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Let

Yj = f∗(Xj ) + ξj , j = 1, . . . , n,

where X,X1, . . . ,Xn are i.i.d. random variables in a measurable space (S, A) with distribution � and
ξ, ξ1, . . . , ξn are i.i.d. random variables with Eξ = 0 independent of (X1, . . . ,Xn). Given a dictionary
h1, . . . , hN :S �→ R, let fλ :=∑N

j=1 λjhj , λ = (λ1, . . . , λN ) ∈ R
N . Given ε > 0, define

�̂ε :=
{

λ ∈ R
N : max

1≤k≤N

∣∣∣∣∣n−1
n∑

j=1

(
fλ(Xj ) − Yj

)
hk(Xj )

∣∣∣∣∣≤ ε

}

and

λ̂ := λ̂ε ∈ Argmin
λ∈�̂ε

‖λ‖�1 .

In the case where f∗ := fλ∗ , λ∗ ∈ R
N, Candes and Tao [Ann. Statist. 35 (2007) 2313–2351] suggested

using λ̂ as an estimator of λ∗. They called this estimator “the Dantzig selector”. We study the properties of
f
λ̂

as an estimator of f∗ for regression models with random design, extending some of the results of Candes
and Tao (and providing alternative proofs of these results).
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1. Introduction

Consider a regression model with random design,

Yj = f∗(Xj ) + ξj , j = 1, . . . , n,

where X,X1, . . . ,Xn are i.i.d. random variables in a measurable space (S, A) with distribution
� and ξ, ξ1, . . . , ξn are i.i.d. random variables with Eξ = 0, independent of (X1, . . . ,Xn) (in
what follows, it will be assumed that the noise ξj satisfies some further assumptions, such as, for
instance, ξj is N(0, σ 2)).

Let h1, . . . , hN be a dictionary consisting of N ≥ 2 functions from S into R. Define

fλ :=
N∑

j=1

λjhj , λ = (λ1, . . . , λN) ∈ R
N.
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Given ε > 0, define the set

�̂ε :=
{

λ ∈ R
N : max

1≤k≤N

∣∣∣∣∣n−1
n∑

j=1

(
fλ(Xj ) − Yj

)
hk(Xj )

∣∣∣∣∣≤ ε

}

and consider

λ̂ := λ̂ε ∈ Argmin
λ∈�̂ε

‖λ‖�1 .

Although the set of constraints �̂ε could be empty, we will see that for sufficiently large values
of ε, it is non-empty with a high probability (if �̂ε = ∅, one can define λ̂ε in an arbitrary way,
for instance, λ̂ε = 0).

In the case where f∗ = fλ∗ for some λ∗ ∈ R
N, Candes and Tao (2007) suggested using λ̂ε as

an estimator of the vector of coefficients λ∗. It is easy to see that the computation of λ̂ε reduces
to a linear programming problem:

N∑
j=1

uj → min,

subject to the constraints

uk ≥ 0, −uk ≤ λk ≤ uk, −ε ≤ n−1
n∑

j=1

(
fλ(Xj ) − Yj

)
hk(Xj ) ≤ ε, k = 1, . . . ,N.

Candes and Tao called this estimator “the Dantzig selector”. It is closely related to the �1-
penalization method (similar to what is called “LASSO” in statistical literature), which is based
on fitting the regression model by solving the following penalized empirical risk minimization
problem:

n−1
n∑

j=1

(
fλ(Xj ) − Yj

)2 + 2ε‖λ‖�1 =: Ln(λ) + 2ε‖λ‖�1 → min . (1.1)

Note that

�̂ε = {λ :‖∇Ln(λ)‖�∞ ≤ 2ε}
and that λ ∈ �̂ε is a necessary condition for λ to be a solution of (1.1).

We will establish several “sparsity oracle inequalities” for the Dantzig selector that are akin
to recent inequalities proved in Bunea, Tsybakov and Wegkamp (2007), van de Geer (2008) and
Koltchinskii (2009) in the case of �1- or �p-penalized empirical risk minimization. Candes and
Tao (2007) concentrated on the case of fixed design regression models, that is, when the design
points X1, . . . ,Xn are non-random. They proved their version of oracle inequalities under the
basic assumption that the design matrix A = (hj (Xi))i=1,n;j=1,N satisfies the so called uniform
uncertainty principle (UUP). To explain the meaning of this assumption, define

Jλ := supp(λ) := {j :λj �= 0}, λ ∈ R
N,
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and set d(λ) := card(Jλ). Define δd(�) to be the smallest δ > 0 such that for all λ ∈ R
N with

d(λ) ≤ d ,

(1 − δ)‖λ‖�2 ≤
∥∥∥∥∥

N∑
j=1

λjhj

∥∥∥∥∥
L2(�)

≤ (1 + δ)‖λ‖�2 .

If δd(�) < 1, then d-dimensional subspaces spanned on subsets of the dictionary and equipped
with either the L2(�)-norm, or the �2-norm on vectors of coefficients are “almost” isometric.
Given the dictionary {h1, . . . , hN }, it is natural to call the quantity δd(�) the restricted isometry
constant of dimension d with respect to measure �. If �n denotes the empirical measure based
on the design points X1, . . . ,Xn, then the UUP essentially means that the restricted isometry
constants δd(�n) (which are characteristics of the design matrix A) are sufficiently small for the
values of d comparable with the degree of sparsity of representation of f∗ in the dictionary (the
number of non-zero coefficients of λ∗). Candes and Tao (2007) stated that the UUP holds with
a high probability for some random design matrices such as the Gaussian ensemble (the matrix
with i.i.d. standard normal entries). It is also true for the Bernoulli or Rademacher ensemble (the
matrix with i.i.d. entries taking values +1 and −1 with probability 1/2), which relies on some
facts concerning random matrices that were established in other papers. In these examples, the
dictionaries are orthonormal systems in the space L2(�), which means that δd(�) = 0.

We here provide more direct proofs of oracle inequalities in the random design case that do not
rely on the bounds for random matrices and that apply to broader classes of design distributions,
in particular, to such distributions that the dictionary is not necessarily orthonormal in L2(�), but
rather satisfies a restricted isometry condition with respect to �. The next statement is a typical
example of what follows from the results of Sections 2 and 3 (specifically, from Corollary 6).

Proposition 1. Suppose that the random vector (h1(X), . . . , hN(X)) has normal distribution
with zero mean and that the noise ξ is N(0;σ 2). In addition, suppose that f∗ = fλ∗ , λ∗ ∈ R

N.

There then exist constants δ̄ ∈ (0,1) and C,D > 0 with the following property. For an arbitrary
A ≥ 1, denote by d̄ the largest d ≤ N/e − 1 such that

δ3d(�) ≤ δ̄

and

C

√
Ad log(N/d)

n
≤ 1/4.

Then, for all

ε ≥ Cσ max
1≤k≤N

‖hk‖L2(�)

√
A logN

n
,

the condition d(λ∗) ≤ d̄ implies that with probability at least 1 − N−A,

‖λ̂ − λ∗‖�2 ≤ D
√

d(λ∗)ε.
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Our approach is based on some facts concerning empirical and Rademacher processes and
it is close to the approach taken by Rudelson and Vershynin (2005) or Mendelson, Pajor and
Tomczak-Jaegermann (2007). At the same time, it relies only on rather elementary tools (sym-
metrization and contraction inequalities for Rademacher processes and Bernstein-type exponen-
tial bounds) and does not use more advanced techniques, such as concentration of measure and
generic chaining, which are used in the papers cited above. It is worth mentioning that Koltchin-
skii (2005, 2009) showed that if, in (1.1), one uses ‖λ‖p

�p
with p = 1 + c

logN
instead of ‖λ‖�1,

then one can establish a version of sparsity oracle inequalities without making strong assump-
tions on the dictionary such as a restricted isometry condition.

In the next section, we introduce some geometric characteristics of the dictionary that are of
importance in analysis of sparse recovery problems, and we prove general oracle inequalities for
the Dantzig selector in terms of these characteristics. Several corollaries, more special results and
some examples are given in Section 3. Finally, the Appendix contains some exponential bounds
for Rademacher processes needed in the proofs of the main results.

2. Main results

In what follows, we frequently use the Orlicz norm ‖ · ‖ψ for random variables, most often with

ψ = ψ1, ψ1(x) := e|x| −1 or ψ = ψ2, ψ2(x) := ex2 −1. For any convex non-decreasing function
ψ : R+ �→ R+ with ψ(0) = 0, it is defined as

‖η‖ψ := inf

{
C > 0 : Eψ

( |η|
C

)
≤ 1

}

(see Ledoux and Talagrand (1991), van der Vaart and Wellner (1996), de la Pena and Giné
(1998)).

For J ⊂ {1, . . . ,N}, let d(J ) := card(J ). Define

CJ :=
{
u ∈ R

N :
∑
j /∈J

|uj | ≤
∑
j∈J

|uj |
}
.

The set CJ is a cone in R
N (that is, u ∈ CJ implies that αu ∈ CJ for all α ≥ 0). It consists of

vectors u ∈ R
N such that the coordinates of u in the set J are dominant. Such cones of dominant

coordinates play an important role in the analysis of the Dantzig selector, LASSO and other
sparse recovery methods. The reason is that, for a “sparse” feasible vector λ ∈ �̂ε, the definition
of the Dantzig selector λ̂ε means that ‖λ̂ε‖�1 ≤ ‖λ‖�1, which implies that∑

j /∈Jλ

|λ̂ε
j − λj | =

∑
j /∈Jλ

|λ̂ε
j | ≤

∑
j∈Jλ

(|λj | − |λ̂ε
j |) ≤

∑
j∈Jλ

|λ̂ε
j − λj | (2.1)

and, hence, λ̂ε − λ ∈ CJλ. The proofs of various bounds on the norms of the vector λ̂ε − λ and
on the norms of the corresponding function

f
λ̂ε − fλ ∈ l.s.({h1, . . . , hN })
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are usually based on the comparison of these norms on the cone CJλ. We will introduce several
geometric characteristics of the dictionary that are needed for such a comparison.

Define

β(J ) := β(J ;�) := inf

{
β > 0 :∀λ ∈ CJ ,

∑
j∈J

|λj | ≤ β

∥∥∥∥∥
N∑

j=1

λjhj

∥∥∥∥∥
L1(�)

}

(set β(J ) = 0 if J = ∅). Note that if J �= ∅ and the functions h1, . . . , hN in the dictionary are
linearly independent in L1(�), then β(J ) < +∞.

Another quantity of interest is

β2(J ) := β2(J ;�) := inf

{
β > 0 :∀λ ∈ CJ ,

∑
j∈J

|λj |2 ≤ β2

∥∥∥∥∥
N∑

j=1

λjhj

∥∥∥∥∥
2

L2(�)

}
.

Note that β2(J ) = 1, J �= ∅ if the dictionary {h1, . . . , hN } is orthonormal. In Section 3, the
connection of these quantities to restricted isometry constants δd(�) is discussed. In particular,
it can be shown that if δ3d(�) is small enough, then, for all sets J of cardinality d, β2(J ) remains
properly bounded.

The following condition on the dictionary and on the distribution � is often of interest: for all
λ ∈ CJ ∥∥∥∥∥

N∑
j=1

λjhj

∥∥∥∥∥
L1(�)

≤
∥∥∥∥∥

N∑
j=1

λjhj

∥∥∥∥∥
L2(�)

≤ B(J )

∥∥∥∥∥
N∑

j=1

λjhj

∥∥∥∥∥
L1(�)

(2.2)

with some constant B(J ) > 0.

Note that the first inequality in (2.2) is trivial for all λ ∈ R
N. The second (non-trivial)

bound holds for all λ ∈ R
N, with a constant B > 0 that does not depend on N , and on

the set J in several interesting, but rather special, examples. In particular, this condition
holds when (h1(X), . . . , hN(X)) has mean zero normal distribution in R

N (for instance, if
h1(X), . . . , hN(X) are i.i.d. standard normal, which is the case for the Gaussian dictionary) or
when h1(X), . . . , hN(X) are i.i.d. Rademacher random variables (that is, hj (X) is +1 or −1 with
probability 1/2 each; this is the case for Bernoulli and Rademacher dictionaries). In the last case,
(2.2) holds by the Khinchine inequality. For Gaussian and Bernoulli dictionaries, all Lp-norms,
p ≥ 1, and even ψ1- and ψ2-norms of

∑N
j=1 λjhj are equivalent up to numerical constants (see

Bobkov and Houdré (1997) for a discussion of more general Khinchine-type inequalities and
their connections with isoperimetric constants). In general, the constant B might depend on N

and, since this constant is involved in the bounds on the performance of the Dantzig selector, it
is of some importance that condition (2.2) is supposed to hold only for all λ ∈ CJ (rather than
for all λ ∈ R

N ), and this condition is usually needed for a small set J.

Under the condition (2.2), the following bound is straightforward:

β(J ) ≤ B(J )β2(J )
√

d(J ). (2.3)

If β2(J ) is bounded by a small constant (as in the case of orthonormal dictionaries), then β(J )

is “small” for sets J of small cardinality d(J ).
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Recall the notation Jλ := supp(λ) and also recall that d(λ) := d(Jλ).

We will fix the values of ε > 0, A > 0 and C > 0, assume that

A logN

n
≤ 1

and define the following set:

�ε(A) :=
{

λ ∈ R
N :

∣∣〈fλ − f∗, hk〉L2(�)

∣∣

+ C
(‖(fλ − f∗)(X)hk(X)‖ψ1 + ‖ξhk(X)‖ψ1

)√A logN

n
≤ ε, k = 1, . . . ,N

}

(recall that ξ involved in the above definition is the noise of the regression model). Under the
condition

ε ≥ C max
1≤k≤N

‖ξhk(X)‖ψ1

√
A logN

n
,

which is necessary for the set �ε(A) to be non-empty, this set consists of vectors λ such that fλ

is, in a certain sense, a good approximation of f∗. The condition

max
1≤k≤N

∣∣〈fλ − f∗, hk〉L2(�)

∣∣≤ ε (2.4)

that follows from λ ∈ �ε(A) essentially means that fλ − f∗ is almost (“up to ε”) orthogonal to
the linear span of the dictionary, so fλ should be close to the projection of f∗ on the linear span.
In fact, (2.4) is a necessary condition of the minimum in the convex minimization problem

‖fλ − f∗‖2
L2(�) + 2ε‖λ‖�1 → min,

which can be viewed as a distribution-dependent version of the empirical risk minimization (1.1)
(recall that λ ∈ �̂ε is a necessary condition for (1.1)).

If fλ0, λ0 ∈ R
N is the orthogonal projection in L2(�) of the function f∗ onto the linear span

of the dictionary, then it is obvious that the condition

ε ≥ C max
1≤k≤N

(‖(fλ0 − f∗)(X)hk(X)‖ψ1 + ‖ξhk(X)‖ψ1

)√A logN

n

is sufficient for �ε(A) �= ∅ (since, under this condition, λ0 ∈ �ε(A)).
The next proposition shows that if �ε(A) �= ∅, then, with a high probability, �̂ε �= ∅.

Proposition 2. Suppose that �ε(A) �= ∅ and λ ∈ �ε(A). Then, with probability at least 1 −
2N−A, λ ∈ �̂ε.
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Proof. Indeed, for any such λ, we have∣∣∣∣∣n−1
n∑

j=1

(
fλ(Xj ) − Yj

)
hk(Xj )

∣∣∣∣∣
≤ ∣∣〈fλ − f∗, hk〉L2(�)

∣∣
+
∣∣∣∣∣n−1

n∑
j=1

[(
fλ(Xj ) − f∗(Xj )

)
hk(Xj ) − E

(
fλ(X) − f∗(X)

)
hk(X)

]∣∣∣∣∣
+
∣∣∣∣∣n−1

n∑
j=1

ξjhk(Xj )

∣∣∣∣∣.
Applying Lemma 3 from the Appendix to the second and third terms yields, with probability at
least 1 − 2N−A,

max
1≤k≤N

∣∣∣∣∣n−1
n∑

j=1

(
fλ(Xj ) − Yj

)
hk(Xj )

∣∣∣∣∣
≤ max

1≤k≤N

[∣∣〈fλ − f∗, hk〉L2(�)

∣∣+ C
(‖(fλ − f∗)(X)hk(X)‖ψ1 + ‖ξhk(X)‖ψ1

)√A logN

n

]

≤ ε,

by the definition of the set �ε(A). �

Also, define

�S(A) :=
{

λ ∈ R
N :Cβ(Jλ) max

1≤k≤N
‖hk(X)‖ψ1

√
A logN

n
≤ 1/4

}
.

We will interpret �S(A) as a set of “sparse” vectors since, in view of the bound (2.3), β(Jλ) has
some connection to the sparsity of λ. Of course, the fact that β(Jλ) is not too large is also related
to the properties of the dictionary. For dictionaries that are close to being orthonormal, �S(A)

would include sparse enough vectors in the usual sense.
Essentially, the bounds of Theorems 1 and 2 below show that if there exists a vector λ in

�̂ε (the set of constraints of the Dantzig selector) that is sufficiently “sparse”, then the Dantzig
selector will be in a small ball around λ in such norms as ‖·‖�1 and ‖·‖�2, or f

λ̂
will be in a small

ball around fλ in such norms as ‖ · ‖L1(�) and ‖ · ‖L2(�). The radius of this ball crucially depends
on the degree of sparsity of λ and also on the “well-posedness” of the dictionary characterized by
such quantities as β2 (see also Section 3 for a discussion of the connection of these quantities to
restricted isometry properties of the dictionary). The bounds also imply that the Dantzig selector
is adaptive to an unknown degree of the sparsity of the problem (at least in the case when the
dictionary is not very far from being orthonormal in L2(�)).
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Let

�̃ε(A) := �ε(A) ∩ �S(A).

This set will be interpreted in the next theorem as a set of oracle vectors and it will be assumed
that �̃ε(A) �= ∅. In particular, it means that ε must satisfy

ε ≥ C max
1≤k≤N

‖ξhk(X)‖ψ1

√
A logN

n

(which, of course, requires that ‖ξhk(X)‖ψ1 < +∞). The fact that λ ∈ �̃ε(A) implies that λ is
sparse in the sense that λ ∈ �S(A) and, at the same time, that fλ provides a reasonably good
approximation of f∗ in the sense that both (2.4) holds and

C‖(fλ − f∗)(X)hk(X)‖ψ1

√
A logN

n
≤ ε.

If �̃ε(A) = ∅, then there are no sparse vectors λ for which fλ approximates f∗ well, so, from
this point of view, the problem is not sparse.

First, we prove the following result.

Theorem 1. There exists a constant C in the definitions of �ε(A),�S(A) such that for all A ≥ 1
with probability at least 1 − N−A, the following bounds hold for all λ ∈ �̂ε ∩ �S(A) and for the
Dantzig selector λ̂:

‖f
λ̂
− fλ‖L1(�) ≤ 16β(Jλ)ε

and

‖λ̂ − λ‖�1 ≤ 32β2(Jλ)ε.

Under the assumption that �̃ε(A) �= 0, with the same probability,

‖f
λ̂
− f∗‖L1(�) ≤ inf

λ∈�̃ε(A)

[‖fλ − f∗‖L1(�) + 16β(Jλ)ε
]
,

and if, in addition, f∗ = fλ∗ , λ∗ ∈ R
N, then we also have

‖λ̂ − λ∗‖�1 ≤ inf
λ∈�̃ε(A)

[‖λ − λ∗‖�1 + 32β2(Jλ)ε].

Proof. Suppose that λ ∈ �̂ε ∩ �S(A). The proof of the first two bounds will be based on up-
per bounding ‖λ̂ − λ‖�1 in terms of ‖f

λ̂
− fλ‖L1(�) and vice versa. Combining these bounds

yields inequalities on both of the norms that can be solved, leading to the first two bounds of the
theorem.

Since λ ∈ �̂ε, (2.1) implies that λ̂ − λ ∈ CJλ and

‖λ̂ − λ‖�1 ≤
∑
j /∈Jλ

|λ̂j | +
∑
j∈Jλ

|λj − λ̂j | ≤ 2
∑
j∈Jλ

|λj − λ̂j | ≤ 2β(Jλ)‖fλ̂
− fλ‖L1(�). (2.5)



Dantzig selector and sparsity 807

We will now upper bound ‖f
λ̂
−fλ‖L1(�) in terms of ‖λ̂−λ‖�1, which will imply the result. We

start with the following, obvious, bound (we use the notation ν(f ) := ∫
f dν):

‖f
λ̂
− fλ‖L1(�) = ‖f

λ̂
− fλ‖L1(�n) + (� − �n)(|fλ̂

− fλ|)
(2.6)

≤ ‖f
λ̂
− fλ‖L1(�n) + sup

‖u‖�1 ≤1

∣∣(�n − �)(|fu|)
∣∣‖λ̂ − λ‖�1 .

We will separately bound the first and second terms of this bound. First, note that

‖f
λ̂
− fλ‖2

L1(�n) ≤ ‖f
λ̂
− fλ‖2

L2(�n) = 〈f
λ̂
− fλ,fλ̂

− fλ〉L2(�n)

=
N∑

k=1

(λ̂k − λk)〈fλ̂
− fλ,hk〉L2(�n) ≤ ‖λ̂ − λ‖�1 max

1≤k≤N

∣∣〈f
λ̂
− fλ,hk〉L2(�n)

∣∣.
Since both λ̂ ∈ �̂ε and λ ∈ �̂ε, we have

max
1≤k≤N

∣∣〈f
λ̂
− fλ,hk〉L2(�n)

∣∣
≤ max

1≤k≤N

∣∣∣∣∣n−1
n∑

j=1

(
fλ(Xj ) − Yj

)
hk(Xj )

∣∣∣∣∣+ max
1≤k≤N

∣∣∣∣∣n−1
n∑

j=1

(
f

λ̂
(Xj ) − Yj

)
hk(Xj )

∣∣∣∣∣≤ 2ε,

which implies that

‖f
λ̂
− fλ‖L1(�n) ≤

√
2ε‖λ̂ − λ‖�1 .

By Lemma 4 from the Appendix, with probability at least 1 − N−A (under the assumption
A logN ≤ n),

sup
‖u‖�1 ≤1

∣∣(�n − �)(|fu|)
∣∣≤ C max

1≤k≤N
‖hk‖ψ1

√
A logN

n
.

This yields the following bound (with probability at least 1 − N−A):

‖f
λ̂
− fλ‖L1(�) ≤

√
2ε‖λ̂ − λ‖�1 + C max

1≤k≤N
‖hk‖ψ1

√
A logN

n
‖λ̂ − λ‖�1 . (2.7)

Together with (2.5), this implies that

‖f
λ̂
− fλ‖L1(�) ≤

√
4εβ(Jλ)‖fλ̂

− fλ‖L1(�)

+ 2C max
1≤k≤N

‖hk‖ψ1

√
A logN

n
β(Jλ)‖fλ̂

− fλ‖L1(�).
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Recalling the definition of the set �S(A), we can guarantee that

2C max
1≤k≤N

‖hk‖ψ1

√
A logN

n
β(Jλ) ≤ 1/2,

which implies that

‖f
λ̂
− fλ‖L1(�) ≤ 2

√
4εβ(Jλ)‖fλ̂

− fλ‖L1(�),

and the first bound now follows. The second bound is also true, in view of (2.5).
To prove each of the remaining bounds, define λ̄ to be the vector for which the infimum in the

right-hand side of the bound is attained. By Proposition 2, with probability at least 1 − 2N−A,

we have λ̄ ∈ �̂ε ∩ �S(A). Therefore, we can use the first two bounds of the theorem and the
triangle inequality to complete the proof of the remaining bounds that now hold with probability
at least 1 − 3N−A.

It only remains to show that by adjusting the value of the constant C in the definitions of the
sets �ε(A) and �S(A), it is possible to ensure that the bounds hold with probability at least
1 − N−A, as was claimed. To this end, check that for c := log2 3 + 1 and all A ≥ c,N ≥ 2,

3N−A ≤ N−A/c.

Now, take A′ = A/c ≥ 1 and replace the constant C with C
√

c to show that the bounds hold with
probability at least 1 − N−A′

. �

Under the condition (2.2), the bound (2.3) holds and one can derive from Theorem 1 the
bounds expressed in terms of quantity β2, namely, replacing β(Jλ) in the inequalities of Theo-
rem 1 by the upper bound B(Jλ)β2(Jλ)

√
d(λ). However, below, we will give another version of

such a statement with bounds on the norms ‖ · ‖L2(�) and ‖ · ‖�2 , and with a slight improvement
of the logarithmic factor in the definition of the set of sparse vectors �S(A).

Define (with a minor abuse of notation)

β2(d) := β2(d;�) := max
{
β2(J ) :J ⊂ {1, . . . ,N}, d(J ) ≤ 2d

}
and

B(d) := max
{
B(J ) :J ⊂ {1, . . . ,N}, d(J ) ≤ d

}
.

Let d̄ denote the largest d ≤ N
e − 1 such that

Ad log(N/d)

n
≤ 1

and

CB(d)β2(d) sup
‖u‖�2 ≤1,d(u)≤d

‖fu‖ψ1

√
Ad log(N/d)

n
≤ 1/4.
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We redefine the set of “sparse” vectors as follows:

�S,2(A) := {λ ∈ R
N :d(λ) ≤ d̄}.

Let

�̃2
ε(A) := �ε(A) ∩ �S,2(A),

which will now play the role of an oracle set (that is, the set of sparse enough vectors that
approximate the target function f∗ reasonably well).

We will use the notation (
n

≤ k

)
=

k∑
j=0

(
n

j

)
.

Theorem 2. Suppose that condition (2.2) holds. There exists a constant C in the definitions of
�ε(A) and �S,2(A) such that for all A ≥ 1, with probability at least

1 − 5−d̄A

(
N

≤ d̄

)−A

,

the following bounds hold: ∀λ ∈ �̂ε ∩ �S,2(A)

‖f
λ̂
− fλ‖L2(�) ≤ 16B2(d(λ))β2(d(λ))

√
d(λ)ε

and

‖λ̂ − λ‖�2 ≤ 32B2(d(λ))β2
2 (d(λ))

√
d(λ)ε.

Suppose that �̃2
ε(A) �= ∅. Then, with probability at least 1 − N−A,

‖f
λ̂
− f∗‖L2(�) ≤ inf

λ∈�̃2
ε(A)

[‖fλ − f∗‖L2(�) + 16B2(d(λ))β2(d(λ))
√

d(λ)ε
]
.

Moreover, if, in addition, f∗ = fλ∗ , λ∗ ∈ R
N, then, also with the same probability,

‖λ̂ − λ∗‖�2 ≤ inf
λ∈�̃2

ε(A)

[‖λ − λ∗‖�2 + 32B2(d(λ))β2
2 (d(λ))

√
d(λ)ε

]
.

We will need the following well-known fact (see Candes and Tao (2005), proof of their Theo-
rem 1).

Lemma 1. Let u ∈ CJ . Define J0 := J and let J1 be the set of d coordinates in {1, . . . ,N} \ J0
for which the |uj |’s are the largest, J2 be the set of d coordinates in {1, . . . ,N} \ (J0 ∪ J1) for
which the |uj |’s are the largest, etcetera. Define u(k) := (uj : j ∈ Jk). Then, u =∑

k≥0 u(k) and

∑
k≥2

∥∥u(k)
∥∥

�2
≤
(∑

j∈J

|uj |2
)1/2

,
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which also implies that

‖u‖�2 ≤ 2

( ∑
j∈J0∪J1

|uj |2
)1/2

.

Proof. For all j ∈ Jk+1,

|uj | ≤ 1

d

∑
i∈Jk

|ui |,

implying that ( ∑
j∈Jk+1

|uj |2
)1/2

≤ 1√
d

∑
j∈Jk

|uj |.

Adding these inequalities for k = 1,2, . . . yields

∑
k≥2

∥∥u(k)
∥∥

�2
≤ 1√

d

∑
j /∈J

|uj | ≤ 1√
d

∑
j∈J

|uj | ≤
(∑

j∈J

|uj |2
)1/2

≤
( ∑

j∈J∪J1

|uj |2
)1/2

.

Thus, for u ∈ CJ ,

‖u‖�2 ≤ 2

( ∑
j∈J0∪J1

|uj |2
)1/2

. �

Proof of Theorem 2. This is a straightforward modification of the proof of Theorem 1. Suppose
that λ ∈ �̂ε ∩ �S,2(A). Instead of (2.6), we now use

‖f
λ̂
− fλ‖L1(�) = ‖f

λ̂
− fλ‖L1(�n) + (� − �n)(|fλ̂

− fλ|)
(2.8)

≤ ‖f
λ̂
− fλ‖L1(�n) + sup

‖u‖�2 ≤1,u∈CJλ

∣∣(�n − �)(|fu|)
∣∣‖λ̂ − λ‖�2 .

To bound ‖λ̂ − λ‖�2 , we observe (as in the proof of Theorem 1) that λ̂ − λ ∈ CJλ and apply
Lemma 1 to u = λ̂ − λ, J = Jλ:

‖λ̂ − λ‖�2 ≤ 2

( ∑
j∈J0∪J1

|λ̂j − λj |2
)1/2

≤ 2β2(d(λ))‖f
λ̂
− fλ‖L2(�). (2.9)

We will also use Lemma 6 to bound

sup
‖u‖�2 ≤1,u∈CJλ

∣∣(�n − �)(|fu|)
∣∣≤ C sup

‖u‖�2 ≤1,d(u)≤d̄

‖fu‖ψ1

√
Ad̄ log(N/d̄)

n
, (2.10)
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which holds with probability at least

1 − 5−d̄A

(
N

≤ d̄

)−A

.

The first term in the right-hand side of (2.8) is bounded as in the proof of Theorem 1

‖f
λ̂
− fλ‖L1(�n) ≤

√
2ε‖λ̂ − λ‖�1 (2.11)

and we then use

‖λ̂ − λ‖�1 ≤ 2
∑
j∈J

|λ̂j − λj | ≤ 2
√

d(λ)

( ∑
j∈J∪J1

|λ̂j − λj |2
)1/2

(2.12)
≤ 2β2(d(λ))

√
d(λ)‖f

λ̂
− fλ‖L2(�).

It remains to substitute bounds (2.9)–(2.12) into (2.8), to also use (2.2) and to solve the resulting
inequality with respect to ‖f

λ̂
− fλ‖L2(�) to obtain the first bound of the theorem.

To prove the second bound, it is enough to use (2.9) to obtain a bound on ‖λ̂ − λ‖�2 .

The remaining two bounds are proved the same way as in the proof of Theorem 1. �

Condition (2.2) required in Theorem 2 is rather restrictive. Moreover, since the ψ1-norm of
fu is involved in the definition of the set �S,2(A) of sparse vectors, one might need the equiv-
alence of the ψ1- and the L2-norms on the linear span of the dictionary in order to have a more
explicit way to describe the sparsity of the problem. Condition (2.2) is not needed in Theorem 1.
However, this condition is needed to bound the quantity β(J ) in terms of the quantity β2(J ),
the latter being much more convenient because of its simple relationships to various geometric
characteristics of the dictionary (see Section 3). So, in both cases, one must rely on condition
(2.2) and the class of examples to which the results apply is rather limited (such as Gaussian and
Rademacher dictionaries). Below, we give another version of sparsity oracle inequalities for the
Dantzig selector that does not have this drawback and which applies to a variety of dictionaries.
However, in this case, much more is required in terms of sparsity. In the orthonormal case, the
result applies only to oracle vectors λ with

d(λ) ≤ c

√
n

logN
.

A similar constraint was needed, for instance, in sparsity oracle inequalities for LASSO in the
paper by Bunea, Tsybakov and Wegkamp (2007). In Theorems 1 and 2, the oracle sets were
larger, including vectors λ with d(λ) comparable to n.

The set of “sparse” vectors is defined as

�S,3(A) :=
{

λ ∈ R
N :Cβ2

2 (Jλ)d(λ) max
1≤k,j≤N

‖hkhj‖ψ1

√
A logN

n
≤ 1/8

}



812 V. Koltchinskii

and the oracle set becomes

�̃3
ε(A) := �ε(A) ∩ �S,3(A).

Theorem 3. There exists a constant C in the definitions of �ε(A) and �S,3(A) such that for all
A ≥ 1 with probability at least 1 − N−A, the following bounds hold: ∀λ ∈ �̂ε ∩ �S,3(A)

‖f
λ̂
− fλ‖L2(�) ≤ 8β2(Jλ)

√
d(λ)ε,

‖λ̂ − λ‖�1 ≤ 16β2
2 (Jλ)d(λ)ε

and

‖λ̂ − λ‖�2 ≤ 16β2
2 (d(λ))

√
d(λ)ε.

Suppose that �̃3
ε(A) �= ∅. Then, with probability at least 1 − N−A,

‖f
λ̂
− f∗‖L2(�) ≤ inf

λ∈�̃3
ε(A)

[‖fλ − f∗‖L2(�) + 8β2(Jλ)
√

d(λ)ε
]
.

Moreover, if, in addition, f∗ = fλ∗ , λ∗ ∈ R
N, then, also with the same probability,

‖λ̂ − λ∗‖�1 ≤ inf
λ∈�̃3

ε(A)

[‖λ − λ∗‖�1 + 16β2
2 (Jλ)d(λ)ε

]

and

‖λ̂ − λ∗‖�2 ≤ inf
λ∈�̃3

ε(A)

[‖λ − λ∗‖�2 + 16β2
2 (d(λ))

√
d(λ)ε

]
.

Proof. This is similar to the proofs of Theorems 1 and 2. The following bounds are used for all
λ ∈ �̂ε ∩ �S,3(A):

‖λ̂ − λ‖�1 ≤ 2β2(Jλ)
√

d(λ)‖f
λ̂
− fλ‖L2(�),

‖λ̂ − λ‖�2 ≤ 2β2(d(λ))‖f
λ̂
− fλ‖L2(�),

and

‖f
λ̂
− fλ‖2

L2(�) ≤ ‖f
λ̂
− fλ‖2

L2(�n) + (� − �n)(|fλ̂
− fλ|2)

≤ 2ε‖λ̂ − λ‖�1 + sup
‖u‖�1 ≤1

∣∣(�n − �)(|fu|2)
∣∣‖λ̂ − λ‖2

�1
,

and then Lemma 5 is applied to bound the last term on the right-hand side. �

It is not our goal in this paper to study the fixed design case in detail. However, some results are
rather easy to obtain, in a manner similar to our derivations in the random design case (actually,
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with some simplifications). In particular, the following result holds. We will use a version of
β2(J ) with � replaced by the empirical measure �n (based on the design points):

β̂2(J ) := β2(J ;�n) and β̂2(d) := β2(d;�n).

Theorem 4. Suppose X1, . . . ,Xn are non-random design points in S and let �n be the empirical
measure based on X1, . . . ,Xn. Suppose, also, that f∗ = fλ∗ , λ∗ ∈ R

N. There exists a constant
C > 0 such that, for all A ≥ 1 and all

ε ≥ C‖ξ‖ψ2 max
1≤k≤N

‖hk‖L2(�n)

√
A logN

n
,

with probability at least 1 − N−A, the following bounds hold:

‖f
λ̂
− fλ∗‖L2(�n) ≤ 4β̂2(Jλ∗)

√
d(λ∗)ε,

‖λ̂ − λ∗‖�1 ≤ 8β̂2
2 (Jλ∗)d(λ∗)ε

and

‖λ̂ − λ∗‖�2 ≤ 8β̂2
2 (d(λ∗))

√
d(λ∗)ε.

Proof. This is, essentially, a simplified version of the arguments used in the proofs of Theorems
1 and 2. The following two bounds are obtained exactly as in the proof of Theorem 1:

‖f
λ̂
− fλ∗‖L2(�n) ≤

√
2ε‖λ̂ − λ∗‖�1 (2.13)

and

‖λ̂ − λ∗‖�1 ≤ 2β̂2(Jλ∗)
√

d(λ∗)‖f
λ̂
− fλ∗‖L2(�n). (2.14)

They hold if λ∗ ∈ �̂ε, which is equivalent to the condition

max
1≤k≤N

∣∣∣∣∣n−1
n∑

j=1

ξjhk(Xj )

∣∣∣∣∣≤ ε.

If ‖ξ‖ψ2 < +∞ and

ε ≥ C‖ξ‖ψ2 max
1≤k≤N

‖hk‖L2(�n)

√
A logN

n
,

then standard exponential bounds for sums of independent random variables and bounds on the
maximum of random variables in Orlicz spaces imply that with probability at least 1 − N−A,

λ∗ ∈ �̂ε.

It remains to combine (2.13) and (2.14) to prove that with probability at least 1 − N−A,

‖f
λ̂
− fλ∗‖L2(�n) ≤ 4β̂2(Jλ∗)

√
d(λ∗)ε
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and

‖λ̂ − λ∗‖�1 ≤ 8β̂2
2 (Jλ∗)d(λ∗)ε.

Arguing exactly as in the proof of Theorem 2 (in particular, using Lemma 1), one can add to this
that

‖λ̂ − λ∗‖�2 ≤ 8β̂2
2 (d(λ∗))

√
d(λ∗)ε. �

One can also obtain an upper bound on β̂2(J ), d(J ) = d in terms of fixed design versions of
restricted isometry constants (see Lemma 2, Corollary 6), which leads to Theorem 1 in Candes
and Tao (2007) (bounds on the performance of the Dantzig selector under the UUP). They also
proved a sharper oracle inequality in the case of random design that we are not going to reproduce
here. However, Corollary 3 in the next section provides a direct proof of a similar inequality in
the random design case (for orthonormal dictionaries).

3. Corollaries and remarks

Under the additional assumption

‖λ‖�2 ≤ B‖fλ‖L1(�), λ ∈ R
N, (3.1)

it is easy to establish a corollary of Theorem 1 that implies the main results of Candes and Tao
(2007) in the random design case. Assume that f∗ = fλ∗ , λ∗ ∈ R

N.

Define

�̄ε(A) := �ε(A) ∩
{

λ ∈ R
N :CB max

1≤k≤N
‖hk(X)‖ψ1

√
Ad(λ) logN

n
≤ 1/4

}
.

Corollary 1. Suppose that condition (3.1) holds. There then exists a constant C in the definition
of the set �̄ε(A) such that, for all A ≥ 1 and under the assumption �̄ε(A) �= ∅, with probability
at least 1 − N−A,

‖λ̂ − λ∗‖�2 ≤ inf
λ∈�̄ε(A)

[‖λ − λ∗‖�2 + 16B2
√

d(λ)ε
]
.

Proof. Under the assumption (3.1),∑
j∈J

|λj | ≤
√

d(J )‖λ‖�2 ≤ B
√

d(J )‖fλ‖L1(�),

implying that β(J ) ≤ B
√

d(J ). Therefore, �̄ε(A) ⊂ �̃ε(A). Denoting by λ̄ the value of λ that
minimizes the right-hand side of the bound of Corollary 1, the bound

‖f
λ̂
− fλ̄‖L1(�) ≤ 16β(Jλ̄)ε ≤ 16B

√
d(λ̄)ε
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follows from the first inequality of Theorem 1. This yields

‖λ̂ − λ̄‖�2 ≤ 16B2
√

d(λ̄)ε,

implying the result. �

If

ε ≥ C max
1≤k≤N

‖ξhk(X)‖ψ1

√
A logN

n
(3.2)

and the vector λ∗ is sufficiently sparse in the sense that

CB max
1≤k≤N

‖hk(X)‖ψ1

√
Ad(λ∗) logN

n
≤ 1/4, (3.3)

then Corollary 1 immediately implies that with probability at least 1 − N−A,

‖λ̂ − λ∗‖�2 ≤ 16B2
√

d(λ∗)ε.

It is enough to observe that, in this case, λ∗ ∈ �̄ε(A) and to use λ = λ∗ in the bound of the
corollary (without taking the infimum). By simple properties of Orlicz norms,

‖ξhk(X)‖ψ1 ≤ ‖ξ‖ψ2‖hk(X)‖ψ2 . (3.4)

(Indeed, for random variables η1, η2 such that ‖ηi‖ψ2 ≤ 1, the following holds by the definitions
of the norms:

‖η1η2‖ψ1 ≤ ‖(η2
1 + η2

2)/2‖ψ1 ≤ (‖η2
1‖ψ1 + ‖η2

2‖ψ1)/2 ≤ (‖η1‖ψ2 + ‖η2‖ψ2)/2 ≤ 1.

This immediately implies that for all η1, η2,

‖η1η2‖ψ1 ≤ ‖η1‖ψ2‖η2‖ψ2 .)

If ξ is a normal random variable with mean zero and variance σ 2, the ψ2-norm of ξ coincides
with σ (up to a numerical constant). So, under the assumption that

‖hk(X)‖ψ2 ≤ 1, k = 1, . . . ,N,

conditions (3.2) and (3.3) take the following form:

ε ≥ Cσ

√
A logN

n
(3.5)

and

CB

√
Ad(λ∗) logN

n
≤ 1/4. (3.6)
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The case σ = 0 (no noise in the regression model) is of special interest. In this case,
‖ξhk(X)‖ψ1 = 0 and one can use ε = 0 in the definition of the Dantzig selector. The follow-
ing result holds.

Corollary 2. Suppose that ξ = 0 and ‖hk(X)‖ψ1 ≤ 1. Let ε = 0. If condition (3.1) and sparsity
condition (3.6) hold, then, with probability at least 1 − N−A, λ̂ = λ∗.

Moreover, if we assume that both ψ1- and L1-norms on the linear span of the dictionary are
equivalent, up to numerical constants (independent of N ), to the �2-norm in the space of vectors
of coefficients (which is true, for instance, for Gaussian and Rademacher dictionaries), then the
sparsity assumption (3.6) can be replaced by a slightly weaker assumption d(λ∗) ≤ d̄, where d̄

satisfies the condition √
Ad̄ log(N/d̄)

n
≤ c, (3.7)

with a proper choice of c, and the conclusion of Corollary 2 still holds (when N = n, this means
that d(λ∗) ≤ cn, with a proper choice of constant c). Theorem 2 must be used, leading to the
bound

P{λ̂ �= λ∗} ≤ 5−d̄A

(
N

≤ d̄

)−A

,

so, in this case, the probability of the error is bounded in a better way.
Hence, the Dantzig selector provides an exact solution to the problem of recovery of a sparse

vector λ∗ based on noiseless measurements of function fλ∗ at random points. It is easy to see
that in this case, one can also use another definition of λ̂, as a minimizer of the �1-norm ‖λ‖�1

subject to the linear constraints fλ(Xj ) = Yj , j = 1, . . . ,N with no changes in the proof. This
striking fact has been known for a while and has some interesting connections to deep results
in convex geometry and asymptotic geometric analysis (such as, for instance, neighborliness of
convex polytopes; see Donoho (2006a, 2006b), Candes and Tao (2005), Candes, Romberg and
Tao (2006), Rudelson and Vershynin (2005), Mendelson, Pajor and Tomczak-Jaegermann (2007)
and references therein).

We will consider another interesting consequence of Corollary 1 under the additional assump-
tions that the dictionary is orthonormal in L2(�) and that the ψ2- and the L2-norms are equiva-
lent on the linear span of the dictionary up to a numerical constant. Because of orthonormality,
the L2-norm is equal to the �2-norm in the space of coefficients, and condition (3.1) becomes, in
this case, a version of condition (2.2):

‖fλ‖L2(�) ≤ B‖fλ‖L1(�), λ ∈ R
N.

Thus, all of the Orlicz norms between L1 and ψ2 are equivalent in this case. In particular, this
applies to Gaussian and Rademacher dictionaries. The result given below also follows from the
oracle inequality proven by Candes and Tao (2007) in the fixed design case (under the UUP con-
dition). It is also not hard to establish it for the dictionaries that are not necessarily orthonormal,
but that satisfy some assumption on the “weakness” of correlations between functions hj .
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Corollary 3. Under the above assumptions, including (3.1), the assumption that the noise is
N(0;σ 2), that the dictionary is orthonormal in L2(�) and that the ψ2- and the L2-norms are
equivalent on the linear span of the dictionary up to a numerical constant, there exists a choice of
constant C such that for all ε satisfying condition (3.5) and λ∗ satisfying the sparsity assumption
(3.6), with probability at least 1−N−A and with some D > 0 depending on B in condition (3.1),

‖λ̂ − λ∗‖2
�2

≤ D

N∑
j=1

(|λ∗
j |2 ∧ ε2) = D inf

J⊂{1,...,N}

[∑
j /∈J

|λ∗
j |2 + d(J )ε2

]
.

Proof. Define λ̄∗ as follows:

λ̄∗
j = λ∗

j I (|λ∗
j | ≥ ε/3).

We then have ∣∣〈fλ̄∗ − fλ∗ , hk〉L2(�)

∣∣= |λ∗
k | ≤ ε/3

for all k ∈ Jλ∗ , |λ∗
k | ≤ ε/3 and it is equal to 0 otherwise.

We also have, for all k = 1, . . . ,N,

‖ξhk(X)‖ψ1 ≤ ‖ξ‖ψ2‖hk(X)‖ψ2 ≤ cσ,

with a numerical constant c, implying that with a proper choice of C,C′,

C‖ξhk(X)‖ψ1

√
A logN

n
≤ ε/3,

provided that

ε ≥ C′σ
√

A logN

n
.

Finally,

‖(fλ̄∗ − fλ∗)(X)hk(X)‖ψ1 ≤ ‖(fλ̄∗ − fλ∗)(X)‖ψ2‖hk(X)‖ψ2 ≤ c‖fλ̄∗ − fλ∗‖L2(�)

= c

( ∑
j : |λ∗

j |<ε/3

|λ∗
j |2

)1/2

≤ c(ε/3)
√

d(λ∗),

which implies that

C‖(fλ̄∗ − fλ∗)(X)hk(X)‖ψ1

√
A logN

n
≤ ε/3,

provided that

cC

√
Ad(λ∗) logN

n
≤ 1.
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The last condition is equivalent to (3.6) with a proper choice of constant therein.
Hence, λ̄∗ ∈ �̄ε(A) and Corollary 1 implies that with probability at least 1 − N−A,

‖λ̂ − λ∗‖�2 ≤
( ∑

j :|λ∗
j |<ε/3

|λ∗
j |2

)1/2

+ 16B2
√

card(j : |λ∗
j | ≥ ε/3)ε,

which yields that, with some constant D (depending on B),

‖λ̂ − λ∗‖2
�2

≤ D

N∑
j=1

(|λ∗
j |2 ∧ ε2).

�

We now describe a couple of ways of bounding the quantity β2(J ) involved in Theorem 2 and
in the upper bound on β(J ).

Let κ(J ) denote the minimal eigenvalue of the Gram matrix (〈hi, hj 〉L2(�))i,j∈J . Also, denote
by LJ the linear span of {hj : j ∈ J } and let

ρ(J ) := sup
f ∈LJ ,g∈LJc ,f,g �=0

∣∣∣∣ 〈f,g〉L2(�)

‖f ‖L2(�)‖g‖L2(�)

∣∣∣∣.
ρ(J ) is thus the largest “correlation coefficient” (or the largest cosine of the angle) between
functions in the linear span of a subset {hj : j ∈ J } of the dictionary and the linear span of its
complement. It is of interest to compare ρ(J ) with the concept of canonical correlation used in
multivariate statistical analysis. It is very easy to check (see Koltchinskii (2009), Proposition 1)
that

β2(J ) ≤ 1√
κ(J )(1 − ρ2(J ))

and, as a consequence, if (2.2) holds with some constant B(J ) > 0, then

β(J ) ≤
√

d̃(J ),

where

d̃(J ) := B2(J )d(J )

κ(J )(1 − ρ2(J ))
.

In particular, if the dictionary {h1, . . . , hN } is orthonormal in L2(�) and condition (2.2) holds
with a constant B that does not depend on J (for instance, in the case of Gaussian or Bernoulli
dictionaries), then κ(J ) = 1 and ρ(J ) = 0, so d̃(J ) = B2d(J ), leading to the bound

β(J ) ≤ B
√

d(J ).

We define

d̃(λ) := d̃(Jλ),
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which plays the role of a modified “dimension” of the vector λ (that takes into account how close
the dictionary is to the orthonormality property; in the orthonormal case, d̃(λ) = B2d(λ)).

Define

�̌ε(A) := �ε(A) ∩
{

λ ∈ R
N :C max

1≤k≤N
‖hk(X)‖ψ1

√
Ad̃(λ) logN

n
≤ 1/4

}
.

The proof of the following corollary repeats the proof of Corollary 1, with the �2-norm re-
placed by the L2(�)-norm.

Corollary 4. Suppose that condition (2.2) holds. There exists a constant C in the definition of
�̌ε(A) such that for all A ≥ 1, the assumption �̌ε(A) �= ∅ implies that with probability at least
1 − N−A,

‖f
λ̂
− f∗‖L2(�) ≤ inf

λ∈�̌ε(A)

[‖fλ − f∗‖L2(�) + 16
√

d̃(λ)ε
]
.

Denote by fλ0, λ0 ∈ R
N the orthogonal projection in L2(�) of f∗ onto the linear span of the

dictionary. The following result is also straightforward.

Corollary 5. Suppose that the condition (2.2) holds and that the noise is normal with mean zero
and variance σ 2. There then exists a constant C such that for all A ≥ 1 and all

ε ≥ C(‖fλ0 − f∗‖ψ2 + σ)

√
A logN

n
,

if λ0 satisfies the “sparsity” condition

C

√
Ad̃(λ0) logN

n
≤ 1/4,

then with probability at least 1 − N−A,

‖f
λ̂
− f∗‖2

L2(�) ≤ ‖fλ0 − f∗‖2
L2(�) + 162d̃(λ0)ε2.

Proof. Under the assumptions, it is easy to check that λ0 ∈ �̌ε(A). This allows one to deduce
that, with probability at least 1 − N−A,

‖f
λ̂
− fλ0‖2

L2(�) ≤ 162d̃(λ0)ε2.

Since f
λ̂
− fλ0 and fλ0 − f∗ are orthogonal, this implies the result. �

Another approach to bounding β2(J ) is based on some quantities involved in the restricted
isometry condition.
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For I, J ⊂ {1, . . . ,N}, I ∩ J = ∅, define

r(I ;J ) := sup
f ∈LI ,g∈LJ ,f,g �=0

∣∣∣∣ 〈f,g〉L2(�)

‖f ‖L2(�)‖g‖L2(�)

∣∣∣∣
(for ρ(J ) defined before, ρ(J ) = r(J, J c)). Let

ρd := max
{
r(I, J ) : I, J ⊂ {1, . . . ,N}, I ∩ J = ∅, d(I ) = 2d, d(J ) = d

}
.

This quantity measures the correlation between linear spans of disjoint parts of the dictionary of
fixed cardinalities, d and 2d (it is a more “local” characteristic of the dictionary than the quantity
ρ(J ) used before).

We will also define

md := inf
{‖fu‖L2(�) :u ∈ R

N,‖u‖�2 = 1, d(u) ≤ d
}

and

Md := sup
{‖fu‖L2(�) :u ∈ R

N,‖u‖�2 = 1, d(u) ≤ d
}
.

Lemma 2. Suppose J ⊂ {1, . . . ,N}, d(J ) = d and

ρd <
m2d

M2d

.

Then,

β2(J ) ≤ 1

m2d − ρdM2d

.

Proof. Recall Lemma 1 and its notation. Denote by PI the orthogonal projection on LI ⊂
L2(�). Then, for all u ∈ CJ ,∥∥∥∥∥

N∑
j=1

ujhj

∥∥∥∥∥
L2(�)

≥
∥∥∥∥∥PJ0∪J1

N∑
j=1

ujhj

∥∥∥∥∥
L2(�)

≥
∥∥∥∥ ∑

j∈J0∪J1

ujhj

∥∥∥∥
L2(�)

−
∥∥∥∥PJ0∪J1

∑
j /∈J0∪J1

ujhj

∥∥∥∥
L2(�)

≥
∥∥∥∥ ∑

j∈J0∪J1

ujhj

∥∥∥∥
L2(�)

−
∑
k≥2

∥∥∥∥PJ0∪J1

∑
j∈Jk

ujhj

∥∥∥∥
L2(�)

≥
∥∥∥∥ ∑

j∈J0∪J1

ujhj

∥∥∥∥
L2(�)

− ρd

∑
k≥2

∥∥∥∥∑
j∈Jk

ujhj

∥∥∥∥
L2(�)

≥
∥∥∥∥ ∑

j∈J0∪J1

ujhj

∥∥∥∥
L2(�)

− ρdM2d

∑
k≥2

‖u(k)‖�2
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≥
∥∥∥∥ ∑

j∈J0∪J1

ujhj

∥∥∥∥
L2(�)

−ρdM2d

( ∑
j∈J∪J1

|uj |2
)1/2

≥
∥∥∥∥ ∑

j∈J0∪J1

ujhj

∥∥∥∥
L2(�)

−ρd

M2d

m2d

∥∥∥∥ ∑
j∈J0∪J1

ujhj

∥∥∥∥
L2(�)

=
(

1 − ρd

M2d

m2d

)∥∥∥∥ ∑
j∈J0∪J1

ujhj

∥∥∥∥
L2(�)

.

On the other hand, for u ∈ CJ ,

(∑
j∈J

|uj |2
)1/2

≤
( ∑

j∈J0∪J1

|uj |2
)1/2

≤ m−1
2d

∥∥∥∥ ∑
j∈J0∪J1

ujhj

∥∥∥∥
L2(�)

,

implying that (∑
j∈J

|uj |2
)1/2

≤ m−1
2d

(
1 − ρd

M2d

m2d

)−1
∥∥∥∥∥

N∑
j=1

ujhj

∥∥∥∥∥
L2(�)

,

which yields

β2(J ) ≤ 1

m2d − ρdM2d

. �

If md ≤ 1 ≤ Md ≤ 2, one can express the restricted isometry constant δd = δd(�) as

δd = (Md − 1) ∨ (1 − md).

It is also easy to show that

ρd ≤
[(

1 + δ3d

1 − δ3d

)2

− 1

]
∨
[

1 −
(

1 − δ3d

1 + δ3d

)2]
.

Lemma 2 then implies that there exists δ̄ < 1 such that, under the condition δ3d ≤ δ̄, β2(J ) ≤ c̄

for all sets J with d(J ) ≤ d, where c̄ is a constant that depends only on δ̄ (for instance, one can
take δ̄ = 1/8).

Denote by d̄ the largest d such that d ≤ N/e − 1, δ3d ≤ δ̄,

Ad log(N/d)

n
≤ 1

and

CB(d) sup
‖u‖�2 ≤1,d(u)≤d

‖fu‖ψ1

√
Ad log(N/d)

n
≤ 1/4.
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Let

�̌2
ε(A) := �ε(A) ∩ {λ ∈ R

N :d(λ) ≤ d̄}.
The next corollary is an immediate consequence of Theorem 2 and Lemma 2. It shows that

sparse enough target functions can be recovered by the Dantzig selector under a version of the re-
stricted isometry assumption. In particular, Proposition 1 in the Introduction immediately follows
from this corollary.

Corollary 6. There exist constants C,D depending only on δ̄ such that for all A ≥ 1, the as-
sumption �̌2

ε(A) �= ∅ implies that with probability at least 1 − N−A,

‖f
λ̂
− f∗‖L2(�) ≤ inf

λ∈�̃2
ε(A)

[‖fλ − f∗‖L2(�) + DB2(d(λ))
√

d(λ)ε
]
.

Moreover, if, in addition, f∗ = fλ∗ , λ∗ ∈ R
N, then we also have

‖λ̂ − λ∗‖�2 ≤ inf
λ∈�̃2

ε(A)

[‖λ − λ∗‖�2 + DB2(d(λ))
√

d(λ)ε
]
.

Another way to bound the quantity β2(J ) is given in the following proposition that is akin to
some statements in Bickel, Ritov and Tsybakov (2009) (in the fixed design case). The proof is
rather straightforward and is based on a simple modification of Lemma 1.

Proposition 3. If J ⊂ {1, . . . ,N} with d(J ) = d and, for some s ≥ 1,

Ms

ms+d

<

√
s

d
,

then

β2(J ) ≤
√

s√
smd+s − √

dMs

.

We conclude this section with a couple of examples that provide some explanation of the role
of such geometric characteristics of the dictionary as β2(J ) in sparse recovery problems.

Example. Consider the case where the functions h1, . . . , hN are orthogonal in L2(�). It is easy
to see that

β2(J ) = 1

minj∈J ‖hj‖L2(�)

.

Suppose that f∗ = fλ∗ with λ∗ ∈ R
N and

‖hj‖L2(�) = τ > 0, j ∈ Jλ∗ .
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Fix the value of the parameter ε > 0 of the Dantzig selector and consider, for simplicity, the limit
case when n → ∞. In this limit, the set �̂ε becomes

�̂ε := {λ ∈ R
N : |〈fλ − fλ∗ , hk〉| ≤ ε, k = 1, . . . ,N}

which, under the orthogonality assumption, is just

�̂ε := {
λ ∈ R

N : |λk − λ∗
k |‖hk‖2

L2(�) ≤ ε, k = 1, . . . ,N
}
.

It is easy to compute the Dantzig selector: for k = 1, . . . ,N,

λ̂k =
(

λ∗
k − ε

‖hk‖2
L2(�)

)
I

(
λ∗

k ≥ ε

‖hk‖2
L2(�)

)
+
(

λ∗
k + ε

‖hk‖2
L2(�)

)
I

(
λ∗

k ≤ − ε

‖hk‖2
L2(�)

)
.

Therefore,

‖λ̂ − λ∗‖2
�2

= ε2
∑

k:|λ∗
k |≥ε/‖hk‖2

L2(�)

1

‖hk‖4
L2(�)

+
∑

k:|λ∗
k |<ε/‖hk‖2

L2(�)

|λ∗
k |2.

If |λ∗
j | ≥ ε/τ 2 for all j ∈ Jλ∗ , we get

‖λ̂ − λ∗‖�2 = 1

τ 2

√
d(λ∗)ε.

If hj (X), j = 1, . . . ,N, are i.i.d. N(0, τ 2), this yields

‖λ̂ − λ∗‖�2 = β2
2 (d(λ∗))

√
d(λ∗)ε,

which is in agreement with the last bound of Theorem 2 in this case. Thus, the presence of
β2(d) in the bound has something to do with the nature of the problem, although there might be
different and, possibly, much better ways to take into account the geometry of the dictionary.

Example. Suppose that

{1, . . . ,N} :=
m⋃

k=1

Ik,

where Ik are disjoint sets. Suppose that φ1(X), . . . , φm(X) are i.i.d. N(0,1). Let

gμ =
m∑

k=1

μkφk, μ = (μ1, . . . ,μm) ∈ R
m,

and define hj := φk, j ∈ Ik. It is easy to check that, for such a dictionary, the Dantzig selector λ̂

is a solution of the following problem. First, solve the problem

m∑
j=1

|μj | → min
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subject to the constraints

max
1≤k≤m

∣∣∣∣∣n−1
n∑

j=1

(
gμ(Xj ) − Yj

)
φk(Xj )

∣∣∣∣∣≤ ε.

Let μ̂ be its solution. Then, take arbitrary λ̂ satisfying the conditions∑
j∈Ik

λ̂j = μ̂k, sign(λ̂j ) = sign(μ̂k), j ∈ Ik, k = 1, . . . ,m.

Clearly, we have f
λ̂

= gμ̂ and

‖f
λ̂
− f∗‖2

L2(�) = ‖gμ̂ − f∗‖2
L2(�).

If f∗ = gμ∗ for some μ∗ ∈ R
m, then it follows from Theorem 2 that, with a high probability,

‖f
λ̂
− f∗‖2

L2(�) = ‖gμ̂ − f∗‖2
L2(�) ≤ Dd(μ∗)ε2

(under appropriate further assumptions, say, that ξ is N(0, σ 2) and

ε ≥ Cσ

√
A logN

n
).

Of course, in this case, the dictionary is linearly dependent, coefficients of representation fλ are
not identifiable and, in addition, such quantities as β2(J ) are infinite. But the Dantzig selector is
still recovering f∗ with the L2(�)-error being of the correct size.

This example shows that there are situations beyond the scope of Theorems 1 and 2 in which
the Dantzig selector is a reasonably good estimator of an unknown regression function f∗. It
might be possible to develop more subtle geometric characteristics of the dictionary than β2
which can be used, for instance, when the dictionary can be partitioned into disjoint sets of
highly correlated functions with very little correlation between the sets, and to prove sparsity
oracle inequalities in terms of such characteristics. However, it is not our goal in this paper to
study such situations in detail.

Appendix: Several exponential bounds

We need the following three lemmas.

Lemma 3. Let η(k), η
(k)
1 , . . . , η

(k)
n be i.i.d. random variables with Eη(k) = 0 and ‖η(k)‖ψ1 <

+∞, k = 1, . . . ,N. There exists a numerical constant C > 0 such that for all A ≥ 1 with proba-
bility at least 1 − N−A, for all k = 1, . . . ,N ,∣∣∣∣∣n−1

n∑
j=1

η
(k)
j

∣∣∣∣∣≤ C
∥∥η(k)

∥∥
ψ1

(√
A logN

n
∨ A logN

n

)
.
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This is a consequence of a well-known version of Bernstein’s inequality (see, for example,
Lemma 2.2.11 in van der Vaart and Wellner (1996)).

Lemma 4. There exists a constant C > 0 such that for all A ≥ 1 with probability at least 1 −
N−A,

sup
‖u‖�1 ≤1

∣∣(�n − �)(|fu|)
∣∣≤ C max

1≤k≤N
‖hk(X)‖ψ1

(√
A logN

n
∨ A logN

n

)
.

Proof. Let Rn(f ) denote the Rademacher process

Rn(f ) := n−1
n∑

j=1

εjf (Xj ),

ε, εj , j = 1, . . . , n, being i.i.d. Rademacher random variables independent of X1, . . . ,Xn. For
t > 0, we use the symmetrization inequality and then the contraction inequality (see Ledoux and
Talagrand (1991), page 112) to get

E exp
{
t sup
‖u‖�1 ≤1

∣∣(�n − �)(|fu|)
∣∣} ≤ E exp

{
2t sup

‖u‖�1 ≤1
|Rn(|fu|)|

}

≤ E exp
{

4t sup
‖u‖�1 ≤1

|Rn(fu)|
}
.

Since the mapping u �→ Rn(fu) is linear, the supremum of Rn(fu) over the set {‖u‖�1 ≤ 1} is
attained at one of its vertices and we get

E exp
{
t sup

‖u‖�1 ≤1

∣∣(�n − �)(|fu|)
∣∣} ≤ E exp

{
4t max

1≤k≤N
|Rn(hk)|

}

= N max
1≤k≤N

E[exp{4tRn(hk)} ∨ exp{−4tRn(hk)}]
≤ 2N max

1≤k≤N
E exp{4tRn(hk)}

≤ 2N max
1≤k≤N

(
E exp

{
4

t

n
εhk(X)

})n

.

To bound the last expectation and to complete the proof, we need only to follow the standard
proof of the Bernstein inequality. �

The proof of the next lemma is quite similar.
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Lemma 5. There exists a constant C > 0 such that for all A ≥ 1, with probability at least 1 −
N−A,

sup
‖u‖�1 ≤1

∣∣(�n − �)(|fu|2)
∣∣≤ C max

1≤k,j≤N
‖hk(X)hj (X)‖ψ1

(√
A logN

n
∨ A logN

n

)
.

Let J ⊂ {1, . . . ,N}, d(J ) ≤ d ≤ N
e − 1. Define

KJ := CJ ∩ {u ∈ R
N :‖u‖�2 ≤ 1}.

Lemma 6. There exists a constant C > 0 such that for all A ≥ 1, with probability at least

1 − 5−dA

(
N

≤ d

)−A

,

sup
u∈KJ

∣∣(�n − �)(|fu|)
∣∣≤ C sup

‖u‖�2 ≤1,d(u)≤d

‖fu‖ψ1

(√
Ad log(N/d)

n
∨ Ad log(N/d)

n

)
.

Proof. The idea of the proof is well known (see, for example, Ledoux and Talagrand (1991),
page 421, or, in a context closer to the current paper, Mendelson, Pajor and Tomczak-Jaegermann
(2007), Lemma 3.3). Recall Lemma 1 and its notation. Let u ∈ KJ . Lemma 1 implies that

KJ ⊂ 3 conv
(⋃

BI : I ⊂ {1, . . . ,N}, d(I ) ≤ d
)
,

where

BI :=
{
(ui : i ∈ I ) :

∑
i∈I

|ui |2 ≤ 1

}

since u(0) ∈ BJ0 , u(1) ∈ BJ1 and

∑
k≥2

u(k) ∈ conv
(⋃

BI : I ⊂ {1, . . . ,N}, d(I ) ≤ d
)
.

It is easy to see that if B is the unit Euclidean ball in R
d and M is a 1/2-net of this ball, then

B ⊂ 2 conv(M).

A somewhat informal version of the proof of this claim that can easily be made precise is as
follows: with + denoting Minkowski sum,

B ⊂ M + 1
2B ⊂ conv(M) + 1

2B ⊂ conv(M) + 1
2 conv(M) + 1

4B ⊂ · · ·
⊂ conv(M) + 1

2 conv(M) + 1
4 conv(M) + · · · ⊂ 2 conv(M).
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Now selecting for each I with d(I) ≤ d its minimal 1/2-net MI yields

KJ ⊂ 6 conv
(⋃

MI : I ⊂ {1, . . . ,N}, d(I ) ≤ d
)

=: 6 conv(Md).

Therefore, we can repeat the proof of Lemma 4 and reduce the bounding of

sup
u∈KJ

∣∣(�n − �)(|fu|)
∣∣

to the bounding of

sup
u∈Md

|Rn(fu)|,

with card(Md) playing the role of N. It remains to observe that

card(Md) ≤ 5d

(
N

≤ d

)
,

which implies that with some c > 0,

log(card(Md)) ≤ cd log
N

d
,

and the result follows. �

Acknowledgements

This work was partially supported by NSF Grant DMS-MSPA-0624841 and NSF Grant CCF-
0808863.

References

Bickel, P., Ritov, Y. and Tsybakov, A. (2009). Simultaneous analysis of LASSO and Dantzig selector. Ann.
Statist. To appear.

Bobkov, S. and Houdré, C. (1997). Isoperimetric constants for product probability measures. Ann. Probab.
25 184–205. MR1428505

Bunea, F., Tsybakov, A. and Wegkamp, M. (2007). Sparsity oracle inequalities for the LASSO. Electron. J.
Statist. 1 169–194. MR2312149

Candes, E., Romberg, J. and Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from
highly incomplete frequency information. IEEE Trans. Inform. Theory 52 489–509. MR2236170

Candes, E. and Tao, T. (2005). Decoding by linear programming. IEEE Trans. Inform. Theory 51 4203–
4215. MR2243152

Candes, E. and Tao, T. (2007). The Dantzig selector: Statistical estimation when p is much larger than n.
Ann. Statist. 35 2313–2351. MR2382644

de la Pena, V. and Giné, E. (1998). Decoupling: From Dependence to Independence. New York: Springer.
MR1666908

http://www.ams.org/mathscinet-getitem?mr=1428505
http://www.ams.org/mathscinet-getitem?mr=2312149
http://www.ams.org/mathscinet-getitem?mr=2236170
http://www.ams.org/mathscinet-getitem?mr=2243152
http://www.ams.org/mathscinet-getitem?mr=2382644
http://www.ams.org/mathscinet-getitem?mr=1666908


828 V. Koltchinskii

Donoho, D.L. (2006a). For most large underdetermined systems of linear equations the minimal �1-norm
solution is also the sparsest solution. Commun. Pure Appl. Math. 59 797–829. MR2217606

Donoho, D.L. (2006b). For most large underdetermined systems of equations the minimal �1-norm near-
solution approximates the sparsest near-solution. Commun. Pure Appl. Math. 59 907–934.

Koltchinskii, V. (2005). Model selection and aggregation in sparse classification problems. In Oberwolfach
Reports: Meeting on Statistical and Probabilistic Methods of Model Selection, October 2005. European
Mathematical Society Publishing House.

Koltchinskii, V. (2009). Sparsity in penalized empirical risk minimization. Ann. Inst. H. Poincaré Probab.
Statist. 45 7–57.

Ledoux, M. and Talagrand, M. (1991). Probability in Banach Spaces. New York: Springer. MR1102015
Mendelson, S., Pajor, A. and Tomczak-Jaegermann, N. (2007). Reconstruction and subgaussian operators

in asymptotic geometric analysis. Geom. Funct. Anal. 17 1248–1282. MR2373017
Rudelson, M. and Vershynin, R. (2005). Geometric approach to error correcting codes and reconstruction

of signals. Int. Math. Res. Not. 64 4019–4041. MR2206919
van de Geer, S. (2008). High-dimensional generalized linear models and the Lasso. Ann. Statist. 36 614–

645. MR2396809
van der Vaart, A. and Wellner, J. (1996). Weak Convergence and Empirical Processes. New York: Springer.

MR1385671

Received May 2007 and revised August 2008

http://www.ams.org/mathscinet-getitem?mr=2217606
http://www.ams.org/mathscinet-getitem?mr=1102015
http://www.ams.org/mathscinet-getitem?mr=2373017
http://www.ams.org/mathscinet-getitem?mr=2206919
http://www.ams.org/mathscinet-getitem?mr=2396809
http://www.ams.org/mathscinet-getitem?mr=1385671

	Introduction
	Main results
	Corollaries and remarks
	Appendix: Several exponential bounds
	Acknowledgements
	References

