

√

d+A logN

n

∨

max
j∈J

‖PL⊥hj‖L2(Π)
1

ε

√

A logN

n

∨ U(L) logN

nε

∨ A logN

nε

]

.
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Under the assumption (8.16) on ε (assuming also that D ≥ 1), it is easy to derive that

∆ ≤ ∆(δ) := C

[

δ

ε

√

d+A logN

n

∨

max
j∈J

‖PL⊥hj‖L2(Π)

∨ U(L) logN

nε

∨

√

A logN

n

]

.

Note that βn(δ,∆) is nondecreasing in ∆ and replace ∆ in (8.35) by ∆(δ) to get the

following bound:

δ2 ≤ C

[

δ

√

d+A logN

n

∨ δ

ε

√

d+A logN

n

√

A logN

n

∨ U(L) logN

nε

√

A logN

n

∨

max
j∈J

‖PL⊥hj‖L2(Π)

√

A logN

n

∨ U(L) logN

n

∨ A logN

n

]

.

We skip the second term in the maximum and modify the third term because 1
ε

√

A logN
n ≤

1. As a result, we get

δ2 ≤ C

[

δ

√

d+A logN

n

∨

max
j∈J

‖PL⊥hj‖L2(Π)

√

A logN

n

∨ U(L) logN

n

∨ A logN

n

]

.

Solving the last inequality with respect to δ yields the following bound on δ2 :

δ2 ≤ C

[

d+A logN

n

∨

max
j∈J

‖PL⊥hj‖L2(Π)

√

A logN

n

∨ U(L) logN

n

]

. (8.36)

We substitute the last bound back into the expression for ∆(δ) to get:

∆ ≤ C

[

d+A logN

nε

∨

max
j∈J

‖PL⊥hj‖1/2
L2(Π)

1

ε

(

A logN

n

)1/4
√

d+A logN

n

∨

√

U(L) logN

nε

√

d+A logN

nε

∨

max
j∈J

‖PL⊥hj‖L2(Π)

∨

√

A logN

n

]

.

Using the inequality ab ≤ (a2 + b2)/2 and the condition 1
ε

√

A logN
n ≤ 1, we can simplify

the resulting bound as follows

∆ ≤ C

[

d+A logN

nε

∨

max
j∈J

‖PL⊥hj‖L2(Π)

∨ U(L) logN

nε

∨

√

A logN

n

]

(8.37)

with a proper change of C that depends only on ℓ. Finally, bounds (8.36) and (8.37) can

be substituted in the expression for βn(δ,∆). By a simple computation and in view of

Lemma 8.3, we get the following bound on αn(δ,∆) that holds for δ,∆ defined by (8.34)

with probability at least 1 −N−A :

αn(δ,∆) ≤ C

[

d+A logN

n
+ max

j∈J
‖PL⊥hj‖L2(Π)

√

A logN

n
+
U(L) logN

n

]

.
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Combining this with (8.31) yields

c‖fλ̂ε − fλ̄‖2
L2(Π) + ε

∑

j 6∈J
|λ̂εj | ≤

C

[

d+A logN

n
+ max

j∈J
‖PL⊥hj‖L2(Π)

√

A logN

n
+
U(L) logN

n

]

, (8.38)

which holds under condition (8.30).

Together with bound (8.29), that is true under the alternative condition (8.26), this

gives (8.17).

To prove bound (8.18), we again use (8.25), but this time we control the term
〈

∇Lε(λ̄), λ̄− λ̂ε
〉

somewhat differently. First note that
〈

∇Lε(λ̄), λ̄− λ̂ε
〉

ℓ2
=
〈

ℓ′ • fλ̄, fλ̄ − fλ̂ε

〉

L2(P )
+ ε〈s(λ̄), λ̄− λ̂ε〉ℓ2 .

This implies that
〈

∇Lε(λ̄), λ̄− λ̂ε
〉

ℓ2
≤
∥

∥

∥
ℓ′ • fλ̄

∥

∥

∥

L2(P )
‖fλ̄ − fλ̂ε‖L2(Π) + ε

∑

j∈J
sj(λ̄j − λ̂εj) ≤

1

2c

∥

∥

∥
ℓ′ • fλ̄

∥

∥

∥

2

L2(P )
+
c

2
‖fλ̄ − fλ̂ε‖2

L2(Π) + ε
∑

j∈J
sj(λ̄j − λ̂εj).

Combining this with bound (8.25) yields the following inequality

c

2
‖fλ̄ − fλ̂ε‖2

L2(Π) + ε
∑

j 6∈J
|λ̂εj | ≤

ε
∑

j∈J
sj(λ̄j − λ̂εj) +

1

2c

∥

∥

∥
ℓ′ • fλ̄

∥

∥

∥

2

L2(P )
+ (P − Pn)(ℓ

′ • fλ̂ε)(fλ̂ε − fλ̄).

If

ε
∑

j∈J
sj(λ̄j − λ̂εj) ≥

1

2c

∥

∥

∥
ℓ′ • fλ̄

∥

∥

∥

2

L2(P )
+ (P − Pn)(ℓ

′ • fλ̂ε)(fλ̂ε − fλ̄),

then
c

2
‖fλ̄ − fλ̂ε‖2

L2(Π) + ε
∑

j 6∈J
|λ̂εj | ≤ 2ε

∑

j∈J
sj(λ̄j − λ̂εj),

which implies
∑

j 6∈J
|λ̂εj | ≤ 2

∑

j∈J
|λ̄j − λ̂εj |,

151



or λ̂ε − λ̄ ∈ C2,λ̄. The definition of α(λ̄) then implies the bound

c

2
‖fλ̄ − fλ̂ε‖2

L2(Π) + ε
∑

j 6∈J
|λ̂εj | ≤ 2εα(λ̄)‖fλ̄ − fλ̂ε‖L2(Π).

Solving this inequality with respect to ‖fλ̄ − fλ̂ε‖L2(Π) proves (8.18) in this case.

If

ε
∑

j∈J
sj(λ̄j − λ̂εj) ≤

1

2c

∥

∥

∥
ℓ′ • fλ̄

∥

∥

∥

2

L2(P )
+ (P − Pn)(ℓ

′ • fλ̂ε)(fλ̂ε − fλ̄)

and
1

2c

∥

∥

∥
ℓ′ • fλ̄

∥

∥

∥

2

L2(P )
≥ (P − Pn)(ℓ

′ • fλ̂ε)(fλ̂ε − fλ̄),

we get
c

2
‖fλ̄ − fλ̂ε‖2

L2(Π) + ε
∑

j 6∈J
|λ̂εj | ≤

2

c

∥

∥

∥
ℓ′ • fλ̄

∥

∥

∥

2

L2(P )
,

which also implies (8.18) with a proper choice of constant C in the bound.

Thus, it remains to consider the case when

ε
∑

j∈J
sj(λ̄j − λ̂εj) ≤

1

2c

∥

∥

∥
ℓ′ • fλ̄

∥

∥

∥

2

L2(P )
+ (P − Pn)(ℓ

′ • fλ̂ε)(fλ̂ε − fλ̄)

and
1

2c

∥

∥

∥
ℓ′ • fλ̄

∥

∥

∥

2

L2(P )
≤ (P − Pn)(ℓ

′ • fλ̂ε)(fλ̂ε − fλ̄),

which implies

c

2
‖fλ̄ − fλ̂ε‖2

L2(Π) + ε
∑

j 6∈J
|λ̂εj | ≤ 4(P − Pn)(ℓ

′ • fλ̂ε)(fλ̂ε − fλ̄).

In this case, we repeat the argument based on Lemma 8.3 to show that with probability

at least 1 −N−A
c

2
‖fλ̂ε − fλ̄‖2

L2(Π) + ε
∑

j 6∈J
|λ̂εj | ≤

C

[

d+A logN

n
+ max

j∈J
‖PL⊥hj‖L2(Π)

√

A logN

n
+
U(L) logN

n

]

,

which again implies (8.18).

This completes the proof.

The proof of Theorem 8.4 is quite similar. The following lemma is used instead of

Lemma 8.3.
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Lemma 8.4 Under the assumptions of Theorem 8.4, there exists constant C that de-

pends only on ℓ such that with probability at least 1 −N−A, for all

n−1/2 ≤ δ ≤ 1 and n−1/2 ≤ ∆ ≤ 1

the following bounds hold:

αn(δ;∆) ≤ βn(δ;∆) :=

C

[

δ

√

d+A logN

n

∨

∆

√

d+A logN

n

∨ A logN

n

]

. (8.39)

Proof of Lemma 8.3. First we use Talagrand’s concentration inequality to get

with probability at least 1 − e−t

αn(δ;∆) ≤ 2

[

Eαn(δ;∆) + Cδ

√

t

n
+
Ct

n

]

. (8.40)

Next, symmetrization inequality followed by contraction inequality for Rademacher sums

yield:

Eαn(δ;∆) ≤ 2E sup
{

|Rn((ℓ′ • fλ)(fλ − fλ̄))| : λ ∈ Λ(δ;∆)
}

≤

CE sup
{

|Rn(fλ − fλ̄)| : λ ∈ Λ(δ;∆)
}

(8.41)

with a constant C depending only on ℓ. In contraction inequality part, we write

ℓ′(fλ(·))(fλ(·) − fλ̄(·)) = ℓ′(fλ̄(·) + u)u
∣

∣

∣

u=fλ(·)−fλ̄(·)

and use the fact that the function

[−1, 1] ∋ u 7→ ℓ′(fλ̄(·) + u)u

satisfies the Lipschitz condition with a constant depending only on ℓ.

The following representation is straightforward:

fλ − fλ̄ = PL(fλ − fλ̄) +
∑

j∈J
(λj − λ̄j)PL⊥hj +

∑

j 6∈J
λjPL⊥hj . (8.42)

For all λ ∈ Λ(δ,∆),

‖PL(fλ − fλ̄)‖L2(Π) ≤ ‖fλ − fλ̄‖L2(Π) ≤ δ
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and PL(fλ − fλ̄) ∈ L. Since L is a d-dimensional subspace,

E sup
{

|Rn(PL(fλ − fλ̄))| : λ ∈ Λ(δ;∆)
}

≤ Cδ

√

d

n

(see Proposition 3.2). On the other hand, λ, λ̄ ∈ Uℓ1 , so, we have
∑

j∈J |λj − λ̄j | ≤ 2.

Hence,

E sup
{
∣

∣

∣
Rn

(

∑

j∈J
(λj − λ̄j)PL⊥hj

)
∣

∣

∣
: λ ∈ Λ(δ;∆)

}

≤ 2E max
j∈J

|Rn(PL⊥hj)|.

Note also that

‖PL⊥hj‖∞ ≤ ‖PLhj‖∞ + ‖hj‖∞ ≤ (U(L) − 1)‖PLhj‖L2(Π) + 1

≤ (U(L) − 1)‖hj‖L2(Π) + 1 ≤ U(L),

and Theorem 3.4 yields

E max
j∈J

|Rn(PL⊥hj)| ≤ C

[

max
j∈J

‖PL⊥hj‖L2(Π)

√

logN

n
+ U(L)

logN

n

]

.

Similarly, for all λ ∈ Λ(δ,∆),

∑

j 6∈J
|λj | ≤ ∆

and

E sup
{∣

∣

∣
Rn

(

∑

j 6∈J
λjPL⊥hj

)∣

∣

∣
: λ ∈ Λ(δ;∆)

}

≤ ∆E max
j 6∈J

|Rn(PL⊥hj)|.

Another application of Theorem 3.4, together with the fact that

‖PL⊥hj‖L2(Π) ≤ ‖hj‖L2(Π) ≤ 1,

results in the bound

E max
j 6∈J

|Rn(PL⊥hj)| ≤ C

[

√

logN

n
+ U(L)

logN

n

]

,

Now we use representation (8.42) and bound (8.41). It follows that

Eαn(δ,∆) ≤ C

[

δ

√

d

n

∨

∆

√

logN

n

∨

max
j∈J

‖PL⊥hj‖L2(Π)

√

logN

n

∨

∆U(L)
logN

n

∨

U(L)
logN

n

]

. (8.43)
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The right hand side can be bounded further as follows

Eαn(δ,∆) ≤ C

[

δ

√

d

n

∨

∆

√

logN

n

∨

max
j∈J

‖PL⊥hj‖L2(Π)

√

logN

n

∨ U(L) logN

n

]

.

(8.44)

Substituting this bound into (8.40) shows with probability 1 − e−t

αn(δ,∆) ≤ β̃n(δ,∆, t) := C

[

δ

√

d

n

∨

∆

√

logN

n

∨

max
j∈J

‖PL⊥hj‖L2(Π)

√

logN

n

∨ U(L) logN

n

∨

δ

√

t

n

∨ t

n

]

(8.45)

with a constant C > 0 depending only on ℓ.

It remains to prove that the above bound holds uniformly in δ,∆ satisfying (8.32)

with a high probability. Let

δj := 2−j and ∆j := 2−j .

We will replace t by t+ 2 log(j + 1) + 2 log(k+ 1). By the union bound, with probability

at least

1−
∑

j,k≥0

exp{−t− 2 log(j+ 1)− 2 log(k+ 1)} = 1−
(

∑

j≥0

(j+ 1)−2
)2

exp{−t} ≥ 1− 4e−t,

for all δ and ∆ satisfying (8.32), and for j, k such that

δ ∈ (δj+1, δj ] and ∆ ∈ (∆k+1,∆k],

the following bound holds:

αn(δ;∆) ≤ β̃n

(

δj ,∆k, t+ 2 log j + 2 log k
)

.

Using the fact that

2 log j ≤ 2 log log2

( 1

δj

)

≤ 2 log log2

(2

δ

)

and

2 log k ≤ 2 log log2

( 2

∆

)

,

we get

β̃n

(

δj ,∆k, t+ 2 log j + 2 log k
)

≤

β̃n

(

2δ, 2∆, t + 2 log log2

(2

δ

)

+ 2 log log2

( 2

∆

))

=: β̄n(δ;∆; t).
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As a result, with probability at least 1 − 4e−t, for all δ and ∆ satisfying (8.32),

αn(δ;∆) ≤ β̄n(δ;∆; t).

Take now t = A logN + log 4 so that 4e−t = N−A. With some constant C that depends

only on ℓ,

β̄n(δ;∆; t) ≤ C

[

δ

√

d

n

∨

δ

√

A logN

n

∨

δ

√

√

√

√

2 log log2

(

2
δ

)

n

∨

δ

√

√

√

√

2 log log2

(

2
∆

)

n

∨

∆

√

logN

n

∨

max
j∈J

‖PL⊥hj‖L2(Π)

√

logN

n

∨ U(L) logN

n

∨

2 log log2

(

2
δ

)

n

∨
2 log log2

(

2
∆

)

n

∨ A logN

n

]

.

For all δ and ∆ satisfying (8.32),

2 log log2

(

2
δ

)

n
≤ C

log log n

n

and
2 log log2

(

2
∆

)

n
≤ C

log log n

n
.

Assumptions on N,n, imply that A logN ≥ γ log log n. Thus, for δ and ∆ satisfying

(8.32),

αn(δ,∆) ≤ β̄n(δ;∆; t) ≤ C

[

δ

√

d

n

∨

δ

√

A logN

n

∨

∆

√

logN

n

∨

max
j∈J

‖PL⊥hj‖L2(Π)

√

logN

n

∨ U(L) logN

n

∨ A logN

n

]

. (8.46)

The last bound holds with probability at least 1 −N−A proving the lemma.

In theorems 8.4 and 8.5, we used a special version of subgradient ∇Lε(λ̄). More

generally, one can consider an arbitrary couple (λ̄,∇Lε(λ̄)) where λ̄ ∈ Uℓ1 and ∇Lε(λ̄) ∈
∂Lε(λ̄). This couple can be viewed as ”an oracle” in our problem. As before,

∇Lε(λ̄) =
(

(P (ℓ′ • fλ̄))hj + εsj

)

j=1,...,N
,
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but now sj = sj(λ̄) are arbitrary numbers from [−1, 1] satisfying the condition

sj = sign(λ̄j), λ̄j 6= 0.

Denote

α(b)(λ) := a
(b)
H

(

Uℓ1 , λ, s(λ)
)

∨ 0

with some b > 0.

Theorem 8.6 There exist constants D > 0 and C > 0 depending only on ℓ with the

following property. Let λ̄ ∈ Uℓ1 and

∇Lε(λ̄) =
(

(P (ℓ′ • fλ̄))hj + εsj

)

j=1,...,N
∈ ∂Lε(λ̄).

Let J ⊂ {1, . . . , N} with d := d(J) = card(J). Suppose that, for some γ ∈ (0, 1),

|sj| ≤ 1 − γ, j 6∈ J.

Then, for all A ≥ 1 and for all

ε ≥ D

√

d+A logN

n
, (8.47)

the following bound holds with probability at least 1 −N−A :

‖fλ̂ε − fλ̄‖2
L2(Π) + εγ

∑

j 6∈J
|λ̂εj | ≤ C

[

d+A logN

n

∨

α2
+(ε, λ̄)

]

.

Moreover, with the same probability,

‖fλ̂ε − fλ̄‖2
L2(Π) + εγ

∑

j 6∈J
|λ̂εj | ≤ C

[

d+A logN

n

∨

∥

∥

∥
ℓ′ • fλ̄

∥

∥

∥

2

L2(P )

∨

(

α(2/γ)(λ̄)
)2
ε2
]

.

Theorem 8.7 Suppose that

ε ≥ D

√

A logN

n
(8.48)

with a large enough constant D > 0 depending only on ℓ. Let λ̄ ∈ Uℓ1 and

∇Lε(λ̄) =
(

(P (ℓ′ • fλ̄))hj + εsj

)

j=1,...,N
∈ ∂Lε(λ̄).

Let J ⊂ {1, . . . , N}. Suppose that, for some γ ∈ (0, 1),

|sj| ≤ 1 − γ, j 6∈ J.
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Then, for all subspaces L of L2(Π) with d := dim(L) and for all A ≥ 1, the following

bound holds with probability at least 1−N−A and with a constant C > 0 depending only

on ℓ :

‖fλ̂ε − fλ̄‖2
L2(Π) + εγ

∑

j 6∈J
|λ̂εj | ≤ (8.49)

C

[

d+A logN

n

∨

max
j∈J

‖PL⊥hj‖L2(Π)

√

A logN

n

∨ U(L) logN

n

∨

α2
+(ε; λ̄)

]

.

Moreover, with the same probability

‖fλ̂ε − fλ̄‖2
L2(Π) + εγ

∑

j 6∈J
|λ̂εj | ≤ (8.50)

C

[

d+A logN

n

∨

max
j∈J

‖PL⊥hj‖L2(Π)

√

A logN

n

∨ U(L) logN

n
∨

∥

∥

∥
ℓ′ • fλ̄

∥

∥

∥

2

L2(P )

∨

(

α(2/γ)(λ̄)
)2
ε2
]

.

For some choices of vector λ̄ and of subgradient ∇Lε(λ̄), the alignment coefficient

might be smaller than for the choice we used in theorems 8.4 and 8.5 resulting in tighter

bounds. An appealing choice would be λ̄ = λε,

λε = argminλ∈Uℓ1

[

P (ℓ • fλ) + ε‖λ‖ℓ1
]

,

since in this case it is possible to take ∇Lε(λε) ∈ ∂Lε(λ
ε) such that

a
(b)
H (Uℓ1 , λ

ε,∇Lε(λε)) ≤ 0

(this follows from the necessary conditions of extremum). Therefore, with this choice,

α+(ε, λε) = 0, implying the following corollaries.

Corollary 8.3 There exist constants D > 0 and C > 0 depending only on ℓ with the

following property. Let

∇Lε(λε) =
(

(P (ℓ′ • fλε))hj + εsj

)

j=1,...,N
∈ ∂Lε(λ

ε)

be such that, for all u ∈ TUℓ1 (λ
ε),

〈∇Lε(λε), u〉ℓ2 ≥ 0.
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Let J ⊂ {1, . . . , N} with d := d(J) = card(J). Suppose that, for some γ ∈ (0, 1),

|sj| ≤ 1 − γ, j 6∈ J.

Then, for all A ≥ 1 and for all

ε ≥ D

√

d+A logN

n
, (8.51)

the following bound holds with probability at least 1 −N−A :

‖fλ̂ε − fλε‖2
L2(Π) + εγ

∑

j 6∈J
|λ̂εj | ≤ C

d+A logN

n
.

Corollary 8.4 Suppose that

ε ≥ D

√

A logN

n
(8.52)

with a large enough constant D > 0 depending only on ℓ. Let

∇Lε(λε) =
(

(P (ℓ′ • fλε))hj + εsj

)

j=1,...,N
∈ ∂Lε(λ

ε)

be such that, for all u ∈ TUℓ1 (λ
ε),

〈∇Lε(λε), u〉ℓ2 ≥ 0.

Let J ⊂ {1, . . . , N}. Suppose that, for some γ ∈ (0, 1),

|sj| ≤ 1 − γ, j 6∈ J.

Then, for all subspaces L of L2(Π) with d := dim(L) and for all A ≥ 1, the following

bound holds with probability at least 1−N−A and with a constant C > 0 depending only

on ℓ :

‖fλ̂ε − fλε‖2
L2(Π) + εγ

∑

j 6∈J
|λ̂εj | ≤ (8.53)

C

[

d+A logN

n

∨

max
j∈J

‖PL⊥hj‖L2(Π)

√

A logN

n

∨ U(L) logN

n

]

.
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9 Strictly Convex Penalization in Sparse Recovery

In this section, we study two examples of problem (8.1) with strictly convex and smooth

penalty function ψ. The first example (that will be discussed in more detail) deals with

sparse recovery in convex hulls with negative entropy penalization, i.e., ψ(u) = u log u.

In the second example, we consider sparse recovery in the ℓp-ball for p > 1, the penalty

being the p-th power of the ℓp-norm, i.e., ψ(u) = up. More details on these problems

are given in [65, 67]. It happens that strict convexity and smoothness of the penalty

give some advantages in the analysis of the problem. In particular, it is possible in

such cases to study the random error |E(fλ̂ε) − E(fλε)| completely separately from the

approximation error E(fλε). If the solution λε of the true penalized problem (8.6) is

approximately sparse, there is a way to control the size of the random error in terms of

its sparsity without any restrictive assumptions on the dictionary. However, the control of

approximation error still requires some assumption on the Gram matrix of the dictionary

that can be expressed, for instance, in terms of alignment coefficients introduced and used

in the previous sections.

9.1 Entropy Penalization and Sparse Recovery in Convex Hulls: Ran-

dom Error Bounds

As before, it will be assumed that ℓ is a loss function of quadratic type (see Definition

8.1).

Denote

Λ := {(λ1, . . . , λN ) : λj ≥ 0, j = 1, . . . ,N,

N
∑

j=1

λj = 1}.

The following penalized empirical risk minimization problem will be studied:

λ̂ε := argminλ∈Λ

[

Pn(ℓ • fλ) − εH(λ)

]

= argminλ∈Λ

[

Pn(ℓ • fλ) + ε
N
∑

j=1

λj log λj

]

, (9.1)

where ε ≥ 0 is a regularization parameter and

H(λ) = −
N
∑

j=1

λj log λj

is the entropy of λ. Since, for all y, ℓ(y, ·) is convex, the empirical risk Pn(ℓ • fλ) is a

convex function of λ. Since also the set Λ is convex and so is the function λ 7→ −H(λ),

the problem (9.1) a convex optimization problem.

160



It is natural to compare this problem with its distribution dependent version

λε := argminλ∈Λ

[

P (ℓ • fλ) − εH(λ)

]

= argminλ∈Λ

[

P (ℓ • fλ) + ε
N
∑

j=1

λj log λj

]

. (9.2)

There has been a considerable amount of work on entropy penalization in informa-

tion theory and statistics, for instance, in problems of aggregation of statistical estimators

using exponential weighting and in PAC-Bayesian methods of learning theory (see, e.g.,

McAllester [75], Catoni [31], Audibert [4], Zhang [99, 100, 101] and references therein).

Dalalyan and Tsybakov [34] studied PAC-Bayesian method with special priors in sparse

recovery problems. However, the minimum of the penalty −H(λ) is attained at the uni-

form distribution λj = N−1, j = 1, . . . ,N. Because of this, at the first glance, −H(λ)

penalizes for ”sparsity” rather than for ”non-sparsity”.

We will show that if λε is ”approximately sparse”, then λ̂ε has a similar property

with a high probability. Moreover, the approximate sparsity of λε will allow us to control

‖fλ̂ε − fλε‖L2(Π) and K(λ̂ε, λε), where

K(λ, ν) := K(λ|ν) +K(ν|λ)

is the symmetrized Kullback-Leibler distance between λ and ν,

K(λ|ν) :=

N
∑

j=1

λj log

(

λj
νj

)

being the Kullback-Leibler divergence between λ, ν.

In particular, it will follow from our results that for any set J ⊂ {1, . . . ,N} with

card(J) = d and such that
∑

j 6∈J
λεj ≤

√

logN

n
,

with a high probability,

‖fλ̂ε − fλε‖2
L2(Π) + εK(λ̂ε;λε) ≤ C

d+ logN

n
.

This easily implies upper bounds on ”the random error” |E(fλ̂ε) − E(fλε)| in terms of

”approximate sparsity” of λε.

Some further geometric parameters (such as ”the alignment coefficient” introduced

in Section 7.2) provide a way to control ”the approximation error” E(fλε). As a result,

if there exists a ”sparse” vector λ ∈ Λ for which the excess risk E(fλ) is small and λ is
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properly ”aligned” with the dictionary, then λε is approximately sparse and its excess risk

E(fλε) is controlled by sparsity of λ and its ”alignment” with the dictionary. Together

with sparsity bounds on the random error this yields oracle inequalities on the excess

risk E(fλ̂ε) showing that this estimation method provides certain degree of adaptation

to the unknown ”sparsity” of the problem.

The first result in this direction is the following theorem that provides the bounds

on approximate sparsity of λ̂ε in terms of approximate sparsity of λε as well as the

bounds on the L2-error of approximation of fλε by fλ̂ε and the Kullback-Leibler error of

approximation of λε by λ̂ε.

Theorem 9.1 There exist constants D > 0 and C > 0 depending only on ℓ such that,

for all J ⊂ {1, . . . , N} with d := d(J) = card(J), for all A ≥ 1 and for all

ε ≥ D

√

d+A logN

n
, (9.3)

the following bounds hold with probability at least 1 −N−A :

∑

j 6∈J
λ̂εj ≤ C

[

∑

j 6∈J
λεj +

√

d+A logN

n

]

,

∑

j 6∈J
λεj ≤ C

[

∑

j 6∈J
λ̂εj +

√

d+A logN

n

]

and

‖fλ̂ε − fλε‖2
L2(Π) + εK(λ̂ε, λε) ≤ C

[

d+A logN

n

∨∑

j 6∈J
λεj

√

d+A logN

n

]

.

Similarly to what was done in Section 8.2, we will also establish another version of

these bounds that hold for smaller values of ε (the quantity U(L) introduced in Section

8.2 will be involved in these bounds).

Theorem 9.2 Suppose that

ε ≥ D

√

A logN

n
(9.4)

with a large enough constant D > 0 depending only on ℓ. For all J ⊂ {1, . . . ,N}, for all

subspaces L of L2(Π) with d := dim(L) and for all A ≥ 1, the following bounds hold with

probability at least 1 −N−A and with a constant C > 0 depending only on ℓ :

∑

j 6∈J
λ̂εj ≤ C

[

∑

j 6∈J
λεj +

d+A logN

nε
+ max

j∈J
‖PL⊥hj‖L2(Π) +

U(L) logN

nε

]

, (9.5)
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∑

j 6∈J
λεj ≤ C

[

∑

j 6∈J
λ̂εj +

d+A logN

nε
+ max

j∈J
‖PL⊥hj‖L2(Π) +

U(L) logN

nε

]

(9.6)

and

‖fλ̂ε − fλε‖2
L2(Π) + εK(λ̂ε, λε) ≤ C

[

d+A logN

n

∨∑

j 6∈J
λεj

√

A logN

n

∨

max
j∈J

‖PL⊥hj‖L2(Π)

√

A logN

n

∨ U(L) logN

n

]

. (9.7)

If, for some J,
∑

j 6∈J
λεj ≤

√

A logN

n

and, for some L with U(L) ≤ d, hj ∈ L, j ∈ J, then the bound (9.7) simplifies and

becomes

‖fλ̂ε − fλε‖2
L2(Π) + εK(λ̂ε, λε) ≤ C

Ad logN

n
.

In particular, it means that the size of the random errors ‖fλ̂ε−fλε‖2
L2(Π) and K(λ̂ε, λε) is

controlled by the dimension d of the linear span L of the ”relevant part” of the dictionary

{hj : j ∈ J}. Note that d can be much smaller than card(J) in the case when the

functions in the dictionary are not linearly independent (so, the lack of ”orthogonality”

of the dictionary might help to reduce the random error).

The proofs of theorems 9.1 and 9.2 are quite similar. We give only the proof of

Theorem 9.2.

Proof of Theorem 9.2. We use the method described in Section 8.1. In the current

case, necessary conditions of minima in minimization problems defining λε and λ̂ε can

be written as follows:

P (ℓ′ • fλε)(fλ̂ε − fλε) + ε

N
∑

j=1

(log λεj + 1)(λ̂εj − λεj) ≥ 0 (9.8)

and

Pn(ℓ
′ • fλ̂ε)(fλ̂ε − fλε) + ε

N
∑

j=1

(log λ̂εj + 1)(λ̂εj − λεj) ≤ 0. (9.9)

The inequality (9.8) follows from the fact that the directional derivative of the penalized

risk function (note that it is smooth and convex)

Λ ∋ λ 7→ P (ℓ • fλ) + ε

N
∑

j=1

λj log λj
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at the point of its minimum λε is nonnegative in the direction of any point of the convex

set Λ, in particular, in the direction of λ̂ε. The same observation in the case of penalized

empirical risk lead to inequality (9.9). Subtract (9.8) from (9.9) and replace P by Pn in

(9.9) to get

P
(

(ℓ′ • fλ̂ε) − (ℓ′ • fλε)
)

(fλ̂ε − fλε) + ε

N
∑

j=1

(

log λ̂εj − log λεj

)

(λ̂εj − λεj)

≤ (P − Pn)(ℓ
′ • fλ̂ε)(fλ̂ε − fλε). (9.10)

It is easy to see that

N
∑

j=1

(

log λ̂εj − log λεj

)

(λ̂εj − λεj) =
N
∑

j=1

(

log
λ̂εj
λεj

)

(λ̂εj − λεj) = K(λ̂ε, λε)

and rewrite bound (9.10) as

P
(

(ℓ′ • fλ̂ε) − (ℓ′ • fλε)
)

(fλ̂ε − fλε) + εK(λ̂ε;λε)

≤ (P − Pn)(ℓ
′ • fλ̂ε)(fλ̂ε − fλε). (9.11)

We use the following simple inequality

K(λ̂ε, λε) =
N
∑

j=1

(

log
λ̂εj
λεj

)

(λ̂εj − λεj) ≥

log 2

2

∑

j:λ̂εj≥2λεj

λ̂εj +
log 2

2

∑

j:λεj≥2λ̂εj

λεj , (9.12)

which implies that for all J ⊂ {1, . . . ,N}
∑

j 6∈J
λ̂εj ≤ 2

∑

j 6∈J
λεj +

2

log 2
K(λ̂ε, λε) (9.13)

and
∑

j 6∈J
λεj ≤ 2

∑

j 6∈J
λ̂εj +

2

log 2
K(λ̂ε, λε). (9.14)

If K(λ̂ε, λε) is small, the last bounds show that ”sparsity patterns” of vectors λ̂ε and λε

are closely related. Then, it follows from (9.11) that

ε
∑

j 6∈J
λ̂εj ≤ 2ε

∑

j 6∈J
λεj +

2

log 2
(P − Pn)(ℓ

′ • fλ̂ε)(fλ̂ε − fλε). (9.15)
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As in the previous section, for the loss functions of quadratic type,

P
(

(ℓ′ • fλ̂ε) − (ℓ′ • fλε)
)

(fλ̂ε − fλε) ≥ c‖fλ̂ε − fλε‖2,

where c = τ(1). Note that ‖fλε‖∞ ≤ 1 and ‖fλ̂ε‖∞ ≤ 1. Bound (9.11) then yields

c‖fλ̂ε − fλε‖2 + εK(λ̂ε, λε) ≤ (P − Pn)(ℓ
′ • fλ̂ε)(fλ̂ε − fλε). (9.16)

Following the methodology of Section 8.1, we have now to control the empirical

process (P − Pn)(ℓ
′ • fλ̂ε)(fλ̂ε − fλε). To this end, let

Λ(δ;∆) :=
{

λ ∈ Λ : ‖fλ − fλε‖L2(Π) ≤ δ,
∑

j 6∈J
λj ≤ ∆

}

and

αn(δ;∆) := sup
{

|(Pn − P )((ℓ′ • fλ)(fλ − fλε))| : λ ∈ Λ(δ;∆)
}

.

The following two lemmas are similar to lemmas 8.4 and 8.3 of the previous section.

Their proof is also similar and we skip it.

Lemma 9.1 Under the assumptions of Theorem 9.1, there exists constant C that de-

pends only on ℓ such that with probability at least 1 −N−A, for all

n−1/2 ≤ δ ≤ 1 and n−1/2 ≤ ∆ ≤ 1

the following bounds hold:

αn(δ;∆) ≤ βn(δ;∆) := C

[

δ

√

d+A logN

n

∨

∆

√

d+A logN

n

∨∑

j 6∈J
λεj

√

d+A logN

n

∨ A logN

n

]

. (9.17)

Lemma 9.2 Under the assumptions of Theorem 9.2, there exists constant C that de-

pends only on ℓ such that with probability at least 1 −N−A, for all

n−1/2 ≤ δ ≤ 1 and n−1/2 ≤ ∆ ≤ 1 (9.18)

the following bounds hold:

αn(δ;∆) ≤ βn(δ;∆) := C

[

δ

√

d+A logN

n

∨

∆

√

A logN

n

∨∑

j 6∈J
λεj

√

A logN

n

∨

max
j∈J

‖PL⊥hj‖L2(Π)

√

A logN

n

∨

U(L) logN

n

∨ A logN

n

]

. (9.19)
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We now proceed exactly as in the proof of Theorem 8.5. Let

δ = ‖fλ̂ε − fλε‖L2(Π) and ∆ =
∑

j 6∈J
λ̂εj , (9.20)

and suppose δ ≥ n−1/2,∆ ≥ n−1/2. Then, by Lemma 9.2 and bounds (9.16), (9.15), the

following bounds hold with probability at least 1 −N−A :

cδ2 ≤ βn(δ,∆) (9.21)

and

ε∆ ≤ 2ε
∑

j 6∈J
λεj +

2

log 2
βn(δ,∆), (9.22)

where βn(δ,∆) is defined in (9.19) (as in the proof of Theorem 8.5, the case δ < n−1/2

or ∆ < n−1/2 is even simpler). Thus, it remains to solve the inequalities (9.21), (9.22) to

complete the proof. First, rewrite (9.22) (with a possible change of constant C) as

ε∆ ≤ C∆

√

A logN

n
+ C

[

ε
∑

j 6∈J
λεj
∨

δ

√

d+A logN

n

∨

∑

j 6∈J
λεj

√

A logN

n

∨

max
j∈J

‖PL⊥hj‖L2(Π)

√

A logN

n

∨ U(L) logN

n

∨ A logN

n

]

.

If the constantD in condition (9.4) satisfiesD ≥ 2C∨1, then the term
∑

j 6∈J λ
ε
j

√

A logN
n

in the maximum can be dropped since it smaller than the first term ε
∑

j 6∈J λ
ε
j, and the

bound can be written as follows

ε∆ ≤ C

[

ε
∑

j 6∈J
λεj
∨

δ

√

d+A logN

n

∨

max
j∈J

‖PL⊥hj‖L2(Π)

√

A logN

n

∨ U(L) logN

n

∨ A logN

n

]

We solve the inequality separately for each term in the maximum and take the maximum

of the solutions. This yields

∆ ≤ C

[

∑

j 6∈J
λεj
∨ δ

ε

√

d+A logN

n

∨

max
j∈J

‖PL⊥hj‖L2(Π)
1

ε

√

A logN

n

∨ U(L) logN

nε

∨ A logN

nε

]

,

which, under the assumption (9.4) with D ≥ 1, can be upper bounded as follows

∆ ≤ ∆(δ) := C

[

∑

j 6∈J
λεj
∨ δ

ε

√

d+A logN

n

∨

max
j∈J

‖PL⊥hj‖L2(Π)

∨ U(L) logN

nε

∨

√

A logN

n

]

.
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Using the fact that βn(δ,∆) is nondecreasing in ∆, substituting ∆(δ) instead of ∆ in

(9.21) and dropping the smallest terms, we get

δ2 ≤ C

[

δ

√

d+A logN

n

∨∑

j 6∈J
λεj

√

A logN

n

∨

max
j∈J

‖PL⊥hj‖L2(Π)

√

A logN

n

∨ U(L) logN

n

∨ A logN

n

]

.

Solving the inequality yields the following bound on δ2 :

δ2 ≤ C

[

d+A logN

n

∨∑

j 6∈J
λεj

√

A logN

n

∨

max
j∈J

‖PL⊥hj‖L2(Π)

√

A logN

n

∨ U(L) logN

n

]

.

(9.23)

We substitute this into the expression for ∆(δ) which results in the following bound on

∆ :

∆ ≤ C

[

∑

j 6∈J
λεj
∨ d+A logN

nε

∨

(

∑

j 6∈J
λεj

)1/2 1

ε

(

A logN

n

)1/4
√

d+A logN

n

∨

√

U(L) logN

nε

√

d+A logN

n

∨

max
j∈J

‖PL⊥hj‖1/2
L2(Π)

1

ε

(

A logN

n

)1/4
√

d+A logN

n

∨

max
j∈J

‖PL⊥hj‖L2(Π)

∨

√

A logN

n

]

,

The inequality ab ≤ (a2 + b2)/2 and the condition 1
ε

√

A logN
n ≤ 1, allows us to simplify

the last bound and to get

∆ ≤ C

[

∑

j 6∈J
λεj
∨ d+A logN

nε

∨

max
j∈J

‖PL⊥hj‖L2(Π)

∨ U(L) logN

nε

∨

√

A logN

n

]

(9.24)

with a constant C depending only on ℓ. Substitute bounds (9.23) and (9.24) in the

expression for βn(δ,∆). With a little further work and using Lemma 9.2, we get the

following bound on αn(δ,∆) that holds for δ,∆ defined by (9.20) with probability at

least 1 −N−A :

αn(δ,∆) ≤ C

[

d+A logN

n
+
∑

j 6∈J
λεj

√

A logN

n

∨

max
j∈J

‖PL⊥hj‖L2(Π)

√

A logN

n

∨ U(L) logN

n

]

.
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This bound and (9.16) implies that

c‖fλ̂ε − fλε‖2
L2(Π) + εK(λ̂ε, λε) ≤ C

[

d+A logN

n
+
∑

j 6∈J
λεj

√

A logN

n

∨

max
j∈J

‖PL⊥hj‖L2(Π)

√

A logN

n

∨ U(L) logN

n

]

, (9.25)

and (9.7) follows. Bound (9.5) is an immediate consequence of (9.24); bound (9.6) follows

from (9.14) and (9.25).

From theorems 9.1, 9.2 and the properties of the loss function, we will easily deduce

the following result.

Let L be the linear span of the dictionary {h1, . . . , hN} and let PL be the orthogonal

projector on L ⊂ L2(P ). Define

gε := PL(ℓ′ • fλε).

Theorem 9.3 Under the conditions of Theorem 9.1, the following bound holds with

probability at least 1 − N−A, with a constant C > 0 depending only on ℓ and with

d = card(J) :

∣

∣

∣

∣

P (ℓ • fλ̂ε) − P (ℓ • fλε)
∣

∣

∣

∣

≤ C

[

d+A logN

n

∨∑

j 6∈J
λεj

√

d+A logN

n

]

∨

C1/2‖gε‖L2(Π)

[

d+A logN

n

∨∑

j 6∈J
λεj

√

d+A logN

n

]1/2

. (9.26)

Similarly, under the conditions of Theorem 9.2, with probability at least 1 − N−A and

with d = dim(L)
∣

∣

∣

∣

P (ℓ • fλ̂ε) − P (ℓ • fλε)
∣

∣

∣

∣

≤

C

[

d+A logN

n

∨

(

∑

j 6∈J
λεj
∨

max
j∈J

‖PL⊥hj‖L2(Π)

)

√

A logN

n

∨ U(L) logN

n

]

∨

C1/2‖gε‖L2(Π)

[

d+A logN

n

∨

(

∑

j 6∈J
λεj
∨

max
j∈J

‖PL⊥hj‖L2(Π)

)

√

A logN

n

∨ U(L) logN

n

]1/2

. (9.27)
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Proof of Theorem 9.3. For the losses of quadratic type,

(ℓ • fλ̂ε)(x, y) − (ℓ • fλε)(x, y) = (ℓ′ • fλε)(x, y)(fλ̂ε − fλε)(x) +R(x, y),

where

|R(x, y)| ≤ C(fλ̂ε − fλε)
2(x).

Integrate with respect to P and get

∣

∣

∣
P (ℓ • fλ̂ε) − P (ℓ • fλε) − P (ℓ′ • fλε)(fλ̂ε − fλε)

∣

∣

∣
≤ C‖fλ̂ε − fλε‖2

L2(Π).

Since

∣

∣

∣
P (ℓ′ • fλε)(fλ̂ε − fλε)

∣

∣

∣
=
∣

∣

∣

〈

ℓ′ • fλε , fλ̂ε − fλε
〉

L2(P )

∣

∣

∣
=
∣

∣

∣

〈

PL(ℓ′ • fλε), fλ̂ε − fλε
〉

L2(P )

∣

∣

∣
≤

‖gε‖L2(P )‖fλ̂ε − fλε‖L2(Π)

theorems 9.1 and 9.2 imply the result.

Recall that f∗ is a function that minimizes the risk P (ℓ•f) and that f∗ is uniformly

bounded by a constant M. It follows from necessary conditions of minimum that

P (ℓ′ • f∗)hj = 0, j = 1, . . . ,N,

or ℓ′ • f∗ ∈ L⊥. For any function f̄ uniformly bounded by M and such that ℓ′ • f̄ ∈ L⊥

(for instance, for f∗), the following bounds hold

‖gε‖L2(Π) = ‖PL(ℓ′ • fλε)‖L2(P ) = ‖PL(ℓ′ • fλε − ℓ′ • f̄)‖L2(P ) ≤

‖(ℓ′ • fλε − ℓ′ • f̄)‖L2(P ) ≤ C‖fλε − f̄‖L2(Π)

since ℓ′ is Lipschitz with respect to the second variable.

Since ℓ is the loss of quadratic type, we have, for all λ ∈ Λ,

E(fλ) ≥
1

2
τ(‖f∗‖∞ ∨ 1)‖fλ − f∗‖2

L2(Π) =: τ‖fλ − f∗‖2
L2(Π). (9.28)

Theorem 9.3 implies the following bound on the random error

|E(fλ̂ε) − E(fλε)| = |P (ℓ • fλ̂ε) − P (ℓ • fλε)| :
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under the conditions of Theorem 9.1, with probability at least 1 −N−A

∣

∣

∣

∣

E(fλ̂ε) − E(fλε)

∣

∣

∣

∣

≤ C

[

d+A logN

n

∨∑

j 6∈J
λεj

√

d+A logN

n

]

∨

C1/2

√

E(fλε)

τ

[

d+A logN

n

∨∑

j 6∈J
λεj

√

d+A logN

n

]1/2

, (9.29)

where d = d(J), and under the conditions of Theorem 9.2, with probability at least

1 −N−A

∣

∣

∣

∣

E(fλ̂ε) − E(fλε)

∣

∣

∣

∣

≤

C

[

d+A logN

n

∨

(

∑

j 6∈J
λεj
∨

max
j∈J

‖PL⊥hj‖L2(Π)

)

√

A logN

n

∨ U(L) logN

n

]

∨

C1/2

√

E(fλε)

τ

[

d+A logN

n

∨

(

∑

j 6∈J
λεj
∨

max
j∈J

‖PL⊥hj‖L2(Π)

)

√

A logN

n

∨

U(L) logN

n

]1/2

, (9.30)

where d = dim(L).

9.2 Approximation Error Bounds, Alignment and Oracle Inequalities

To consider the approximation error, we will use the definitions of alignment coefficients

from Section 7.2.

For λ ∈ R
N , let sNj (λ) := log(eN2λj), j ∈ supp(λ) and sNj (λ) := 0, j 6∈ supp(λ).

Note that log λj + 1 is the derivative of the function λ log λ involved in the definition of

the penalty and, for j ∈ supp(λ), sNj (λ) = log λj + 1 + 2 logN. Introduce the following

vector

sN (λ) := (sN1 (λ), . . . , sNN (λ)).

We will show that both the approximation error E(fλε) and the ”approximate sparsity”

of λε can be controlled in terms of the alignment coefficient of the vector sN (λ) for an

arbitrary λ ∈ Λ. We will use the following version of the alignment coefficient:

α+
N (λ) := a

(b)
H (Λ, λ, sN (λ)) ∨ 0,
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where

b := b(λ) := 2‖sN (λ)‖ℓ∞ .

Theorem 9.4 There exists a constant C > 0 that depends only on ℓ and on the constant

M such that ‖f∗‖∞ ≤M with the following property. For all ε > 0 and all λ ∈ Λ,

E(fλε) + ε
∑

j 6∈supp(λ)

λεj ≤ 3E(fλ) + C

(

(α+
N (λ))2ε2 +

ε

N

)

. (9.31)

Proof of Theorem 9.4. The definition of λε implies that, for all λ ∈ Λ,

E(fλε) + ε
N
∑

j=1

λεj log(N2λεj) ≤ E(fλ) + ε
N
∑

j=1

λj log(N2λj)

By convexity of the function u 7→ u log(N2u) and the fact that its derivative is log(eN2u),

E(fλε) + ε
∑

j 6∈Jλ
λεj log(N2λεj) ≤

E(fλ) + ε
∑

j∈Jλ

(

λj log(N2λj) − λεj log(N2λεj)
)

≤

E(fλ) + ε
∑

j∈Jλ
log(eN2λj)(λj − λεj). (9.32)

Note that

ε
∑

j 6∈Jλ
λεj = ε

∑

j 6∈Jλ
λεj log(N2λεj)+

ε
∑

j 6∈Jλ,λεj≤eN−2

λεj

(

1 − log(N2λεj)
)

+ ε
∑

j 6∈Jλ,λεj>eN−2

λεj

(

1 − log(N2λεj)
)

.

We have

ε
∑

j 6∈Jλ,λεj>eN−2

λεj

(

1 − log(N2λεj)
)

≤ 0

and

ε
∑

j 6∈Jλ,λεj≤eN−2

λεj

(

1 − log(N2λεj)
)

≤ ε
∑

j 6∈Jλ,λεj≤eN−2

λεj ≤ εeN−1.

Therefore,

ε
∑

j 6∈Jλ
λεj ≤ ε

∑

j 6∈Jλ
λεj log(N2λεj) + εeN−1.

171



Recalling (9.32), we get

E(fλε) + ε
∑

j 6∈Jλ
λεj ≤ E(fλ) + ε

∑

j∈Jλ
log(eN2λj)(λj − λεj) + εeN−1.

If

E(fλ) + εeN−1 ≥ ε
∑

j∈Jλ
log(eN2λj)(λj − λεj),

then

E(fλε) + ε
∑

j 6∈Jλ
λεj ≤ 2E(fλ) + 2εeN−1,

and the bound of the theorem follows. Otherwise, we have

E(fλε) + ε
∑

j 6∈Jλ
λεj ≤ 2ε

∑

j∈Jλ
log(eN2λj)(λj − λεj),

which, in particular, implies that

∑

j 6∈Jλ
λεj ≤ 2‖sN (λ)‖ℓ∞

∑

j∈Jλ
|λj − λεj |.

This means that λ− λε ∈ Cb,λ. The definition of α+
N (λ) implies in this case that

E(fλε) + ε
∑

j 6∈Jλ
λεj ≤ 2ε

∑

j∈Jλ
log(eN2λj)(λj − λεj) ≤ 2εα+

N (λ)‖fλ − fλε‖L2(Π).

Since ℓ is the loss of quadratic type, we have

‖fλ − fλε‖L2(Π) ≤ ‖fλ − f∗‖L2(Π) + ‖fλε − f∗‖L2(Π) ≤
√

E(fλ)

τ
+

√

E(fλε)

τ

(see (9.28)). This yields

E(fλε) + ε
∑

j 6∈Jλ
λεj ≤ E(fλ) + 2εα+

N (λ)

(

√

E(fλ)

τ
+

√

E(fλε)

τ

)

.

Using the fact that

2εα+
N (λ)

√

E(fλε)

τ
≤ 2

(α+
N (λ))2ε2

τ
+

1

2
E(fλε)

and

2εα+
N (λ)

√

E(fλ)

τ
≤ 2

(α+
N (λ))2ε2

τ
+

1

2
E(fλ),
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we get
1

2
E(fλε) + ε

∑

j 6∈Jλ
λεj ≤

3

2
E(fλ) + 2

(α+
N (λ))2ε2

τ
,

which completes the proof.

Theorem 9.4 and random error bounds (9.29), (9.30) imply oracle inequalities for

the excess risk E(fλ̂ε). The next corollary is based on (9.30).

Corollary 9.1 Under the conditions of Theorem 9.2, for all λ ∈ Λ with J = supp(λ) and

for all subspaces L of L2(Π) with d := dim(L), the following bound holds with probability

at least 1 −N−A and with a constant C depending on ℓ and on M :

E(fλ̂ε) ≤ 4E(fλ) + C

(

d+A logN

n
+ max

j∈J
‖PL⊥hj‖L2(Π)

√

A logN

n
+

U(L) logN

n
+ (α+

N (λ))2ε2 +
ε

N

)

.

9.3 Density Estimation and Sparse Mixtures Recovery

Let X1, . . . ,Xn be i.i.d. observations in S with common distribution P that has density

f∗ with respect to a σ-finite measure µ in (S,A). Suppose f∗ is uniformly bounded by

a constant M and h1, . . . , hN be a dictionary of probability densities with respect to µ

uniformly bounded by 1 (if they are uniformly bounded by an arbitrary constant, the

results hold with a proper change of constants in the theorems). The goal is to construct

an estimator of the density f∗ in the family of all mixtures {fλ : λ ∈ Λ} and in the case

when the dictionary is large, but there exists a ”sparse” mixture that provides a good

approximation of the unknown density. We study an estimator based on minimizing the

entropy penalized empirical risk with respect to quadratic loss:

λ̂ε := argminλ∈Λ

[

‖fλ‖2
L2(µ) − 2Pnfλ + ε

N
∑

j=1

λj log λj

]

. (9.33)

We compare λ̂ε with the solution of penalized true risk minimization problem:

λε := argminλ∈Λ

[

‖fλ − f∗‖2
L2(µ) − εH(λ)

]

=

argminλ∈Λ

[

‖fλ‖2
L2(µ) − 2Pfλ + ε

N
∑

j=1

λj log λj

]

. (9.34)
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Bunea, Tsybakov and Wegkamp [26] studied a density estimation problem with ℓ1-

penalized empirical risk with respect to quadratic loss (in the case of linear aggregation

rather than convex aggregation).

The results are quite similar to what was done in the previous sections in the case

of prediction problems. We formulate them without proofs.

Theorem 9.5 There exist numerical constants D > 0 and C > 0 such that, for all

J ⊂ {1, . . . , N} with d := d(J) = card(J), for all A ≥ 1 and for all

ε ≥ D

√

d+A logN

n
,

the following bounds hold with probability at least 1 −N−A :

∑

j 6∈J
λ̂εj ≤ C

[

∑

j 6∈J
λεj +M2

√

d+A logN

n

]

,

∑

j 6∈J
λεj ≤ C

[

∑

j 6∈J
λ̂εj +M2

√

d+A logN

n

]

and

‖fλ̂ε − fλε‖2
L2(µ) + εK(λ̂ε, λε) ≤ C

[

M2d+A logN

n

∨∑

j 6∈J
λεj

√

d+A logN

n

]

.

Theorem 9.6 Suppose that

ε ≥ D

√

A logN

n

with a large enough numerical constant D > 0. For all J ⊂ {1, . . . ,N}, for all subspaces

L of L2(P ) with d := dim(L) and for all A ≥ 1, the following bounds hold with probability

at least 1 −N−A and with a numerical constant C > 0 :

∑

j 6∈J
λ̂εj ≤ C

[

∑

j 6∈J
λεj +M2d+A logN

nε
+ max

j∈J
‖PL⊥hj‖L2(P ) +

U(L) logN

nε

]

, (9.35)

∑

j 6∈J
λεj ≤ C

[

∑

j 6∈J
λ̂εj +M2 d+A logN

nε
+ max

j∈J
‖PL⊥hj‖L2(P ) +

U(L) logN

nε

]

(9.36)

and

‖fλ̂ε − fλε‖2
L2(µ) + εK(λ̂ε, λε) ≤ C

[

M2d+A logN

n

∨∑

j 6∈J
λεj

√

A logN

n

∨

max
j∈J

‖PL⊥hj‖L2(P )

√

A logN

n

∨ U(L) logN

n

]

. (9.37)
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In the case of density estimation, the alignment coefficient should be defined in

terms of measure µ :

a
(b)
H (Λ, λ, w) := sup

{

〈w, u〉ℓ2 : u ∈ −TΛ(λ) ∩ Cb,λ, ‖fu‖L2(µ) = 1
}

,

α+
N (λ) := a

(b)
H (Λ, λ, sN (λ)) ∨ 0

with

b := b(λ) := 2‖sN (λ)‖ℓ∞ .

The next two statements provide an approximation error bound and an oracle in-

equality on the risk L2(µ)-risk of the estimator.

Theorem 9.7 There exists a numerical constant C > 0 such that, for all ε > 0 and all

λ ∈ Λ

‖fλε − f∗‖2
L2(µ) + ε

∑

j 6∈supp(λ)

λεj ≤ 3‖fλ − f∗‖2
L2(µ) + C

(

ε2(α+
N (λ))2 +

ε

N

)

. (9.38)

Corollary 9.2 Under the conditions of Theorem 9.6, for all λ ∈ Λ with J = supp(λ) and

for all subspaces L of L2(Π) with d := dim(L), the following bound holds with probability

at least 1 −N−A and with a numerical constant C :

‖fλ̂ε − f∗‖2
L2(µ) ≤ 4‖fλ − f∗‖2

L2(µ)+

C

(

M2 d+A logN

n
+ max

j∈J
‖PL⊥hj‖L2(Π)

√

A logN

n
+
U(L) logN

n
+ ε2(α+

N (λ))2 +
ε

N

)

.

9.4 ℓp-Penalization in Sparse Recovery

In this section, we will briefly discuss another example of strictly convex penalization,

penalization with the p-th power of ℓp-norm. Specifically, we will study the following

penalized empirical risk minimization problem

λ̂ε := argminλ∈Uℓp

[

Pn(ℓ • fλ) + ε‖λ‖pℓp
]

(9.39)

that will be compared with its true version

λε := argminλ∈Uℓp

[

P (ℓ • fλ) + ε‖λ‖pℓp
]

. (9.40)
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Here p ∈ [1, 2] and we will denote

q :=
p

p− 1
.

We will be also using the notations of the previous sections such as, for instance, the

quantity U(L).

The following theorems provide control of the size of random L2(Π)-error ‖fλ̂ε −
fλε‖L2(Π) in terms of sparsity or approximate sparsity of λε. They also show that ap-

proximate sparsity of λε implies that λ̂ε possesses a similar property. We will start with

the case when the vector λε is sparse, i.e., there exists a small set J ⊂ {1, . . . ,N} such

that λεj = 0, j 6∈ J.

Theorem 9.8 There exist constants D0 > 0 and C > 0 depending only on ℓ with the

following property. Suppose that J ⊂ {1, . . . ,N} with d := d(J) = card(J) and

λεj = 0, j 6∈ J.

For all A ≥ 1, for all D ≥ D0 and for

ε = DN1/q

(

√

d+A logN

n
+

√

q − 1

n

)

, (9.41)

the following bounds hold with probability at least 1 −N−A :

∑

j 6∈J
|λ̂εj |p ≤ C

[

d+A logN

nε

∨ 1

Dq

]

and

‖fλ̂ε − fλε‖2
L2(Π) ≤ C

[

d+A logN

n

∨ (p− 1)ε

Dq

]

.

Another version of the result allows one to use smaller values of regularization

parameter ε than in condition (9.41).

Theorem 9.9 There exist constants D0 > 0 and C > 0 depending only on ℓ with the

following property. Suppose that J ⊂ {1, . . . ,N} is such that

λεj = 0, j 6∈ J.

Let L be a subspace of L2(Π) with d := dim(L) < +∞. For all A ≥ 1, for all D ≥ D0

and for

ε = DN1/q

√

q − 1

n
, (9.42)
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the following bounds hold with probability at least 1 −N−A :

∑

j 6∈J
|λ̂εj |p ≤ C

[

d+A logN

nε

∨

max
j∈J

‖PL⊥hj‖L2(Π)

∨

U(L)
N2/q(q − 1)

nε

∨ 1

Dq

]

and

‖fλ̂ε − fλε‖2
L2(Π) ≤ C

[

d+A logN

n

∨

max
j∈J

‖PL⊥hj‖L2(Π)
N1/q(q − 1)1/2

n1/2

∨

U(L)
N2/q(q − 1)

n

∨ (p− 1)ε

Dq

]

.

Note that if p− 1 ≍ 1
logN (this was the case of p close to 1 studied in [65]), then

N1/q

√

q − 1

n
≍
√

logN

n

and the error terms in the bounds of the theorems start resembling the error terms in

the case of ℓ1-penalization (see Section 8.2). Also, in the case of p close to 1 the term 1
Dq

becomes of the order N−B for some B > 0, so, it is small. The size of this term can be

also controlled by the choice of D (which could be an arbitrary number larger than D0

for some constant D0 depending only on ℓ).

We turn now to the case when λε is approximately sparse.

Theorem 9.10 There exist constants D0 > 0 and C > 0 depending only on ℓ such that,

for all J ⊂ {1, . . . , N} with d := d(J) = card(J), for all A ≥ 1, for all D ≥ D0 and for

ε = D(q − 1)N1/q

(

√

d+A logN

n
+

√

q − 1

n

)

(9.43)

the following bounds hold with probability at least 1 −N−A :

∑

j 6∈J
|λ̂εj |p ≤ C

[

∑

j 6∈J
|λεj |p

∨

(q − 1)
d+A logN

nε

∨ 1

Dq

]

,

∑

j 6∈J
|λεj |p ≤ C

[

∑

j 6∈J
|λ̂εj |p

∨

(q − 1)
d +A logN

nε

∨ 1

Dq

]

and

‖fλ̂ε − fλε‖2
L2(Π) ≤ C

[

d+A logN

n

∨

(

∑

j 6∈J
|λεj |p

)1/p(
√

d+A logN

n

∨ N1/q(q − 1)1/2

n1/2

)

∨ (p− 1)ε

Dq

]

.
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Similarly to Theorem 9.9, we will also establish another version of these bounds

that hold for smaller values of ε.

Theorem 9.11 There exist constants D0 > 0 and C > 0 depending only on ℓ with the

following property. For all J ⊂ {1, . . . ,N}, for all subspaces L ⊂ L2(Π) with d := dim(L),

for all A ≥ 1, for all D ≥ D0 and for

ε = D(q − 1)N1/q

√

q − 1

n
(9.44)

the following bounds hold with probability at least 1 −N−A :

∑

j 6∈J
|λ̂εj |p ≤

C

[

∑

j 6∈J
|λεj |p

∨

(q − 1)
d +A logN

nε

∨

max
j∈J

‖PL⊥hj‖L2(Π)

∨

U(L)
N2/q(q − 1)

nε

∨ 1

Dq

]

,

∑

j 6∈J
|λεj |p ≤

C

[

∑

j 6∈J
|λ̂εj |p

∨

(q − 1)
d +A logN

nε

∨

max
j∈J

‖PL⊥hj‖L2(Π)

∨

U(L)
N2/q(q − 1)

nε

∨ 1

Dq

]

,

and

‖fλ̂ε − fλε‖2
L2(Π) ≤ C

[

d+A logN

n

∨

(

∑

j 6∈J
|λεj |p

)1/pN1/q(q − 1)1/2

n1/2

∨

max
j∈J

‖PL⊥hj‖L2(Π)
N1/q(q − 1)1/2

n1/2

∨

U(L)
N2/q(q − 1)

n

∨ (p− 1)ε

Dq

]

.

We are not going to give the proofs of these results. They are based on general

approach outlined in Section 8.1 and the details of the arguments are close to the proofs

of theorems 8.5 and 9.2. Theorem 3.5 is being used to control the ℓq-norms of Rademacher

processes indexed by finite classes which is needed in the proofs. It is worth mentioning

that, in this case, inequality (8.4) takes the following form (for λ = λε):

c‖fλ̂ε − fλε‖2
L2(Π) + εp

N
∑

j=1

(

|λ̂εj |p−1sign(λ̂εj) − |λεj |p−1sign(λ̂εj)
)

(λ̂εj − λεj)

≤ (P − Pn)(ℓ
′ • fλ̂ε)(fλ̂ε − fλε). (9.45)
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In the case when λε is sparse, i.e., there exists J ⊂ {1, . . . ,N} such that λεj = 0, j 6∈
J, this yields the following bound

c‖fλ̂ε − fλε‖2
L2(Π) + εp

∑

j 6∈J
|λ̂εj |p ≤ (P − Pn)(ℓ

′ • fλ̂ε)(fλ̂ε − fλε). (9.46)

This provides a way to control the sparsity of the empirical solution λ̂ε in terms of the

empirical process in the right hand side which is used to complete the proofs of theorems

9.8 and 9.9.

In the case when the true solution λε is only approximately sparse, the corresponding

bounds become more complicated: for an arbitrary set J,

p log 2

4
(p−1)ε

∑

j 6∈J
|λ̂εj |p ≤

p2p log 2

4
(p−1)ε

∑

j 6∈J
|λεj |p+(P −Pn)(ℓ′ •fλε)(fλ̂ε−fλε) (9.47)

and

c‖fλ̂ε − fλε‖2
L2(Π) ≤ (P − Pn)(ℓ

′ • fλ̂ε)(fλ̂ε − fλε).

However, it is still possible to use these inequalities and implement the program outlined

in Section 8.1. This leads to theorems 9.10 and 9.11. Note that, in this case, there is an

additional factor p− 1 in front of the expression

ε
∑

j 6∈J
|λ̂εj |p

characterizing the sparsity of λ̂ε. Essentially, it comes from the second derivative of the

penalty function ψ(u) = |u|p. In the case when p is close to 1 this factor is small and it

leads to a large extra factor q − 1 in the lower bound on ε in theorems 9.10 and 9.11.

This is not needed in the sparse case of theorems 9.8 and 9.9.

Finally, we will discuss a version of approximation error bounds and oracle inequal-

ities in the case of ℓp-penalization. This can be done by repeating the arguments of

Section 9.2 for entropy penalization.

For λ ∈ R
N , let

sj(λ) := p|λj|p−1sign(λj), j = 1, . . . ,N.

Clearly,

sj(λ) = ψ′(λj),
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where ψ(u) = |u|p is the penalty function. The vector

s(λ) := (s1(λ), . . . , sN (λ)) = ∇
N
∑

j=1

|λj |p

is the gradient of the penalty.

Define the following version of the alignment coefficient:

α+(λ) := a
(b)
H (Uℓp , λ, s(λ)) ∨ 0

with

b := b(λ) := 2‖s(λ)‖ℓ∞ .

The next result shows that the approximation error E(fλε) and the ”approximate

sparsity” of λε can be controlled in terms of α+(λ).

Theorem 9.12 There exists a constant C > 0 that depends only on ℓ and on the con-

stant M such that ‖f∗‖∞ ≤M with the following property. For all ε > 0 and all λ ∈ Uℓ1 ,

E(fλε) + ε
∑

j 6∈supp(λ)

|λεj |p ≤ 3E(fλ) + C(α+(λ))2ε2. (9.48)

Together with random error bounds, Theorem 9.12 easily implies oracle inequalities.

For instance, the next result follows from Theorem 9.11.

Corollary 9.3 Under the conditions of Theorem 9.11, for all λ ∈ Uℓ1 with J = supp(λ)

and for all subspaces L of L2(Π) with d := dim(L), the following bound holds with

probability at least 1 −N−A and with a constant C depending on ℓ and on M :

E(fλ̂ε) ≤ 4E(fλ) + C

(

d+A logN

n

∨

max
j∈J

‖PL⊥hj‖L2(Π)
N1/q(q − 1)1/2

n1/2

∨

U(L)
N2/q(q − 1)

n

∨ (p− 1)ε

Dq

∨

(α+(λ))2ε2
)

.
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10 Appendix: Properties of ♯- and ♭-Transforms

In this appendix, we provide some properties of ♯- and ♭-transforms introduced in Section

4.1 and used in the construction of excess risk bounds. The proofs of these properties

are rather elementary. We are mainly interested in ♯-transform.

1. If ψ(u) = o(u) as u → ∞, then the function ψ♯ is defined on (0,+∞) and is a

nonincreasing function on this interval.

2. If ψ1 ≤ ψ2, then ψ♯1 ≤ ψ♯2. Moreover, if ψ1(δ) ≤ ψ2(δ) either for all δ ≥ ψ♯2(ε), or

for all δ ≥ ψ♯1(ε) − τ with an arbitrary τ > 0, then also ψ♯1(ε) ≤ ψ♯2(ε).

3. For all a > 0,

(aψ)♯(ε) = ψ♯(ε/a).

4. If ε = ε1 + · · · + εm, then

ψ♯1(ε)
∨

· · ·
∨

ψ♯m(ε) ≤ (ψ1 + · · · + ψm)♯(ε) ≤ ψ♯1(ε1)
∨

· · ·
∨

ψ♯m(εm).

5. If ψ(u) ≡ c, then

ψ♯(ε) = c/ε.

6. If ψ(u) := uα with α ≤ 1, then

ψ♯(ε) := ε−1/(1−α).

7. For c > 0, denote ψc(δ) := ψ(cδ). Then

ψ♯c(ε) =
1

c
ψ♯(ε/c).

If ψ is nondecreasing and c ≥ 1, then

cψ♯(u) ≤ ψ♯(u/c).

8. For c > 0, denote ψc(δ) := ψ(δ + c). Then for all u > 0, ε ∈ (0, 1]

ψ♯c(u) ≤ ψ♯(εu/2) − c ∨ cε.

Recall the definitions of functions of concave type and strictly concave type from

Section 4.1.

9. If ψ is of concave type, then ψ♯ is the inverse of the function

δ 7→ ψ(δ)

δ
.
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In this case,

ψ♯(cu) ≥ ψ♯(u)/c

for c ≤ 1 and

ψ♯(cu) ≤ ψ♯(u)/c

for c ≥ 1.

10. If ψ is of strictly concave type with exponent γ, then for c ≤ 1

ψ♯(cu) ≤ ψ♯(u)c
− 1

1−γ .
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