
SCALABLE SEMIDEFINITE MANIFOLD LEARNING

Nikolaos Vasiloglou, Alexander G. Gray, David V. Anderson

Georgia Institute of Technology
Atlanta GA 30332

nvasil@ieee.org, agray@cc.gatech.edu, dva@ece.gatech.edu

ABSTRACT

Maximum Variance Unfolding (MVU) is among the state of
the art Manifold Learning (ML) algorithms and experimen-
tally proven to be the best method to unfold a manifold to its
intrinsic dimension. Unfortunately it doesn’t scale for more
than a few hundred points. A non convex formulation of
MVU made it possible to scale up to a few thousand points
with the risk of getting trapped in local minima. In this pa-
per we demonstrate techniques based on the dual-tree algo-
rithm and L-BFGS that allow MVU to scale up to 100,000
points. We also present a new variant called Maximum Fur-
thest Neighbor Unfolding (MFNU) which performs even
better than MVU in terms of avoiding local minima.

1. INTRODUCTION

Maximum Variance Unfolding (MVU) is one of the state of
the art Manifold Learning (ML) algorithms [?]. In his orig-
inal paper Weinberger showed that MVU is empirically the
best unfolding method that recovers the intrinsic dimension
of a manifold compared to other known ML algorithms. Un-
fortunately MVU is scalable up to a few hundred points be-
cause it is cast as a Semidefinite Program (SDP) [?] and
its complexity is cubic. In [?] a non convex formulation of
MVU known as NCMVU was presented based on the non-
convex SDP framework developed in [?]. This method [?]
has linear complexity per iteration based on L-BFGS algo-
rithm [?], but nothing can be said about the overall com-
plexity. Experiments showed that it speeds MVU signifi-
cantly with the disadvantage of getting non-optimal solu-
tions that correspond to local minima. Despite the speedup
the method could scale up to a few thousand of points. This
is mainly because MVU like any other ML technique re-
quires the computation of all k-nearest neighbors which has
quadratic complexity. Another problem is auto-tuning the
optimization parameters that can distort the optimal solu-
tion with local optima.

For the first problem we considered this paper with the
dual-tree algorithm [?] that has empirically linear complex-
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ity and speeds up the computation of neighborhoods signif-
icantly. For the second problem we introduced a different
objective function for unfolding that is based on the dis-
tances of the furthest neighbors, Maximum Furthest Neigh-
bor Unfolding MFNU. In the experiments we show that it
behaves better than NCMVU in terms of local optima. We
also derived an upper bound for NCMVU and MFNU that
helps in auto-tuning the optimization parameters. In our
experiments we were able to unfold 10dimensional 100K
point datasets in 5 hours. This is the largest dataset to be
unfolded based on MVU or its variants. The largest set ever
processed with ML was done in [?], that involved 18M im-
ages, but different techniques were used.

The rest of the paper is organized as follows. In section
2 and 3 the convex and non-convex MVU algorithms are
outlined. A description of all k-nearest neighbors is given
in section 4. MFNU is presented in section 5 and in the end
(sections 6, 6.2) implementational issues and experiments
are discussed.

2. MAXIMUM VARIANCE UNFOLDING, THE
CONVEX SDP CASE

Weinberger formulated the problem of isometric unfolding
as a Semidefinite Programming algorithm [?]. According to
his experiments MVU has the best performance compared
to the other state of the art Manifold Learning methods.

Given a set of data X ∈ "N×d, where N is the number
of points and d is the dimensionality. The dot product or
Gramm matrix is defined as G = XXT . The goal is to find
a new Gramm matrix K such that rank(K) < rank(G) in
other words K = X̂X̂T where X̂ ∈ "N×d′

and d′ < d.
Now the dataset is represented by X̂ which has fewer di-
mensions that X . The requirement of isometric unfolding
is that the euclidian distances in the "d′

for a given neigh-
borhood around every point have to be the same as in the
"d. This is expressed in:

Kii +Kjj−Kij−Kji = Gii +Gjj−Gij−Gji,∀i, j ∈ Ii

(1)
where Ii is the set of the indices of the neighbors of the ith



point. From all the K matrices MVU chooses the one with
the maximum variance. So the algorithm is presented as an
SDP:

max Trace(K)
subject to

Trace(AijK) = dij ∀i, j ∈ Ii

Trace(1Kij) = 0

where Aij has the following form:
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and
dij = Gii + Gjj −Gij −Gji (4)

The last condition is just a centering constraint for the
covariance matrix. The new dimensions X̂ are the eigen-
vectors of K. In general MVU gives Gram matrices that
have compact spectrum at least more compact than tradi-
tional linear Principal Component Analysis (PCA). Unfor-
tunately this method can handle datasets of no more than
hundreds of points because of its complexity.

3. THE NON CONVEX MAXIMUM VARIANCE
UNFOLDING

By replacing the constraint K % 0 [?] with an explicit rank
constraint K = RRT the problem becomes non-convex and
it is reformulated to

max RRT (5)
Aij • RRT = dij (6)

1 • RRT = 0 (7)

The above problem can be solved with the augmented La-
grangian method [?]. Gradient descent is a possible way to
solve the minimization of the Lagrangian, but it is rather
slow. The Newton method is also prohibitive. The Hes-
sian of this problem is a sparse matrix although the cost of

the inversion might be high it is worth investigating. In our
experiments we used the limited memory BFGS (L-BFGS)
method [?, ?] that is known to give a good rate for conver-
gence.

4. COMPUTING THE NEIGHBORHOODS

As already discussed in previous section MVU and its vari-
ants require the computation of all-nearest neighbors. The
all-nearest neighbor problem is a special case of a more gen-
eral class of problems called N-body problems [?]. In the
following sections we give a sort description of the nearest
neighbor computation. The actual algorithm is a four-way
recursion. More details can be found in [?].

4.1. Kd-tree

The kd-tree fig 1a is a hierarchical partitioning structure
for fast nearest neighbor search [?]. Every node is recur-
sively partitioned in two nodes until the points contained
are less than a fixed number. This is a leaf. Nearest neigh-
bor search is based on a top down recursion until the query
point finds the closest leaf. When the recursion hits a leaf
then it searches locally for a candidate nearest neighbor
fig 1bc. At this point we have an upper bound for the near-
est neighbor distance, meaning that the true neighbor will be
at most as far away as the candidate one. As the recursion
backtracks it eliminates (prunes) nodes that there are further
away than the candidate neighbor. Kd-trees provide on the
average nearest neighbor search in O(log N) time, although
for pathological cases the kd-tree performance can asymp-
totically have linear complexity like the naive method.

4.2. The Dual Tree Algorithm

In the single tree algorithm the reference points are ordered
on a kd-tree. Every nearest neighbor computation requires
O(log(N)) computations. Since there are N query points
the total cost is O(N log(N)). The dual-tree algorithm [?]
orders the query points on a tree too. If the query set and
the reference set are the same then they can share the same
tree. Instead of querying a single point at a time the dual-
tree algorithm always queries a group of points that live in
the same node. So instead of doing the top-down recursion
individually for every point it does it for the whole group
at once. Moreover instead of computing distances between
points and nodes it computes distances between nodes. This
is the reason why most of the times the dual-tree algorithm
can prune larger portions of the tree than the single tree al-
gorithm. The complexity of the dual-tree algorithm is em-
pirically O(N). If the dataset is pathological then the algo-
rithm can be of quadratic complexity too.
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Fig. 1. a)Two dimensional kd tree. The solid lines indi-
cate the bounding boxes, while the dashed lines indicate
the splitting dimension on the node b) The red point is the
query point. The single tree algorithm recurses to the closest
leaf following always the closest node. Then it finds localy
the candidate neighbor. In this case the algorithm has to
search the left leaf too. c)In this case the candidate nearest
neighbor is the true too. The sphere around the query point
doesn’t intersect the other leaf

5. MAXIMUM FURTHEST NEIGHBOR
UNFOLDING

Weinberger presented a physical explanation of MVU by
simulating every point with a metallic ball connected to its
neighbors with a rod. Every rod can freely rotate around
the ball. Every ball tries to move far away from the origin
bound to its neighbors. Mathematically this is expressed as
variance maximization.

Instead of maximizing the variance which is equivalent
to maximizing the distance of every point from the origin
we propose maximization of the distance between furthest
neighbors. So the objective function becomes

max
N∑

i=1

Ci • RRT (8)

where Ci selects the pair of furthest neighbor, it has simi-
lar structure with (2). This formulation as we will see later
leads to better unfolding of the manifold, bypassing local
minima. Computing the furthest neighbors is an N-body
problem too, meaning that the naive method would be of
O(N2) complexity. It turns out that the dual-tree and single
tree algorithms can efficiently compute the furthest neigh-
bors too. The only difference is that in the top down re-
cursion they have to choose the furthest node instead of the
nearest.

6. IMPLEMENTATION AND EXPERIMENTS

Our experiments target datasets from 5K up to a 100K
points. All the algorithms were developed in C++ as part
of the Fastlib library [?], that uses data structures based on
BLAS and LAPACK that are known to be optimal for linear
algebra operations. Moreover Fastlib has several other op-
timizations ideal for machine learning algorithms. Fastlib
also contains algorithms for kd-trees and fast all-nearest
neighbor implementation. All the experiments were ran on
identical dual Xeon 3.00GHz, 64-bit processors with 8 GB
RAM and with the hyperthreading off. The following ob-
jective functions were tested:

1. Maximum Variance Unfolding

2. Maximum Furthest Neighbors Unfolding

6.1. Implementation Issues of the Augmented La-
grangian and L-BFGS

Before presenting the results the authors think it is neces-
sary to mention some details on the parameters of the opti-
mization methods. As mentioned above, the augmented La-
grangian method has some parameters that need to be tuned.
First of all the memory of the L-BFGS method was chosen
to be 50.

The sigma (penalty parameter) is the most critical one
since if it is very small then the method does not converge.
The solution is moving away from the feasible domain. If
sigma is very high then the method moves very quickly to
feasible domain without giving the opportunity for the vari-
ance to be maximized. Our strategy was to always start
from low sigmas and if the objective function exceeds an
upper bound sigma is increased. Eventually sigma will get
the right value. It turns out that a reasonable upper bound
for the objective (distance of furthest neighbors) in the op-
timization problem is the following:

B = dmax ∗N2 (9)

where dmax is the maximum nearest neighbor distance in
the set. The geodesic distance between two furthest neigh-
bors cannot be greater than Ndmax. This upper bound is
also valid for the maximum variance case since the variance
is the distance from the axis origin which is always less than
the distance of the furthest neighbors.

Another parameter of the method is the k-neighborhood.
This can be set ad-hoc or it can be tuned. In the experiments,
the technique of leave-one-out cross validation was used de-
scribed in [?]. As it will be shown in the following sections,
bad choice of the k-parameter can give wrong results.

The only parameter that still remains ad-hoc is the norm
gradient accuracy for optimization for a fixed penalty pa-
rameter (sigma). As a heuristic we found out that when



the norm gradient is less than sigma the inner optimization
should terminate, although we noticed that it could have
been set in a higher value. The whole optimization algo-
rithm terminates when the feasibility error is below a certain
value.

6.2. Datasets

For our experiments we used the following datasets:

1. A three dimensional Swiss roll ranging from 1000
points up to 100K

2. Speech features from the TIMIT database

3. The Corel image features

Detailed descriptions of the datasets can be found at [?],
while a short descriptions can be found in table 6.2 The goal

dataset points dimension
Swiss roll up to 100,000 3

TIMIT MFCC features 100,000 39
Corel color histogram 68,040 32
Corel color moments 68,040 9

Corel textures 68,040 16

Fig. 2. Dataset description

of the experiments was to visualize the datasets so we tried
low dimensional embedding to 2, 3 dimensions or up to the
dimension for which the optimization method would give a
satisfactory feasibility error.
Swiss roll experiments. Swiss roll has been a benchmark
for manifold learning, but the experiments have been lim-
ited to few hundreds of points. In these experiments the
goal is to investigate the scalability of the MVU and MFNU
and the quality of the results too. In fig. 7 we see the tremen-
dous difference between convex MVU and NCMFNU, as it
is 6 orders of magnitude slower for 100K points.
Maximum Furthest Neighbors Unfolding. In fig. 7.a we
see that the algorithm scales in a quasi-linear way. The
jump between 50 and 70 thousand points is because we
had to increase the number of neighbors. In fig. 7.c we
see that the number of iterations has a linear trend which
means that the whole complexity of the algorithm has to be
quadratic asymptotically. The reason why we don’t notice
clear quadratic behavior is because all linear operations of
LBFGS don’t scale linearly because of the BLAS imple-
mentation. BLAS has almost constant behavior for small
vectors and asymptotically linear. In fig.7.c we see that the
objective function increases linearly, which is something ex-
pected and a good way to verify that the algorithm works,
although the results were also visually inspected in order to
verify convergence of the algorithm. In fig. 7.d the number

of constraints versus the number of points is plotted. When
the k-neighborhoods are computed it is obvious that some
of them will be duplicated. In this picture we see that the
necessary constraints also grow linearly but they are always
less than the imposed ones (solid line).
Maximum Furthest Neighbors Unfolding with auto-
tuning. In fig. 7 we see the results. It is noteworthy that
in the middle column the unfolded Swiss roll seems very
well unfolded. The scaling seems to be be almost linear un-
til 45000 points.
Maximum Variance Unfolding. In fig. 7 we see the scal-
ing of MVU. By comparing fig. 7.a and 7.a we can see that
MVU is faster than MFNU. Unfortunately in fig 7 we see
that the MVU gives very poor results and gets trapped into
local minima more easily.

Corel dataset. In fig. 7 the results from MFNU are de-
picted for the color moments and color histograms. We
tested different k-neighborhoods and dimensions. It turns
out that both datasets can be embedded in 3 dimensions. All
the experiments run in reasonable time from a few minutes
up to 2 hours.

TIMIT dataset. The TIMIT dataset is a benchmark
speech dataset. After sampling we extracted 100,000 39-
dim points that they correspond to the Mel-frequency cep-
strum coefficients of 25msec frames with 0.125msec over-
lap. The dimension was reduced with PCA and the first
10 principal components that correspond to 96% of the total
sum of eigenvalues. It took about 5 hours to unfold it in 5 di-
mensions. Optimization is the most intensive part as it took
95% of the time. The part of computing the nearest neigh-
bors took only 15 minutes with the dual tree algorithm. Just
as a comparison if we we using the naive method it would
take 14hours just to compute the neighbors and the whole
algorithm 14+5=19hours.

Although the dataset was unfolded in 5 dimensions, it
turns out that 3 are the dominant ones. This is a very useful
result since it shows clearly that there are many redundant
dimensions on the initial 10 dimensional dataset. Due to
space limitations the plots are not shown.

7. SUMMARY

In this paper we presented implementational issues of Max-
imum Variance Unfolding and tested it over medium size to
large datasets. The contribution of this paper is mainly on
the modification of the objective function from Max Vari-
ance to Max Furthest Neighbor distance, that turned out to
have better performance in terms of overcoming local op-
tima. We also presented some heuristics for auto-tuning of
the augmented Lagrangian, by estimating an upper bound
for the objective function. Or experiments showed that it
is not yet clear if the method can scale linearly, as it de-
pends on the dataset pathology, and on the number of the



necessary constraints. This is the first time that MVU is
applied on medium to large size datasets, revealing some
dimensional aspects. As a future direction we believe that
analytical computation of the Hessian and investigation of
the right preconditioner for the Newton Method should be
considered. The authors would like to thank Professors Ne-
mirovski and Shapiro for their help in semidefinite program-
ming.
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Fig. 3. The classic MVU algorithm a)Scaling performance
b)Iterations required for the optimization

Fig. 4. Convex MVU vs non-convex MFNU. For the con-
vex MVU we run experiments up to 600 points and then
extrapolated
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Fig. 5. The MFNU performance, a)Scaling of the MFNU
b)Maximization results of the Maximum Furthest Neigh-
bors objective c)Iterations required for the optimization
d)Number of constrained kN (solid line), consolidated con-
straints (dashed line)
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Fig. 6. The MFNU algorithm with auto-tuning of k-
neighborhoods, a)Scaling of the algorithm b)Iterations re-
quired for the optimization c)Number of constrained kN
(solid line), consolidated constraints (dashed line)

Fig. 7. Unfolded Swiss rolls 10K, 20K, 40K (top to bottom
row), (left column) MFNU, (center column)MFNU with
auto-tuning for k-neighborhoods, (right column)MVU. All
images have been sampled showing only 4000 points, be-
cause eps files get too big

(a)

(b)

(c)

Fig. 8. (left column) corel color moments, (right column)
corel color histogram, (a)4-point neighborhood, (b)5-point
neighborhood, (c)7-point neighborhood


