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Abstract

Sequential algorithms of active learning based on the estimation of the level sets
of the empirical risk are discussed in the paper. Localized Rademacher complexities
are used in the algorithms to estimate the sample sizes needed to achieve the required
accuracy of learning in an adaptive way. Probabilistic bounds on the number of active
examples have been proved and several applications to binary classification problems
are considered.

1 Introduction

Let (S,A) be a measurable space and T ⊂ R. Consider a standard prediction problem

in which (X,Y ) is a random couple in S × T with unknown distribution P. Here X is

a design point whose distribution will be denoted Π and Y is a response variable

with conditional distribution (given X) PY |X(·|X = x). The response variable Y is to be

predicted based on an observation of X. This class of problems includes many versions of

regression and classification. For instance, in the binary classification, T = {−1, 1} and

the conditional distribution of Y given X is completely characterized by the regression

function

η(x) := E(Y |X = x).

In the framework of passive learning, a learning algorithm inputs the training

data (X1, Y1), . . . (Xn, Yn) that consists of n independent examples sampled from the
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distribution P. The goal is to construct a data dependent prediction rule ĝ : S 7→ T

whose risk with respect to a properly chosen loss function is “close” to the minimal

possible risk. More precisely, given a loss function ℓ : T ×T 7→ R, the risk of a prediction

rule g : S 7→ T is defined as

P (ℓ • g) = Eℓ(Y ; g(X)),

where we used the notation (ℓ • g)(x, y) := ℓ(y; g(x)). For instance, in the binary classi-

fication setting, the binary loss ℓ(y, u) := I(y 6= u) is usually used. In this case, the risk

of a classification rule g : S 7→ {−1, 1} is its generalization error:

P (ℓ • g) = P{Y 6= g(X)}.

Suppose G is a class of prediction rules g : S 7→ T. The quantity

EP (ℓ • g) := P (ℓ • g) − inf
g∈G

P (ℓ • g)

is called the excess risk of g. One of the main goals of statistical analysis of learning

algorithms is to understand how the excess risk EP (ℓ • ĝ) of a data dependent decision

rule ĝ output by such an algorithm depends on the sample size n, on the “complexity”

of the class G of prediction rules and on the underlying complexity of the prediction

problem itself.

In the recent years, there has been a lot of interest in active learning algorithms. In

this framework, the algorithm can modify the design distribution in the process of learn-

ing. More precisely, suppose that the training examples (Xj , Yj) are sampled sequentially.

At each iteration (say, iteration number k), the algorithm requests a design point Xk+1

sampled from a distribution Π̂k that depends on the training data (X1, Y1), . . . , (Xk, Yk).

Given Xk+1 = x, the response variable (the label) Yk+1 is sampled from the conditional

distribution PY |X(·|X = x). The question is whether there are such active learning algo-

rithms for which the excess risk after n iterations is provably smaller than for the passive

prediction rules based on the same number n of training examples. It happens that the

answer depends on the type of learning problem. A minimax analysis by Castro, Willett

and Nowak (2005) and Castro and Nowak (2008) shows that such an improvement is

possible in classification problems and in some special classes of regression problems with

non-smooth regression function (for instance, if the regression function is a step function).

In such cases, the improvement can be very significant. In some classification problems,

the excess risk of active learning algorithms can converge to zero with an exponential
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rate as n→ ∞ (comparing with the rate O(n−1) in the case of passive learning). Castro

and Nowak (2008) studied several examples of binary classification problems in which

the active learning approach is beneficial and suggested nice active learning algorithms in

these problems. However, the drawback of these algorithms is that they are not adaptive

in the sense that they require the prior knowledge of distribution dependent parameters

of the problem, such as noise characteristics in classification. The development of active

learning methods that are adaptive and, at the same time, computationally tractable re-

mains a challenge. There has been a progress in the design of active learning algorithms

that possess some degree of adaptivity, in particular, see Dasgupta, Hsu and Monteleoni

(2007), Balcan, Beygelzimer and Langford (2009), Balcan, Hanneke and Wortman (2008)

and Hanneke (2009a, 2009b). In the last two interesting papers by Hanneke, some ver-

sions of the algorithms of Balcan, Beygelzimer and Langford (2009) and by Dasgupta,

Hsu and Monteleoni (2007) were studied using the technique of Rademacher complex-

ities that much earlier proved to be very useful in the analysis of passive learning (see

Bartlett, Boucheron and Lugosi (2002), Koltchinskii (2001), Koltchinskii and Panchenko

(2000), Bartlett, Bousquet and Mendelson (2005), Koltchinskii (2006, 2008) and refer-

ences therein). Hanneke showed that incorporating Rademacher complexities in active

learning algorithms allows one to develop rather general versions of such algorithms that

are adaptive under broad assumptions on the underlying distributions.

In the current paper, we continue this line of research. We consider the following

model of active learning. At each iteration, a learning algorithm has to choose a set

Â ⊂ S of “good” design points and also the number of training examples needed at

the current iteration. Both the set Â and the required number of the examples might

depend on the training data that is already available. The algorithm has an access to an

oracle that is asked to provide the required number of examples (X,Y ) sampled from

the conditional distribution P (·|x ∈ Â). Alternatively, it can be described as follows.

The oracle provides training examples (X,Y ) sampled from an unknown probability

distribution P. At each iteration, the algorithm chooses a set Â of “good” design points

and asks the oracle whether the next design point Xk is “good”. If it is “good”, the

algorithm accepts the point, the oracle provides it with a label Yk and returns the couple

(Xk, Yk). Testing whether the example is “good” costs the algorithm nothing, but each

“good” labeled training example costs $ 1. Thus, only the number of “good” examples

matters for determining the total cost of learning. The question is how many “good”

examples are needed for the excess risk EP (ℓ • ĝ) of the resulting classifier ĝ to become

smaller than δ with a guaranteed probability at least 1 − α.
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We will develop active learning algorithms that are somewhat akin to what is done

in Hanneke (2009a, 2009b), but they are more closely related to the construction of lo-

calized Rademacher complexities used in the definitions of distribution dependent and

data dependent excess risk bounds in empirical risk minimization (see Koltchinskii (2006,

2008)). The main idea of this construction is to characterize the complexity of the prob-

lem by the sup-norm of a special Rademacher process indexed by the level sets of the

risk. To be more specific, suppose that we are dealing with a binary classification prob-

lem and that the empirical risk (with respect to the binary loss) is being minimized over

a class G of binary functions. Then what matters is the collection of δ-minimal sets

G(δ) :=
{

g ∈ G : EP (ℓ • g) ≤ δ
}

, δ > 0.

These sets can be estimated based on the empirical data and Rademacher complexities

of such estimated sets for small enough values of δ are used to define reasonably tight

bounds on the excess risk. In many learning problems, the δ-minimal sets become small

as δ → 0, for instance, in the sense that their L2(Π)-diameter is small. It turns out that

an important role in the development of active classification algorithms is played by the

sets of the following type

A(δ) :=

{

x ∈ S|∃g1, g2 ∈ G(δ) : g1(x) 6= g2(x)

}

.

Such a set is called a disagreement set since it consists of the points for which there

are two classifiers in G(δ) whose predictions at point x disagree with each other. If the δ-

minimal sets are small for small enough values of δ, one can expect that the corresponding

disagreement sets are also small. This is not always the case, but there are natural

examples in which indeed the measure Π(A(δ)) tends to 0 as δ → 0 (sometimes, even

Π(A(δ)) = O(δ)). Note that if the empirical risk is being minimized over the δ-minimal

set G(δ), one can eliminate from the sample all the design pointsXj such that Xj 6∈ A(δ) :

the minimizers of the empirical risk are not going to change since the value of the binary

loss at such training examples (Xj , Yj) is a constant on the δ-minimal set. So, only

the examples for which Xj belongs to a small disagreement set A(δ) are really needed.

This simple observation opens a possibility of reducing the sample size in the process of

active learning, and this has been already exploited in several algorithms described in the

literature (see Dasgupta, Hsu and Monteleoni (2007), Balcan, Beygelzimer and Langford

(2009), Hanneke (2009a, 2009b) and references therein). It is interesting to mention that

some notions similar to the “disagreement sets” were used much earlier in the study of

ratio type empirical processes (for instance, in the work of Alexander in the 80s; see,
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Giné and Koltchinskii (2006) and references therein). Moreover, it was used in Giné and

Koltchinskii (2006) to obtain refined excess risk bounds in binary classification (in the

passive learning case). This will be discussed in some detail in Section 4.

Our approach is based on iterative estimation of the δ-minimal sets for a decreasing

sequence {δj} of values of δ. It happens that, for larger values of δ, it is possible to

construct a rough estimate of the δ-minimal sets based on a relatively small number

of training examples. The required sample sizes can be estimated using Rademacher

complexities. For smaller values of δ, more examples are needed, but, at the same time,

for the smaller values of δ the disagreement sets are also small, and these sets again

can be estimated based on the training examples that have been already sampled. Thus,

there is a possibility to come up with an active learning strategy that, at each iteration,

computes an estimate Â of the disagreement set and determines the required sample size,

and then samples the required number of design points from the conditional distribution

Π(·|x ∈ Â). Each of these points Xj = x is provided with a label Yj sampled from the

conditional distribution PY |X(·|X = x).

The need to estimate the whole δ-minimal set in this learning strategy rather than

simply minimizing the empirical risk might look like a too strong assumption. How-

ever, in the alternative general versions of adaptive strategies of active learning due to

Hanneke (2009a, 2009b) this is also needed. Hanneke uses previously suggested agnostic

learning methods of Dasgupta, Hsu and Monteleoni (2007) and of Balcan, Beygelzimer

and Langford (2009) in combination with Rademacher complexities that are based on

estimated level sets of the empirical risk. So, currently, this seems to be unavoidable in

general adaptive methods and our approach is just based on a more direct use of the

δ-minimal sets.

To give a precise description of a version of active learning method considered in

this paper and to study its statistical properties, several facts from the general theory

of empirical risk minimization will be needed. In particular, in Section 2, we describe

a construction of distribution dependent and data dependent bounds on the excess risk

based on localized Rademacher complexities (see Koltchinskii (2006, 2008)). In Section

3, we describe our active learning algorithms. These algorithms are sequential in the

sense that the training data is being sampled until the desired accuracy of learning is

achieved. We prove several bounds on the number of active examples needed to achieve

this goal with a specified probability. In sections 2 and 3, it is convenient to study the

problem in a more abstract framework, in which we suppress the labels Yj and write
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S instead of S × {−1, 1}, X instead of (X,Y ), f instead of ℓ • g, etc. This allows us

to simplify the notations and the description of the algorithms, and, at the same time,

it makes the results a little more general. In principle, it should be possible to apply

these results to more general classes of learning problems than binary classification (for

instance, to special regression models with a non-smooth regression function or to the

problem of estimation of the level sets of an unknown probability density). However,

we do not pursue this possibility here and, instead, we concentrate in Section 4 on the

binary classification problems, which still remains the most interesting class of learning

problems where the active learning approach leads to faster convergence rates.

2 Empirical Risk Minimization: Bounds on the Excess Risk

Let (S,A) be a measurable space, let P be a probability measure in (S,A) and let

X,X1,X2, . . . be i.i.d. random variables in (S,A) with common distribution P. Let F

be a class of A-measurable functions f : S 7→ [0, 1]. The values of functions f ∈ F will

be interpreted as “losses” associated with some decisions and the integral

Pf :=

∫

S
fdP = Ef(X)

represents the expected loss, or the (true) risk. The optimization problem

Pf −→ min, f ∈ F (2.1)

is interpreted as a “risk minimization” problem and the quantity

EP (f) := Pf − inf
g∈F

Pg

is called the excess risk of f. The δ-minimal set of the true risk is defined as

FP (δ) :=

{

f ∈ F : EP (f) ≤ δ

}

, δ ≥ 0.

In learning theory problems, the distribution P is usually unknown and the risk

Pf is to be estimated by the empirical risk. The empirical measure based on the sample

(X1, . . . ,Xn) of size n is defined as

Pn := n−1
n

∑

j=1

δXj
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and the problem of risk minimization is replaced by the “empirical risk minimization”:

Pnf −→ min, f ∈ F . (2.2)

Naturally, this also leads to the definitions of the “excess empirical risk” EPn(f) and of

the δ-minimal sets of the empirical risk FPn(δ), δ > 0.

Given a solution f̂ of the empirical risk minimization problem (2.2), a basic question

is to provide reasonably tight upper confidence bounds on the excess risk EP (f̂) that

depend on complexity characteristics of the class F . It is also of importance to understand

when the δ-minimal sets of the empirical risk are reasonably good estimates of the δ-

minimal sets of the true risk. We will need below several results of this type that can be

found in Koltchinskii (2006, 2008).

First of all, we will need an upper confidence bound on the size of the empirical

process

sup
f,g∈FP (δ)

|(Pn − P )(f − g)|.

To construct such a bound, we use famous Talagrand’s concentration inequalities. Sup-

pose ρP : L2(P ) × L2(P ) 7→ [0,+∞) and

ρ2
P (f, g) ≥ P (f − g)2 − (P (f − g))2, f, g ∈ L2(P ).

Define the diameter of FP (δ) as

D(δ) := DP (δ) := sup
f,g∈F(δ)

ρP (f, g).

It provides a measure of the size of the δ-minimal sets. We will also use the following

quantity that characterizes the accuracy of “empirical approximation” of P by Pn on

the δ-minimal sets:

φn(δ) := E sup
f,g∈F(δ)

|(Pn − P )(f − g)|.

Given a decreasing sequence {δj} of positive numbers with δ0 := 1 and a sequence {tj}

of positive numbers, define a step function Un(δ), δ ∈ (0, 1] as follows:

Ūn(δ) := 2
∑

j≥0

[

φn(δj) +D(δj)

√

tj
n

+
tj
n

]

I(δj+1,δj ](δ).

A version of Talagrand’s concentration inequality with explicit constants due to Bousquet

implies that, for all j ≥ 0 and for all δ ∈ (δj+1, δj ], with probability at least 1 − e−tj

sup
f,g∈FP (δ)

|(Pn − P )(f − g)| ≤ Ūn(δ).
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Given ψ : R+ 7→ R+, define

ψ♭(δ) := sup
σ≥δ

ψ(σ)

σ

and

ψ♯(ε) := inf

{

δ > 0 : ψ♭(δ) ≤ ε

}

.

Let

δn(F ;P ) := sup
{

δ ∈ (0, 1] : δ ≤ Ūn(δ)
}

.

The following bounds were proved in Koltchinskii (2006, 2008).

Theorem 1 For all δ ≥ δn(F ;P ),

P

{

EP (f̂) > δ
}

≤
∑

δj≥δ

e−tj

and

P

{

sup
f∈F ,EP (f)≥δ

∣

∣

∣

∣

EPn(f)

EP (f)
− 1

∣

∣

∣

∣

> Ū ♭
n(δ)

}

≤
∑

δj≥δ

e−tj .

Thus, the quantity δn(F ;P ) is a distribution dependent upper bound on the excess

risk EP (f̂) that holds with a guaranteed probability. Moreover, for all δ ≥ δn(F ;P ) and

for all f ∈ F with EP (f) ≥ δ it is possible to control the size of the ratio
EPn(f)
EP (f) in

terms of the quantity Ū ♭
n(δ). This ratio bound for the excess risk immediately implies

the following statement showing that for all the values of δ above certain threshold the

δ-minimal sets of empirical risk provide estimates of the δ-minimal sets of the true risk.

Proposition 1 Let δ̄n := Ū ♯
n

(

1
2

)

. For all δ ≥ δ̄n, with probability at least

1 −
∑

δj≥δ

e−tj

the following inclusions hold:

∀σ ≥ δ FP (σ) ⊂ FPn(3/2σ) and FPn(σ) ⊂ FP (2σ).

Data dependent upper confidence bounds on the excess risk can be constructed

using localized sup-norms of Rademacher processes that provide a way to estimate the
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size of the empirical process. Given i.i.d. Rademacher random variables {εi} independent

of {Xi}, the Rademacher process is defined as

Rn(f) := n−1
n

∑

j=1

εjf(Xj).

We will assume that

ρ2
P (f, g) := P (f − g)2.

Define

φ̂n(δ) := sup
f,g∈FPn(δ)

|Rn(f − g)|

and

D̂n(δ) := sup
f,g∈FPn(δ)

ρPn(f, g).

These quantities are empirical versions of φn(δ) and DP (δ) and they can be used to

define an empirical version of the function Ūn :

Ûn(δ) := K̂
∑

j≥0

[

φ̂n(ĉδj) + D̂n(ĉδj)

√

tj
n

+
tj
n

]

I(δj+1,δj ](δ),

where K̂, ĉ are numerical constants. We will also define

Ũn(δ) := K̃
∑

j≥0

[

φn(c̃δj) +D(c̃δj)

√

tj
n

+
tj
n

]

I(δj+1,δj ](δ)

with some numerical constants K̃, c̃.

It can be shown (see Koltchinskii (2006, 2008)) that for large enough numerical

constants K̂, K̃, ĉ, c̃ and for all δ ≥ δ̄n, Ūn(δ) ≤ Ûn(δ) ≤ Ũn(δ) with a high probability.

More precisely, the following statement holds. Denote

δ̂n := Û ♯
n

(

1

2

)

, δ̃n := Ũ ♯
n

(

1

2

)

.

Theorem 2 There exists a choice of numerical constants K̂, K̃, ĉ, c̃ in the definitions of

the functions Ûn, Ũn such that the following holds. For all δ ≥ δ̄n, there exists an event

E of probability

P(E) ≥ 1 − 3
∑

δj≥δ

e−tj

such that on this event

Ūn(σ) ≤ Ûn(σ) ≤ Ũn(σ), σ ≥ δ.
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As a consequence,

P

{

δ̄n ≤ δ̂n ≤ δ̃n

}

≥ 1 − 3
∑

δj≥δ̄n

e−tj .

The proof is based on the following ”statistical version” of Talagrand’s concentration

inequality (which, in turn, follows from the usual Talagrand’s concentration inequality

for empirical processes and standard symmetrization and contraction arguments, see

Koltchinskii (2008)). Suppose that F is a class of measurable functions on S uniformly

bounded by U > 0. Denote

σ2
P (F) := sup

f∈F
Pf2 and σ2

n(F) := sup
f∈F

Pnf
2.

For a function Y : F 7→ R, denote

‖Y ‖F := sup
f∈F

|Y (f)|.

Theorem 3 There exists a numerical constant K > 0 such that for all t ≥ 1 with

probability at least 1 − e−t the following bounds hold:

∣

∣

∣

∣

‖Rn‖F − E‖Rn‖F

∣

∣

∣

∣

≤ K

[

√

t

n

(

σ2
n(F) + U‖Rn‖F

)

+
tU

n

]

,

E‖Rn‖F ≤ K

[

‖Rn‖F + σn(F)

√

t

n
+
tU

n

]

,

σ2
P (F) ≤ K

(

σ2
n(F) + U‖Rn‖F +

tU

n

)

and

σ2
n(F) ≤ K

(

σ2
P (F) + U‖Rn‖F +

tU

n

)

.

Also,

E‖Pn − P‖F ≤ K

[

‖Rn‖F + σn(F)

√

t

n
+
tU

n

]

and
∣

∣

∣

∣

‖Pn − P‖F − E‖Pn − P‖F

∣

∣

∣

∣

≤ K

[

√

t

n

(

σ2
n(F) + U‖Rn‖F

)

+
tU

n

]

.
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In what follows, it will be of interest to consider sequential learning algorithms in

which the sample size is being gradually increased until the excess risk becomes smaller

than a given level δ. The following quantities are used in the analysis of such algorithms.

Let us fix a set M ⊂ N. A possible choice is M = N, but, usually, we will take M = {2k :

k ≥ 0}. Denote

n̄(δ) := inf

{

n ∈M : δ̄n ≤ δ

}

= inf

{

n ∈M : Ū ♭
n(δ) ≤

1

2

}

,

n̂(δ) := inf

{

n ∈M : δ̂n ≤ δ

}

= inf

{

n ∈M : Û ♭
n(δ) ≤

1

2

}

and

ñ(δ) := inf

{

n ∈M : δ̃n ≤ δ

}

= inf

{

n ∈M : Ũ ♭
n(δ) ≤

1

2

}

.

If

E‖Pn − P‖F → 0 as n→ ∞,

which is true for so called Glivenko-Cantelli classes of functions with respect to P (see,

e.g., van der Vaart and Wellner (1996)), then it is easy to see that

δ̄n → 0 and δ̃n → 0 as n→ ∞.

In this case, we have

ñ(δ) < +∞, n̄(δ) < +∞, δ ∈ (0, 1].

It is also easy to see that the functions n 7→ Ūn(δ) and n 7→ Ũn(δ) are noincreasing (it

follows from the well known reverse supermartingale properties of empirical processes;

see, van der Vaart and Wellner (1996), Lemma 2.4.5). This implies that, for all n ≥ n̄(δ),

δ̄n ≤ δ and, for all n ≥ ñ(δ), δ̃n ≤ δ. Since Ūn(δ) ≤ Ũn(δ), δ ∈ (0, 1], it is also clear that

n̄(δ) ≤ ñ(δ), δ ∈ (0, 1].

The next proposition immediately follows from the definition of n̄(δ) (it is, in fact,

just a reformulation of the statements of Proposition 1 and Theorem 2):

Proposition 2 (i) For all n ≥ n̄(δ),

P

{

EP (f̂n) > δ
}

≤
∑

δj≥δ

e−tj ;
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(ii) For all n ≥ n̄(δ), with probability at least

1 −
∑

δj≥δ

e−tj

the following inclusions hold:

∀σ ≥ δ FP (σ) ⊂ FPn(3/2σ) and FPn(σ) ⊂ FP (2σ).

(iii) For all n ≥ n̄(δ), there exists an event E of probability

P(E) ≥ 1 − 3
∑

δj≥δ

e−tj

such that on this event

Ūn(σ) ≤ Ûn(σ) ≤ Ũn(σ), σ ≥ δ.

We will also need a version of the statements of Proposition 2 that are uniform

in n ∈ M. To this end, assume that the numbers tj in the definitions of the functions

Ūn, Ûn, Ũn depend also on n. We will denote these numbers t
(n)
j . Assume that, for all j,

t
(n)
j

n is a nonincreasing function of n. Then the next statement immediately follows from

Theorem 2 and the union bound.

Proposition 3 There exists an event H of probability

P(H) ≥ 1 −
∑

n∈M

∑

j≥0

e−t
(n)
j

such that on this event, for all n ∈M,

EP (f̂n) ≤ δ̄n,

∀δ ≥ δ̄n FP (δ) ⊂ FPn(3/2δ) and FPn(δ) ⊂ FP (2δ).

Moreover, there exists an event E of probability

P(E) ≥ 1 − 3
∑

n∈M

∑

j≥0

e−t
(n)
j

such that on this event, for all n ∈M,

Ūn(δ) ≤ Ûn(δ) ≤ Ũn(δ), σ ≥ δ̄n

12



and

δ̄n ≤ δ̂n ≤ δ̃n.

As a consequence, we also have that for all δ ∈ (0, 1]

n̄(δ) ≤ n̂(δ) ≤ ñ(δ).

The simplest choice of the numbers t
(n)
j , in the case when M = {2k : k ≥ 0} and

δj = 2−j , j ≥ 0, is

t
(n)
j = 2 log(log2 n+ 1) + 2 log(j + 1) + log

1

α
+ log(12), j ≥ 0, n ∈M,

where α ∈ (0, 1). With this choice, all the claims of Proposition 3 hold with a guaranteed

probability at least 1 − α.

The main conclusion one can draw from Proposition 3 is that the sample size needed

to achieve the desired “accuracy of learning” δ (i.e., to “learn” a function for which the

excess risk is smaller than δ) can itself be learned from the data. More precisely, the

estimator n̂(δ) of the required sample size can be computed sequentially by increasing

the sample size n gradually, computing for each n the data dependent excess risk bound

δ̂n and stopping as soon as δ̂n ≤ δ. With a high probability, the stopping time n̂(δ)

provides a “correct” estimate of the sample size (up to a numerical constant) in the

sense that it is between two distribution dependent estimates (n̄(δ) and ñ(δ)) that are

typically of the same order of magnitude (up to numerical constants). At the same time,

the sample size n̂(δ) is sufficient for estimating the σ-minimal sets of the true risk by

the σ-minimal sets of the empirical risk for all σ ≥ δ (in the sense of the inclusions

of Proposition 3). These facts will play a crucial role in our design of active learning

methods in the next section.

3 Sequential Active Learning

We first describe a simplified (non-adaptive) version of active learning in which it is

assumed that the minimal sample size n̄(δ) needed to achieve the desired “accuracy of

learning” of the order δ is given. As before, suppose that {δk}k≥0 is a nonincreasing

sequence of positive numbers with δ0 = 0. Denote n̄k := n̄(δk), k ≥ 1. Let c > 0 be a

numerical constant that will be specified later.

Algorithm 1

13



F̂0 := F ;

for k = 1, 2, . . . ,

Âk :=
{

x : supf,g∈F̂k−1
|f(x) − g(x)| > cδk

}

;

P̂k := 1
n̄k

∑n̄k

j=1 IÂk
(Xj)δXj

;

F̂k := F̂k−1
⋂

FP̂k
(3δk);

end

The set Âk defined at each iteration of the algorithm is viewed as a set of “active

examples” (or “active set”). The examples Xj ∈ Âk are needed to compute the “active

empirical measure” P̂k. The underlying assumption is that there exists a “base algorithm”

that computes the δ-minimal set

FQ(δ) :=

{

f : EQ(f) := Qf − inff∈FQf ≤ δ

}

for an arbitrary discrete measure Q with a finite number of atoms. This algorithm is

used to compute the set FP̂k
(3δk). In principle, it would be enough only to ensure that,

given δ > 0 and measure Q, the “base algorithm” outputs a set F̄Q(δ) such that

FQ(c1δ) ⊂ F̄Q(δ) ⊂ FQ(c2δ)

for some numerical constants 0 < c1 < c2. However, to simplify the notations, we will

assume that c1 = c2 = 1.

Of course, in reality, Algorithm 1 stops after a finite number of iterations. A

possible choice of the number of iterations could be L :=
[

log2(1/δ)
]

for some “desired

accuracy” of learning δ ∈ (0, 1). It means that the algorithm stops when δj becomes

smaller than δ. Let ν(δ) denote the total number of active examples utilized by the

algorithm in the first L iterations. Then

ν(δ) ≤
∑

δk≥δ

n̄k
∑

j=1

IÂk
(Xj).

Denote

A(δ) :=
{

x : sup
f,g∈F(8δ)

|f(x) − g(x)| > cδ
}

and

π(δ) := P (A(δ)).

The following statement will be easily proved by induction.

14



Theorem 4 In the definition of Âk, choose c = 1. With probability at least

1 −
∑

n∈M

∑

j≥0

e−t
(n)
j ,

the following inclusions hold for the classes F̂k output by Algorithm 1: for all k ≥ 0

FP (δk) ⊂ F̂k ⊂ FP (8δk). (3.1)

Also, for all t ≥ 1 and all δ ∈ (0, 1], with probability at least

1 −
∑

n∈M

∑

j≥0

exp{−t
(n)
j } −

∑

δj≥δ

exp{−n̄(δj)π(δj)t log t}
]

the following bound holds:

ν(δ) ≤ et
∑

δj≥δ

n̄(δj)π(δj).

Proof. The inclusions (3.1) obviously hold for k = 0. Assuming that, for all j < k,

FP (δj) ⊂ F̂j ⊂ FP (8δj),

we will prove that the same inclusions hold also for k. Let H be the event of probability

at least

1 −
∑

n∈M

∑

j≥0

e−t
(n)
j

defined in Proposition 3. By the induction assumption,

FP (δk) ⊂ FP (δk−1) ⊂ F̂k−1

and, by the definition of Âk with c = 1, we have for all f, g ∈ F̂k−1,

|Pn̄k
(f − g) − P̂k(f − g)| =

∣

∣

∣

∣

n̄−1
k

n̄k
∑

i=1

(f − g)(Xi) − n̄−1
k

∑

i:Xi∈Âk

(f − g)(Xi)

∣

∣

∣

∣

=

∣

∣

∣

∣

n̄−1
k

∑

i:Xi 6∈Âk

(f − g)(Xi)

∣

∣

∣

∣

≤ δk.

We can conclude that, for all f ∈ FP (δk),

∣

∣

∣
EPn̄k

(f) − EP̂k
(f)

∣

∣

∣
≤ δk.
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Also, by the inclusions of Proposition 3 and the definition of n̄k = n̄(δk), we have on the

event H that

FP (δk) ⊂ FPn̄k
(2δk).

Hence, for all f ∈ FP (δk),

EPn̄k
(f) ≤ 2δk and EP̂k

(f) ≤ 3δk.

This implies the inclusion

FP (δk) ⊂ F̂k−1

⋂

FP̂k
(3δk) = F̂k.

On the other hand, since F̂k ⊂ F̂k−1, we have, for all f ∈ F̂k,

∣

∣

∣
EPn̄k

(f) − EP̂k
(f)

∣

∣

∣
≤ δk.

Since for all f ∈ F̂k, EP̂k
(f) ≤ 3δk, we also have EPn̄k

(f) ≤ 4δk. Thus, using again the

inclusions of Proposition 3, we get

F̂k ⊂ FPn̄k
(4δk) ⊂ FP (8δk),

proving the inclusions (3.1)

To prove the bound on ν(δ), note that on the event E, where the inclusions (3.1)

hold for all k such that δk ≥ δ, we have

Âk ⊂ A(8δk).

Hence, on the event E,

ν(δ) ≤
∑

δk≥δ

νk,

where

νk :=

n̄k
∑

j=1

IA(δk)(Xj).

Clearly, νk is a binomial random variable with parameters n̄k and π(δk). Therefore, we

have

P{νk ≥ s} ≤

(

en̄kπ(δk)

s

)s

(see, e.g., Dudley (1999), p. 16). Taking s := etn̄kπ(δk) yields

P

{

νk ≥ etn̄kπ(δk)
}

≤ exp{−n̄kπ(δk)t log t}.
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Applying the union bound, we get

P

{

ν(δ) ≥ et
∑

δk≥δ

n̄kπ(δk)

}

≤ P(Ec) +
∑

δk≥δ

exp{−n̄kπ(δk)t log t}.

Since

P(Ec) ≤
∑

δj≥δ

e−tj ,

the result follows.

The simplest way to make the method data dependent is to replace in Algorithm

1 the sample sizes n̄k = n̄(δk) by their estimates n̂k := n̂(δk), k ≥ 1. and to redefine P̂k

in the iterative procedure for Âk, P̂k and F̂k as follows:

P̂k :=
1

n̂k

n̂k
∑

j=1

IÂk
(Xj)δXj

.

This modification of Algorithm 1 will be called Algorithm 2. The following

statement can be proved quite similarly to Theorem 4 (using Proposition 3).

Recall that L :=
[

log2(1/δ)
]

and ν(δ) denotes the number of active examples utilized

by the algorithm in the first L iterations.

Theorem 5 With probability at least

1 − 3
∑

j≥0

∑

n∈M

e−t
(n)
j ,

the following inclusions hold for the classes F̂k output by Algorithm 2: for all k ≥ 0,

FP (δk) ⊂ F̂k ⊂ FP (8δk).

Moreover, for all t ≥ 1 and for all δ ∈ (0, 1], with probability at least

1 − 3
∑

j≥0

∑

n∈M

exp{−t
(n)
j } −

∑

δj≥δ

exp{−ñ(δj)π(δj)t log t}

the following bound holds:

ν(δ) ≤ et
∑

δj≥δ

ñ(δj)π(δj).
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Note that in this version of the algorithm all the training examples Xj (not only the

examples in the active sets Âk) are used to determine the sample sizes n̂k. So, from this

point of view, Algorithm 2 can not be viewed as really “active”. However, it is easy

to see that in a more concrete framework of prediction problems (such as, for instance,

the binary classification) one can modify the definitions of the localized Rademacher

complexities and of the sample sizes n̂k in such a way that they depend only on the design

points, but not on the response variables (labels). Thus, in the cases when sampling the

design points is “cheap” and only assigning the labels to them is “expensive” (which is

a common motivational assumption in the literature on active learning), the algorithms

of this type make some sense (see Section 4 for more details).

It is more interesting, however, that even in the abstract framework of empirical

risk minimization it is possible to change the definition of Rademacher complexities and

the estimates of the sample sizes based on them so that only the active examples that

belong to the sets Âk are being used in the computation. We will describe such a data

driven algorithm of active learning below.

Let δj := 2−j , j ≥ 0. As before, we will define iteratively data dependent function

classes F̂k beginning with F̂0 := F that provide estimates of the δ-minimal sets FP (δ)

for sufficiently small values of δ and we set

Âk :=
{

x : sup
f,g∈F̂k−1

|f(x) − g(x)| > cδk

}

with some constant c > 0.

Define

P̂ (k)
n := n−1

n
∑

j=1

IÂk
(Xj)δXj

and

R̂(k)
n (f) := n−1

n
∑

j=1

εjf(Xj)IÂk
(Xj).

Denote

Û (k)
n := K̂

[

sup
f,g∈F̂k−1

∣

∣

∣
R̂(k)

n (f − g)
∣

∣

∣
+D

P̂
(k)
n

(F̂k−1)

√

t
(n)
k

n
+
t
(n)
k

n

]

and define iteratively a nondecreasing data dependent sequence n̂k :

n̂k := min
{

n ∈M,n ≥ n̂k−1 : Û (k)
n ≤

1

2
δk+1

}

with the initial condition n̂0 := infM.

18



Note that the following iterative relationships hold for the distribution dependent

sample sizes n̄k := n̄(δk+1) and ñk := ñ(δk+1) :

n̄k = min
{

n ∈M,n ≥ n̄k−1 : Ūn(δk) ≤
1

2
δk+1

}

, n̄0 := infM

and

ñk = min
{

n ∈M,n ≥ ñk−1 : Ũn(δk) ≤
1

2
δk+1

}

, ñ0 := infM.

(which easily follows from the definitions of n̄(δ), ñ(δ)).

We will write, for brevity, P̂k := P̂
(k)
n̂k
. With these definitions and notations, we can

define F̂k iteratively exactly as before:

F̂k := F̂k−1

⋂

FP̂k
(3δk).

In short, the algorithm can be described as follows:

Algorithm 3

F̂0 := F ;

for k = 1, 2, . . . ,

Âk :=
{

x : supf,g∈F̂k−1
|f(x) − g(x)| > cδk

}

;

n̂k := min
{

n ∈M,n ≥ n̂k−1 : Û
(k)
n ≤ 1

2δk+1

}

;

F̂k := F̂k−1
⋂

FP̂k
(3δk);

end

The properties of Algorithm 3 are summarized in the following theorem.

Theorem 6 There exist numerical constants c in the definition of the active sets Âk,

K̂ in the definition of Û
(k)
n and K̃, c̃ in the definition of the function Ũn such that the

following holds. With probability at least

1 − 3
∑

j≥0

∑

n∈M

e−t
(n)
j ,

the following inequalities and inclusions hold for all k ≥ 0 :

n̄k ≤ n̂k ≤ ñk,

FP (δk) ⊂ F̂k ⊂ FP (8δk).
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Moreover, for all t ≥ 1, with probability at least

1 − 3
∑

j≥0

∑

n∈M

exp{−t
(n)
j } −

∑

δj≥δ

exp{−ñ(δj+1)π(δj)t log t}

the following bound holds:

ν(δ) ≤ et
∑

δj≥δ

ñ(δj+1)π(δj).

Proof. There exists an event E of probability at least

1 − 3
∑

n∈M

∑

j≥0

e−t
(n)
j

on which the following holds. For all k and for all n ∈M

K̂

[

sup
f,g∈FP (8δk−1)

∣

∣

∣
Rn(f − g)

∣

∣

∣
+DPn(FP (8δk−1))

√

t
(n)
k

n
+
t
(n)
k

n

]

≤
1

2
Ũn(δk) (3.2)

and

K̂

[

sup
f,g∈FP (δk−1)

∣

∣

∣
Rn(f − g)

∣

∣

∣
+DPn(FP (δk−1))

√

t
(n)
k

n
+
t
(n)
k

n

]

≥ 2Ūn(δk) (3.3)

with properly chosen constants in the definitions of the functions Ūn, Ũn and constant

K̂. At the same time, on the same event E, for all n ∈M,n ≥ n̄(δ) and all σ ≥ δ,

FP (σ) ⊂ FPn(2σ) and FPn(σ) ⊂ FP (2σ). (3.4)

To construct such an event, first consider the event H of Proposition 3 on which the

inclusions (3.4) hold. Then define

Ek,n :=

{

K̂

[

sup
f,g∈FP (8δk−1)

∣

∣

∣
Rn(f − g)

∣

∣

∣
+DPn(FP (8δk−1))

√

t
(n)
k

n
+
t
(n)
k

n

]

≤
1

2
Ũn(δk)

}

and

E′
k,n :=

{

K̂

[

sup
f,g∈FP (δk−1)

∣

∣

∣
Rn(f − g)

∣

∣

∣
+DPn(FP (δk−1))

√

t
(n)
k

n
+
t
(n)
k

n

]

≥ 2Ūn(δk)

}

.

Using the “statistical version” of Talagrand’s concentration inequality (Theorem 3) one

can show that with a proper choice of K̂ and the constants in the definitions of the

functions Ūn, Ũn,

P(En,k) ≤ 1 − e−t
(n)
k , P(E′

n,k) ≥ 1 − e−t
(n)
k
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for all k ≥ 0 and for all n ∈M. Define

E :=
⋂

k≥0,n∈M

(En,k ∩E′
n,k) ∩H.

Then

P(E) ≥ 1 − 3
∑

n∈M

∑

j≥0

e−t
(n)
j

and all the desired properties hold on the event E.

We will now show by induction that, on the event E for k = 0, 1, . . .

n̄k ≤ n̂k ≤ ñk,

FP (δk) ⊂ F̂k ⊂ FP (8δk)

and also for k = 1, 2, . . . and for all n ∈M

2Ūn(δk) −
δk+1

2
≤ Û (k)

n ≤
1

2

[

Ũn(δk) +
δk+1

2

]

. (3.5)

By the definitions, the claims are obviously true for k = 0. Assume that they have been

proved up to k − 1. By this induction assumption, we have F̂k−1 ⊂ FP (8δk−1) and, by

the definition of the set Âk,

sup
f,g∈F̂k−1

∣

∣

∣
R̂(k)

n (f − g)
∣

∣

∣
≤ sup

f,g∈F̂k−1

∣

∣

∣
Rn(f − g)

∣

∣

∣
+ cδk

and

D2

P̂
(k)
n

(F̂k−1) ≤ D2
Pn

(F̂k−1) + c2δ2k.

This implies the following upper bound on Û
(k)
n :

Û (k)
n ≤ K̂

[

sup
f,g∈FP (8δk−1)

∣

∣

∣
Rn(f − g)

∣

∣

∣
+DPn(FP (8δk−1))

√

t
(n)
k

n
+
t
(n)
k

n
+ cδk + cδk

√

t
(n)
k

n

]

.

Applying to the last term the inequality ab ≤ (a2 + b2)/2 and taking into account the

fact that δk ≤ 1, it is easy to deduce from this that with c satisfying the condition

K̂c+ K̂2c2/2 ≤ 1/8,

we have

Û (k)
n ≤ K̂

[

sup
f,g∈FP (8δk−1)

∣

∣

∣
Rn(f − g)

∣

∣

∣
+DPn(FP (8δk−1))

√

t
(n)
k

n
+
t
(n)
k

n

]

+ δk+1/4.
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Quite similarly, using the inclusion FP (δk−1) ⊂ F̂k−1 that also holds under the induction

assumption, one can show that with a proper choice of constant c in the definition of the

set Âk

Û (k)
n ≥ K̂

[

sup
f,g∈FP (δk−1)

∣

∣

∣
Rn(f − g)

∣

∣

∣
+DPn(FP (δk−1))

√

t
(n)
k

n
+
t
(n)
k

n

]

− δk+1/2.

Combining this with bounds (3.2) and (3.3) immediately implies (3.5).

Applying (3.5) to n = n̂k, we get

2Ūn̂k
(δk) −

δk+1

2
≤ Û

(k)
n̂k

≤
δk+1

2
,

which yields

Ūn̂k
(δk) ≤

δk+1

2
.

We also have n̂k ≥ n̂k−1 ≥ n̄k−1 (by the induction assumption). By the definition of n̄k,

this implies that n̂k ≥ n̄k.

On the other hand, denote n̂−k the element of the ordered set M preceding n̂k. We

will use inequality (3.5) with n = n̂−k . It gives

Û
(k)

n̂−

k

≤
1

2

[

Ũn̂−

k
(δk) +

δk+1

2

]

. (3.6)

If it happened that n̂−k < n̂k−1, then we must have n̂k = n̂k−1, which, by the induction

assumption, implies that n̂k = n̂k−1 ≤ ñk−1 ≤ ñk. If n̂−k ≥ n̂k−1, then the definition of

n̂k implies that

Û
(k)

n̂−

k

>
δk+1

2
,

which together with (3.6) implies that

Ũn̂−

k
(δk) >

δk+1

2
.

But, if n̂k > ñk, then n̂−k ≥ ñk, which would imply that

Ũñk
(δk) >

δk+1

2

(since for all δ, Ũn(δ) is a nonincreasing function of n). The last inequality contradicts

the definition of ñk implying that n̂k ≤ ñk.

The proof of the inclusions

FP (δk) ⊂ F̂k ⊂ FP (8δk)
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and the derivation of the bound on ν(δ) repeat the argument of Theorem 4.

Remark. Note that in the bounds on ν(δ) of theorems 4, 5 and 6 one can replace

functions π(δ), n̄(δ) and ñ(δ) by arbitrary upper bounds (with the same change in the

bounds on the probability).

4 Active Learning in Binary Classification

Let (X,Y ) be a random couple with values in S × {−1, 1} and with distribution P,

where (S,A) is an arbitrary measurable space. In binary classification problems, the

first component X is viewed as an observable instance and the second component Y

is an unobservable “label”. The value of Y is to be predicted based on an observation

of X and on the training data (X1, Y1), . . . , (Xn, Yn) consisting of n independent copies

of (X,Y ). Measurable functions g : S 7→ {−1, 1} are called (binary) classifiers. Let ℓ :

{−1, 1}×{−1, 1} 7→ {0, 1} be the binary loss function ℓ(y, u) := I(y 6= u), and, as before,

(ℓ•g)(x, y) := ℓ(y, g(x)) be the “loss” of classifier g for the example (x, y) ∈ S×{−1, 1}.

The quantity

P (ℓ • g) = P{(x, y) : y 6= g(x)} = P{Y 6= g(X)}

is called the generalization error, or the risk of g. We still denote η(x) := E(Y |X = x)

the regression function. It is well known that the minimum of the generalization error

over the set of all binary classifiers is attained at the Bayes classifier

g∗(x) = sign(η(x)).

We will assume in what follows that G is a class of binary classifiers such that g∗ ∈ G.

For a binary classifier g, define its excess risk as

EP (ℓ • g) := P (ℓ • g) − P (ℓ • g∗).

The following formula is well known (see, e.g., Devroye, Györfi and Lugosi (1996), The-

orem 2.2).

EP (ℓ • g) =

∫

{g 6=g∗}
|η(x)|Π(dx), (4.1)

where Π is the marginal distribution of X.

A standard approach to learning the Bayes classifier is based on the empirical risk

minimization:

ĝ := argming∈GPn(ℓ • g) = argming∈GPn{(x, y) : y 6= g(x)} =
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argming∈Gn
−1

n
∑

j=1

I(Yj 6= g(Xj)),

where Pn denotes the empirical distribution based on the training data (X1, Y1), . . . , (Xn, Yn)

(we will also use the notation Πn for the empirical distribution based on (X1, . . . ,Xn)).

If F := ℓ•G := {ℓ•g : g ∈ G} denotes the loss class, then we are in the framework of

abstract empirical risk minimization of sections 2,3 and general results of these sections

can be now specialized for the classification context.

It is natural to characterize the quality of the classifier ĝ in terms of its excess risk

EP (ℓ • ĝ) and to study how it depends on the complexity of the class G as well as on

the complexity of the classification problem itself. The simplest complexity assumption

on the class G is that it is a VC-class of binary functions of VC-dimension V (in other

words, C :=
{

{x : g(x) = +1 : g ∈ G}
}

is a VC-class of sets of VC-dimension V ). Under

this assumption, a well known result, essentially due to Vapnik and Chervonenkis, is

that, for some constant K > 0 and for all t > 0, with probability at least 1 − e−t

EP (ℓ • ĝ) ≤ K

[

√

V

n
+

√

t

n

]

.

In principle, this bound is minimax optimal, but it can be significantly improved for

special families of distributions P under further assumptions on the complexity of the

classification problem. For instance, the following Massart’s low noise assumption

is frequently used: for some constant h ∈ (0, 1]

|η(x)| ≥ h, x ∈ S.

The parameter h is a characteristic of the level of noise in binary labels Yj . In other words,

it is a simple measure of complexity of a binary classification problem. The following

theorem is a version of the result proved by Massart and Nedelec (2006):

Theorem 7 There exists a constant K > 0 such that, for all t > 0, with probability at

least 1 − e−t

EP (ℓ • ĝ) ≤ K

[

V

nh
log

(nh2

V

)

+
t

nh

]

∧

[

√

V

n
+

√

t

n

]

.

This upper bound on the excess risk is optimal in a minimax sense (as it was also

shown by Massart and Nedelec (2006)). However, it still can be refined using the following

function τ (which is a local version of Alexander’s capacity function introduced in the
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80s and used in the theory of ratio type empirical processes, see Giné and Koltchinskii

(2006) and references therein). Define

Gδ := {g ∈ G : Π{x : g(x) 6= g∗(x)} ≤ δ}

and let

τ(δ) :=

Π

{

x|∃g ∈ Gδ : g(x) 6= g∗(x)

}

δ
.

Clearly, the set Gδ consists of the classifiers from G that are in a neighborhood of size δ

of the Bayes classifier g∗ and the set

Dδ :=

{

x|∃g ∈ Gδ : g(x) 6= g∗(x)

}

consists of all the points x such that there exists a classifier g in the neighborhood Gδ that

“disagrees” with the Bayes classifier at x. The function τ(δ) is always upper bounded

by 1
δ . However, if it happens that the measure Π of the “disagreement set” Dδ is small

when δ is small, then τ(δ) might grow slower than 1
δ as δ → 0, or even it can be bounded

by a constant. If C := {{g = +1} : g ∈ G} and C∗ := {g∗ = +1}, then

τ(δ) =

Π

(

⋃

C∈C,Π(C△C∗)≤δ(C△C∗)

)

δ
,

so, roughly, τ(δ) shows how many disjoint sets C△C∗ of ”size” δ can be ”packed” in

the union of all such sets. For instance, if C is a class of convex sets in [0, 1]d, Π is the

Lebesgue measure in [0, 1]d and C∗ ∈ C,Π(C∗) > 0, then it can be shown that τ is

uniformly bounded by a constant (see Giné and Koltchinskii (2006)).

The following result was proved in Giné and Koltchinskii (2006).

Theorem 8 There exists a constant K > 0 such that, for all t > 0, with probability at

least 1 − e−t

EP (ℓ • ĝ) ≤ K

[

V

nh
log τ

( V

nh2

)

+
t

nh

]

∧

[

√

V

n
+

√

t

n

]

.

Clearly, this result implies the theorem of Massart and Nedelec (since τ(δ) ≤ 1
δ ).

The proof is based on applying subtle bounds for empirical processes discussed in Giné

and Koltchinskii (2006) to compute the excess risk bound δ̄n of Section 2. Then, the
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general result of Theorem 1 (see also Proposition 1) can be used to bound the excess

risk.

The case when τ(δ) is uniformly bounded from above by a constant τ0 is of special

interest. In this case, with probability at least 1 − e−t,

EP (ℓ • ĝ) ≤ K

[

V

nh
log τ0 +

t

nh

]

,

so the main term of the bound is of the order O( V
nh) and it does not contain logarithmic

factors depending on n and h. It will be convenient for our purposes to phrase this result

in a slightly different form. Namely, given δ ∈ (0, 1) and α ∈ (0, 1), denote

n(δ, α) := inf

{

n : P{EP (ĝn) ≥ δ} ≤ α

}

.

Then

n(δ, α) ≤ K

([

V

δh
log τ0 +

log(1/α)

δh

]

∧

[

V

δ2
+

log(1/α)

δ2

])

.

The quantity n(δ, α) shows how many training examples are needed to make the excess

risk of the classifier ĝ smaller than δ with a guaranteed probability of at least 1 − α.

It characterizes the sample complexity of passive learning. In the case of empirical risk

minimization over a VC-class with a bounded capacity function τ, the sample complexity

is of the order O(V
h

1
δ ).

The role of the capacity function is rather modest in the case of passive learning since

it only allows one to refine the excess risk and the sample complexity bounds by making

the logarithmic factors more precise. However, the capacity function τ happened to be

of crucial importance in the analysis of active learning methods of binary classification.

This function was rediscovered in active learning literature and its supremum is being

used there under the name of disagreement coefficient (see, e.g., Hanneke (2009a,

2009b) and references therein).

We will describe an active learning algorithm that is a specialized version of more

abstract Algorithm 3 of Section 3. As before, we denote δj := 2−j , j ≥ 0 and choose a

set M ⊂ N of natural numbers as well as nonnegative real numbers t
(n)
k , n ∈M,k ≥ 0.

Given a class G of binary classifiers, denote

GP (δ) :=

{

g : EP (ℓ • g) ≤ δ

}

, δ > 0.

These sets will be called δ-minimal sets of the true risk. Clearly, if F = ℓ •G, then under
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the notations of Section 2

FP (δ) =

{

ℓ • g : g ∈ GP (δ)

}

.

In principle, one can directly use Algorithm 3 for the class F . However, we will modify

it slightly in order to adapt it to the binary classification framework.

We will define iteratively data dependent function classes Ĝk that provide estimates

of the δ-minimal sets GP (δ). and also a nondecreasing data dependent sequence of esti-

mated sample sizes n̂k. It will be assumed that we have an access to an algorithm that,

given a discrete measure Q on S×{−1, 1} and δ > 0, computes the δ-minimal set GQ(δ)

of Q.

Several definitions and notations will be needed. Note that for the binary loss ℓ, for

all binary classifiers g1, g2 and for all δ ∈ (0, 1), the condition |ℓ(y, g1(x))−ℓ(y, g2(x))| ≥ δ

is equivalent to the condition g1(x) 6= g2(x). This leads to the following definition of sets

Âk (that are subsets of S, not of S × {−1, 1}). Assuming that Ĝk−1 has been already

defined, let

Âk :=
{

x : ∃g1, g2 ∈ Ĝk−1, g1(x) 6= g2(x)
}

be the set of all the points where at least two classifiers in Ĝk−1 disagree with each other.

This set will be used as a set of active design points at the k-th iteration.

Next define active empirical distributions based on the unlabeled examples {Xj}

and on the labeled examples {(Xj , Yj)} :

Π̂(k)
n := n−1

n
∑

j=1

IÂk
(Xj)δXj

and

P̂ (k)
n := n−1

n
∑

j=1

IÂk
(Xj)δ(Xj ,Yj)

For simplicity, we will also use the notation P̂k := P̂
(k)
n̂k
. Let

D̂(k)
n :=

1

2
sup

g1,g2∈Ĝk−1

(

Π̂(k)
n (g1 − g2)

2
)1/2

be the L2(Π̂
(k)
n )-diameter of the class Ĝk−1. Note that, if we literally followed the defini-

tions of Section 3, we would have to define the diameter as

sup
g1,g2∈Ĝk−1

(

P̂ (k)
n (ℓ • g1 − ℓ • g2)

2
)1/2

.
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However, it is easy to check that for all (x, y) ∈ S × {−1, 1} and all binary classifiers

g1, g2

(ℓ • g1)(x, y) − (ℓ • g2)(x, y) =
1

2
y(g2(x) − g1(x)),

which justifies the new definition. This simple identity also implies that the function

φn(δ), defined in Section 2 and used in the construction of the excess risk bounds, can

be upper bounded as follows:

φn(δ) ≤ 2E sup
f1,f2∈F(δ)

|Rn(f1 − f2)| = 2E sup
g1,g2∈G(δ)

|Rn(ℓ • g1 − ℓ • g2)| =

E sup
g1,g2∈G(δ)

∣

∣

∣

∣

n−1
n

∑

j=1

εjYj(g2(Xj) − g1(Xj))

∣

∣

∣

∣

,

where at the beginning we used the symmetrization inequality (see. e.g. van der Vaart

and Wellner (1996)). Note that, conditionally on (X1, Y1), . . . , (Xn, Yn), the distribution

of the random vector (ε1Y1, . . . , εnYn) is the same as the distribution of (ε1, . . . , εn).

Because of this,

φn(δ) ≤ E sup
g1,g2∈G(δ)

∣

∣

∣

∣

n−1
n

∑

j=1

εjYj(g2(Xj) − g1(Xj))

∣

∣

∣

∣

=

EE

(

sup
g1,g2∈G(δ)

∣

∣

∣

∣

n−1
n

∑

j=1

εjYj(g2(Xj) − g1(Xj))

∣

∣

∣

∣

∣

∣

∣

∣

(X1, Y1), . . . , (Xn, Yn)

)

=

EE

(

sup
g1,g2∈G(δ)

∣

∣

∣

∣

n−1
n

∑

j=1

εj(g2(Xj) − g1(Xj))

∣

∣

∣

∣

∣

∣

∣

∣

(X1, Y1), . . . , (Xn, Yn)

)

=

E sup
g1,g2∈G(δ)

|Rn(g1 − g2)|.

This simple observation allows one to replace the Rademacher complexities for the loss

class F = ℓ • G by the Rademacher complexities for the class G itself (and the proofs of

the excess risk bounds and other results cited in Section 2 go through with no changes).

Of course, the same applies to all the constructions and the results of Section 3.

Because of this, we now define the Rademacher complexity based only on the “ac-

tive” examples as

R̂(k)
n := sup

g1,g2∈Ĝk−1

∣

∣

∣

∣

n−1
n

∑

j=1

εj(g1 − g2)(Xj)IÂk
(Xj)

∣

∣

∣

∣

.
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Finally, denote

Û (k)
n := K̂

[

R̂(k)
n + D̂(k)

n

√

t
(n)
k

n
+
t
(n)
k

n

]

.

With these definitions and notations, we can now introduce the following modifica-

tion of Algorithm 3 of Section 3.

Algorithm 4

Ĝ0 := G;

for k = 1, 2, . . . ,

Âk :=
{

x : ∃g1, g2 ∈ Ĝk−1, g1(x) 6= g2(x)
}

;

n̂k := min
{

n ∈M,n ≥ n̂k−1 : Û
(k)
n ≤ 1

2δk+1

}

;

Ĝk := Ĝk−1
⋂

GP̂k
(3δk);

end

Remark. One can also use in Algorithm 4 the Rademacher complexities defined

as follows:

R̂(k)
n := sup

g1,g2∈Ĝk−1

∣

∣

∣

∣

n−1
n

∑

j=1

εj(g1 − g2)(Xj)

∣

∣

∣

∣

.

In this case, not only the active design points, but all the design points Xj are used

to compute the Rademacher complexities and to estimate the sample sizes n̂k. Note,

however, that the labels Yj are not involved in this computation, so, the algorithm still

can be viewed as “active”. The resulting algorithm is a modification of Algorithm 3

from Section 3.

In the case when G is a VC-class of VC-dimension V, we will choose M := {2k : k ≥

0}. We will also define

t
(n)
k := log(1/α) + 2 log(k + 1) + 2 log(log2 n+ 1) + log(24). (4.2)

This leads to the following result that is a corollary of Theorem 6.

Corollary 1 Let δ ∈ (0, 1). Suppose that Massart’s low noise assumption holds with

some h ∈ (0, 1). Suppose that

τ0 := sup
u∈(0,1]

τ(u) < +∞.
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Then there exists an event of probability at least 1−α such that the following inclusions

hold for the classes Ĝk output by Algorithm 4: for all k ≥ 0,

GP (δk) ⊂ Ĝk ⊂ GP (8δk). (4.3)

Also with probability at least 1 − α, the following bound on the number ν(δ) of active

training examples used by Algorithm 4 in the first L =
[

log2(1/δ)
]

iterations holds

with some numerical constant C > 0 :

ν(δ) ≤ C
τ0 log(1/δ)

h2

[

V log τ0 + log(1/α) + log log(1/δ) + log log(1/h)

]

.

In particular, it means that with probability at least 1 − α

GP (δ/2) ⊂ ĜL ⊂ GP (16δ).

Proof We only sketch the proof here, the missing details are not very complicated.

The result follows from Theorem 6, more precisely, from its modified version that takes

into account the slight changes we made in the definition of the Rademacher complexities.

The inclusions (4.3) follow from this theorem in a straightforward way. To prove the

bound on ν(δ), one has first to bound the quantity δ̃n. This computation was essentially

done by Giné and Koltchinskii (2006) (it actually leads to the bound of Theorem 8).

Namely, with some constant C1,

δ̄n ≤ C1

[

V

nh
log τ

( V

nh2

)

+
log(1/α) + log log n

nh

]

∧

[

√

V

n
+

√

log(1/α) + log log n

n

]

.

As a result, the following upper bound on ñ(σ), σ ≥ δ holds with some constant K1 :

ñ(σ) ≤ K1

([

V

σh
log τ0 +

log(1/α) + log log2(1/δ) + log log(1/h)

σh

]

∧

[

V

σ2
+

log(1/α) + log log2(1/δ)

σ2

])

.

Note that, under Massart’s low noise assumption, formula (4.1) for the excess risk

implies that for all binary classifiers g

E(ℓ • g) ≥ hΠ{x : g(x) 6= g∗(x)}.

Hence

F(σ) ⊂
{

ℓ • g : g ∈ Gσ/h

}

.
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For the sets A(σ) used in Theorems 6, this implies the following:

A(σ) =
{

(x, y) : sup
f1,f2∈F(8σ)

|f1(x, y) − f2(x, y)| > cσ
}

⊂

{

(x, y) : sup
g1,g2∈G(8σ/h)

|(ℓ • g1)(x, y) − (ℓ • g2)(x, y)| > cσ
}

=

{

x : ∃g1, g2 ∈ G(8σ/h) : g1(x) 6= g2(x)
}

×{−1, 1} =
{

x : ∃g ∈ G(8σ/h) : g(x) 6= g∗(x)
}

×{−1, 1}

(we used the assumption that g∗ ∈ G and, hence, g∗ ∈ G(8σ/h)). This implies, by the

definitions of the functions π and τ, that

π(σ) = P (A(σ)) ≤ Π
({

x : ∃g ∈ G(8σ/h) : g(x) 6= g∗(x)
})

≤
8σ

h
τ(8σ/h).

Using the definition of τ0, we conclude that for all σ ≥ δ π(σ) ≤ 8τ0
h σ. It remains to

substitute the bounds on ñ(σ) and π(σ) into the bound on ν(δ) of Theorem 6

ν(δ) ≤ et
∑

δj≥δ

ñ(δj+1)π(δj),

say, with t = e. This gives

ν(δ) ≤ e2
∑

δj≥δ

K1

([

V

δjh
log τ0 +

log(1/α) + log log2(1/δ) + log log(1/h)

δjh

]

8τ0
h
δj ,

which is bounded from above by

C
τ0 log(1/δ)

h2

[

V log τ0 + log(1/α) + log log(1/δ) + log log(1/h)

]

.

with a properly chosen numerical constant C. Also, it easily follows from the probability

estimates of Theorem 6 that the above bound on ν(δ) holds with probability at least

1 − α.

Finally, we discuss the properties of Algorithm 4 under Tsybakov’s low noise

assumption. Namely, we assume that for some γ > 0, for some constant B and for all

t > 0

Π{x : |η(x)| ≤ t} ≤ Btγ .

It is well known that under this assumption the following bound on the excess risk holds

for an arbitrary classifier g :

EP (ℓ • g) ≥ cΠκ({g 6= g∗}),
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where κ = 1+γ
γ and c is a constant that depends on B,κ. We will assume in this case

that G is not necessarily a VC-class, but it can be more massive. For instance, denote

N(G;L2(Πn); ε) the minimal number of L2(Πn)-balls of radius ε needed to cover G and

suppose that these covering numbers satisfy the condition:

logN(G;L2(Πn); ε) ≤

(

A

ε

)2ρ

, ε > 0.

for some ρ ∈ (0, 1] and some constant A > 0. Then, the following upper bound on the

excess risk of an empirical risk minimizer ĝ holds with probability at least 1 − e−t :

EP (ℓ • ĝ) ≤ K

((

1

n

)−κ/(2κ+ρ−1)

+

(

t

n

)κ/(2κ−1))

,

where K is a constant depending on κ, ρ,A,B. The bounds of this type were first proved

by Tsybakov (2004) (see also Koltchinskii (2006, 2008)). It easily follows from this bound

that in order to achieve the excess risk of order δ one needs O
(

δ−2+(1−ρ)/κ
)

training

examples.

We will now consider Algorithm 4 with M := {2k : k ≥ 0}, and with the real

numbers t
(n)
k defined by (4.2).

This leads to the following result that is also a corollary of Theorem 6.

Corollary 2 Let δ ∈ (0, 1). Suppose that Tsybakov’s low noise assumption holds with

some γ > 0 and B > 0. Let κ := 1+γ
γ . Suppose that

τ0 := sup
u∈(0,1]

τ(u) < +∞.

Then there exists an event of probability at least 1−α such that the following inclusions

hold for the classes Ĝk output by Algorithm 4: for all k with δk ≥ δ,

GP (δk) ⊂ Ĝk ⊂ GP (8δk). (4.4)

Also with probability at least 1 − α, the following bound on the number ν(δ) of active

training examples used by Algorithm 4 holds with some constant C > 0 depending on

κ, ρ,A,B :

ν(δ) ≤ Cτ0

[

δ−2+(2−ρ)/κ + δ−2+2/κ(log(1/α) + log log(1/δ))
]

.

The proof is similar to that of Corollary 1. In this case, the improvement comparing

with passive learning is by a factor δ1/κ.
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Remark. Alternatively, one can assume that the active learning algorithm stops as

soon as the specified number of active examples, say, n has been achieved. If L̂ denotes

the number of iterations needed to achieve this target, then 8δL̂ is an upper bound on

the excess risk of the classifiers from the set ĜL̂. Under the assumptions of Corollary 1,

inverting the bound on ν(δ) easily gives that δL̂ is upper bounded by

exp

{

−β
nh2

C2τ0

}

,

where

β :=
1

V log τ0 ∨ log(1/α) ∨ log(nh2/C2τ0) ∨ log log(1/h)

with some numerical constant C2. Thus, the excess risk of such classifiers tends to zero

exponentially fast as n→ ∞. This is the form in which the excess risk bounds in active

learning are usually stated in the literature (see, e.g., Hanneke (2009a, 2009b)). Similarly,

under the conditions of Corollary 2, the bound on δL̂ becomes

(

τ0
n

)κ/(2κ+ρ−2)
∨

(

τ0(log(1/α) + log log n)

n

)κ/(2κ−2)

.
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learning. In: Giné, E., Mason, D. and Wellner, J. (Eds) High Dimensional Probability II,443-459,
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